Jump to content

Chilli leaf curl virus: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
AnomieBOT (talk | contribs)
m Dating maintenance tags: {{Cn}}
ShortDescBot (talk | contribs)
ShortDescBot adding short description "Species of virus"
 
(10 intermediate revisions by 8 users not shown)
Line 1: Line 1:
{{Short description|Species of virus}}
{{Distinguish|Pepper leaf curl virus}}
{{Distinguish|Pepper leaf curl virus}}
{{virusbox
{{Taxobox
| image =
| parent = Begomovirus
| species = Chilli leaf curl virus
| image_caption =
| virus_group = ii
| familia = ''[[Geminiviridae]]''
| genus = ''[[Begomovirus]]''
| species = '''''Chilli leaf curl virus'''''
}}
}}


'''''Chilli leaf curl virus''''' '''(ChiLCV)''' is a DNA virus from the genus ''[[Begomovirus]]'' and the family ''[[Geminiviridae]]''. ChiLCV causes severe disease especially in pepper (''[[Capsicum|Capsicum spp.]]''), but also affects other crops such as tomato (''[[Solanum lycopersicum]]'').<ref name=":0">{{Cite web|url=https://www.genome.jp/virushostdb/172278|title=Chilli leaf curl virus|website=www.genome.jp|access-date=2018-07-10}}</ref> It can be found in tropical and subtropical regions primarily in [[India]], but has also been detected in countries such as [[Indonesia]] and [[Sri Lanka]].<ref name=":1">{{Cite journal|last=Thakur|first=Hament|last2=Jindal|first2=Salesh Kumar|last3=Sharma|first3=Abhishek|last4=Dhaliwal|first4=Major Singh|date=2018-01-20|title=Chilli leaf curl virus disease: a serious threat for chilli cultivation|journal=Journal of Plant Diseases and Protection|volume=125|issue=3|pages=239–249|doi=10.1007/s41348-018-0146-8|issn=1861-3829}}</ref> This virus is transmitted by an insect vector from the family ''[[Aleyrodidae]]'' and order ''[[Hemiptera]]'', the whitefly ''[[Bemisia tabaci]]''. The primary host for ChiLCV are several ''Capsicum spp.,'' but host species also include tomato and [[Amaranthus caudatus|amaranth]].<ref name=":0" /><ref name=":2">{{Cite journal|last=Kumar|first=Y.|last2=Hallan|first2=V.|last3=Zaidi|first3=A. A.|date=2011-05-12|title=Chilli leaf curl Palampur virus is a distinct begomovirus species associated with a betasatellite|journal=Plant Pathology|volume=60|issue=6|pages=1040–1047|doi=10.1111/j.1365-3059.2011.02475.x|issn=0032-0862}}</ref> ChiLCV has been responsible for several epidemics and causes severe economic losses. It is the focus of research trying to understand the genetic basis of resistance. Currently, a few sources of resistance have been discovered and used to breed resistant varieties.<ref name=":1" />
'''''Chilli leaf curl virus''''' '''(ChiLCV)''' is a DNA virus from the genus ''[[Begomovirus]]'' and the family ''[[Geminiviridae]]''. ChiLCV causes severe disease especially in pepper (''[[Capsicum|Capsicum spp.]]''), but also affects other crops such as tomato (''[[Solanum lycopersicum]]'').<ref name=":0">{{Cite web|url=https://www.genome.jp/virushostdb/172278|title=Chilli leaf curl virus|website=www.genome.jp|access-date=2018-07-10}}</ref> It can be found in tropical and subtropical regions primarily in [[India]], but has also been detected in countries such as [[Indonesia]] and [[Sri Lanka]].<ref name=":1">{{Cite journal|last1=Thakur|first1=Hament|last2=Jindal|first2=Salesh Kumar|last3=Sharma|first3=Abhishek|last4=Dhaliwal|first4=Major Singh|date=2018-01-20|title=Chilli leaf curl virus disease: a serious threat for chilli cultivation|journal=Journal of Plant Diseases and Protection|volume=125|issue=3|pages=239–249|doi=10.1007/s41348-018-0146-8|s2cid=90840755|issn=1861-3829}}</ref> This virus is transmitted by an insect vector from the family ''[[Aleyrodidae]]'' and order ''[[Hemiptera]]'', the whitefly ''[[Bemisia tabaci]]''. The primary host for ChiLCV are several ''Capsicum spp.,'' but host species also include tomato and [[Amaranthus caudatus|amaranth]].<ref name=":0" /><ref name=":2">{{Cite journal|last1=Kumar|first1=Y.|last2=Hallan|first2=V.|last3=Zaidi|first3=A. A.|date=2011-05-12|title=Chilli leaf curl Palampur virus is a distinct begomovirus species associated with a betasatellite|journal=Plant Pathology|volume=60|issue=6|pages=1040–1047|doi=10.1111/j.1365-3059.2011.02475.x|issn=0032-0862|doi-access=free}}</ref> ChiLCV has been responsible for several epidemics and causes severe economic losses. It is the focus of research trying to understand the genetic basis of resistance. Currently, a few sources of resistance have been discovered and used to breed resistant varieties.<ref name=":1" />


== Genome ==
== Genome ==
This virus typically consists of a single circular single-stranded (ss) DNA molecule (2.7 kb in size), and betasatellite (1361 nt in size), with some reports of bipartite genomes and alphasatellites. The betasatellite most associated with ChiLCLV in ''Capsicum'' was identified as ''Tomato leaf curl Bangladesh betasatellite'' (ToLCBDB). However, multiple betasatellites have been detected, and they likely play a role in symptom development.<ref name=":3">{{Cite journal|last=Jyothsna|first=P.|last2=Haq|first2=Q. M. I.|last3=Singh|first3=Priyanka|last4=Sumiya|first4=K. V.|last5=Praveen|first5=Shelly|last6=Rawat|first6=Ramaveer|last7=Briddon|first7=Rob W.|last8=Malathi|first8=V. G.|date=2013-01-10|title=Infection of tomato leaf curl New Delhi virus (ToLCNDV), a bipartite begomovirus with betasatellites, results in enhanced level of helper virus components and antagonistic interaction between DNA B and betasatellites|journal=Applied Microbiology and Biotechnology|volume=97|issue=12|pages=5457–5471|doi=10.1007/s00253-012-4685-9|pmid=23306645|issn=0175-7598}}</ref> This virus has similar coat protein structure and genome organization to that of other begomoviruses such as [[Tomato yellow leaf curl virus|TYLCV]].<ref name=":1" />
This virus typically consists of a single circular single-stranded (ss) DNA molecule (2.7 kb in size), and betasatellite (1361 nt in size), with some reports of bipartite genomes and alphasatellites. The betasatellite most associated with ChiLCLV in ''Capsicum'' was identified as ''Tomato leaf curl Bangladesh betasatellite'' (ToLCBDB). However, multiple betasatellites have been detected, and they likely play a role in symptom development.<ref name=":3">{{Cite journal|last1=Jyothsna|first1=P.|last2=Haq|first2=Q. M. I.|last3=Singh|first3=Priyanka|last4=Sumiya|first4=K. V.|last5=Praveen|first5=Shelly|last6=Rawat|first6=Ramaveer|last7=Briddon|first7=Rob W.|last8=Malathi|first8=V. G.|date=2013-01-10|title=Infection of tomato leaf curl New Delhi virus (ToLCNDV), a bipartite begomovirus with betasatellites, results in enhanced level of helper virus components and antagonistic interaction between DNA B and betasatellites|journal=Applied Microbiology and Biotechnology|volume=97|issue=12|pages=5457–5471|doi=10.1007/s00253-012-4685-9|pmid=23306645|s2cid=15660646|issn=0175-7598}}</ref> This virus has similar coat protein structure and genome organization to that of other begomoviruses such as [[Tomato yellow leaf curl virus|TYLCV]].<ref name=":1" />


== Transmission ==
== Transmission ==
Line 18: Line 15:


== Agricultural importance ==
== Agricultural importance ==
The main symptoms are an upward curling, puckering, and bunching of leaves. The leaves are also reduced in size. Severely affected plants produce fewer, smaller, and deformed fruits.<ref>{{Cite web|url=https://www.apsnet.org/pages/default.aspx|title=American Phytopathological Society|website=American Phytopathological Society|access-date=2018-07-10}}</ref> This virus can cause significant yield losses. In the case of mixed infections or pests such as [[Thrips (genus)|thrips]] or [[mite]]s, losses may be as severe as 90–100%,<ref name=":4">{{Cite journal|last=Menike|first=G. D. N.|last2=Costa|first2=D. M. De|date=2017-05-25|title=Variation of field symptoms and molecular diversity of the virus isolates associated with chilli leaf curl complex in different agroecological regions of Sri Lanka|journal=Tropical Agricultural Research|volume=28|issue=2|pages=144|doi=10.4038/tar.v28i2.8192}}</ref> but typically range from 20-50%.<ref name=":1" /><ref>{{Cite journal|last=Berjes Zehra|first=Syed|last2=Ahmad|first2=Asif|last3=Sharma|first3=Abhishek|last4=Sofi|first4=Shakeela|last5=Lateef|first5=Azra|last6=Bashir|first6=Zaffar|last7=Husain|first7=Mohit|last8=Rathore|first8=Jagdeesh|date=2017-11-30|title=Chilli Leaf Curl Virus an Emerging Threat to Chilli in India|url=https://www.researchgate.net/publication/320991434|journal=International Journal of Pure & Applied Bioscience|volume=5|issue=5|pages=404–414|doi=10.18782/2320-7051.5471}}</ref> Treatments that are commonly used for this disease include insecticides, removing infected plants, and growing varieties with genetic resistance.
The main symptoms are an upward curling, puckering, and bunching of leaves. The leaves are also reduced in size. Severely affected plants produce fewer, smaller, and deformed fruits.<ref>{{Cite web|url=https://www.apsnet.org/pages/default.aspx|title=American Phytopathological Society|website=American Phytopathological Society|access-date=2018-07-10}}</ref> This virus can cause significant yield losses. In the case of mixed infections or pests such as [[Thrips (genus)|thrips]] or [[mite]]s, losses may be as severe as 90–100%,<ref name=":4">{{Cite journal|last1=Menike|first1=G. D. N.|last2=Costa|first2=D. M. De|date=2017-05-25|title=Variation of field symptoms and molecular diversity of the virus isolates associated with chilli leaf curl complex in different agroecological regions of Sri Lanka|journal=Tropical Agricultural Research|volume=28|issue=2|pages=144|doi=10.4038/tar.v28i2.8192|doi-access=free}}</ref> but typically range from 20-50%.<ref name=":1" /> Treatments that are commonly used for this disease include insecticides, removing infected plants, and growing varieties with genetic resistance.


== Epidemiology ==
== Epidemiology ==
ChiLCV is found in tropical and subtropical regions, and it significantly affects pepper production in India's major pepper growing regions. This virus was first detected in India around 1940,<ref>{{Cite web|url=https://www.cabdirect.org/cabdirect/abstract/20057005853|title=CAB Direct|website=www.cabdirect.org|access-date=2018-07-10}}</ref> and later confirmed in the 1960s. There are closely related virus species including:
ChiLCV is found in tropical and subtropical regions, and it significantly affects pepper production in India's major pepper growing regions. This virus was first detected in India around 1940,<ref>{{Cite web|url=https://www.cabdirect.org/cabdirect/abstract/20057005853|title=CAB Direct|website=www.cabdirect.org|access-date=2018-07-10}}</ref> and later confirmed in the 1960s. There are closely related virus species including:


* ''[[Chilli leaf curl Bijnour virus]]''{{cn|date=November 2020}}
* ''[[Chilli leaf curl Bijnour virus]]''<ref>{{Cite news|url=http://www.journalijar.com/article/8963/a-new-monopartite-begomovirus-associated-with-betasatellite-molecule-causing-leaf-curl-disease-of-chilli-in-india./|title=Article Detail - International Journal of Advanced Research|work=International Journal of Advanced Research|access-date=2018-07-10}}</ref>
* ''[[Chilli leaf curl Palampur virus]]''<ref name=":2" />
* ''[[Chilli leaf curl Palampur virus]]''<ref name=":2" />
* ''[[Chili leaf curl Salem virus]]''<ref name=":4" />
* ''[[Chili leaf curl Salem virus]]''<ref name=":4" />
Line 31: Line 28:


== Management ==
== Management ==
Currently, the most widespread treatments used to control the spread of ChiLCV are a wide range of insecticides.{{cn|date=November 2019}} Rouging infected plants and destroying infected fields is also used when necessary.<ref name=":1"/> The usage of large quantities of insecticides to control vector populations is not ideal, and other cultural methods to control vector populations are of increasing importance to a complete [[integrated pest management]] strategy.<ref name=":1" /> Other strategies include producing resistant varieties through a transgenic, RNAi-mediated approach.<ref>{{Cite journal|last=Sharma|first=Veerandra Kumar|last2=Basu|first2=Saumik|last3=Chakraborty|first3=Supriya|date=August 2015|title=RNAi mediated broad-spectrum transgenic resistance in Nicotiana benthamiana to chilli-infecting begomoviruses|journal=Plant Cell Reports|volume=34|issue=8|pages=1389–1399|doi=10.1007/s00299-015-1795-8|issn=1432-203X|pmid=25916177}}</ref>
Currently, the most widespread treatments used to control the spread of ChiLCV are a wide range of insecticides.{{cn|date=November 2019}} Rouging infected plants and destroying infected fields is also used when necessary.<ref name=":1"/> The usage of large quantities of insecticides to control vector populations is not ideal, and other cultural methods to control vector populations are of increasing importance to a complete [[integrated pest management]] strategy.<ref name=":1" /> Other strategies include producing resistant varieties through a transgenic, RNAi-mediated approach.<ref>{{Cite journal|last1=Sharma|first1=Veerandra Kumar|last2=Basu|first2=Saumik|last3=Chakraborty|first3=Supriya|date=August 2015|title=RNAi mediated broad-spectrum transgenic resistance in Nicotiana benthamiana to chilli-infecting begomoviruses|journal=Plant Cell Reports|volume=34|issue=8|pages=1389–1399|doi=10.1007/s00299-015-1795-8|issn=1432-203X|pmid=25916177|s2cid=14960560}}</ref>
Management by insecticides, imidacloprid 17.8 SL (0.003%) was most effective than spinosad 48 EC (0.02%), malathion 50 EC (0.05%), acephate 75 SP (0.1%) and methyl-demeton 25EC (0.025%). Management of chilli leaf curl was done by seed extract of plants and insecticides at different concentrations.


== References ==
== References ==

Latest revision as of 14:52, 12 March 2021

Chilli leaf curl virus
Virus classification Edit this classification
(unranked): Virus
Realm: Monodnaviria
Kingdom: Shotokuvirae
Phylum: Cressdnaviricota
Class: Repensiviricetes
Order: Geplafuvirales
Family: Geminiviridae
Genus: Begomovirus
Species:
Chilli leaf curl virus

Chilli leaf curl virus (ChiLCV) is a DNA virus from the genus Begomovirus and the family Geminiviridae. ChiLCV causes severe disease especially in pepper (Capsicum spp.), but also affects other crops such as tomato (Solanum lycopersicum).[1] It can be found in tropical and subtropical regions primarily in India, but has also been detected in countries such as Indonesia and Sri Lanka.[2] This virus is transmitted by an insect vector from the family Aleyrodidae and order Hemiptera, the whitefly Bemisia tabaci. The primary host for ChiLCV are several Capsicum spp., but host species also include tomato and amaranth.[1][3] ChiLCV has been responsible for several epidemics and causes severe economic losses. It is the focus of research trying to understand the genetic basis of resistance. Currently, a few sources of resistance have been discovered and used to breed resistant varieties.[2]

Genome

[edit]

This virus typically consists of a single circular single-stranded (ss) DNA molecule (2.7 kb in size), and betasatellite (1361 nt in size), with some reports of bipartite genomes and alphasatellites. The betasatellite most associated with ChiLCLV in Capsicum was identified as Tomato leaf curl Bangladesh betasatellite (ToLCBDB). However, multiple betasatellites have been detected, and they likely play a role in symptom development.[4] This virus has similar coat protein structure and genome organization to that of other begomoviruses such as TYLCV.[2]

Transmission

[edit]

ChiLCV is transmitted by the insect vector Bemisia tabaci in a persistent-circulative nonpropagative manner. Transmission of the monopartite genome alone can lead to infection, but the presence of DNA A or DNA B helper viruses plays a large role in symptom development.[4]

Agricultural importance

[edit]

The main symptoms are an upward curling, puckering, and bunching of leaves. The leaves are also reduced in size. Severely affected plants produce fewer, smaller, and deformed fruits.[5] This virus can cause significant yield losses. In the case of mixed infections or pests such as thrips or mites, losses may be as severe as 90–100%,[6] but typically range from 20-50%.[2] Treatments that are commonly used for this disease include insecticides, removing infected plants, and growing varieties with genetic resistance.

Epidemiology

[edit]

ChiLCV is found in tropical and subtropical regions, and it significantly affects pepper production in India's major pepper growing regions. This virus was first detected in India around 1940,[7] and later confirmed in the 1960s. There are closely related virus species including:

ChiLCV is related to Pepper leaf curl virus (PepLCV), but it is a different species. Comparison of the sequence of ChiLCV with previously characterized begomoviruses shows it likely recombined with Papaya leaf curl virus and resulted in the new virus, PepLCV.[3]

Management

[edit]

Currently, the most widespread treatments used to control the spread of ChiLCV are a wide range of insecticides.[citation needed] Rouging infected plants and destroying infected fields is also used when necessary.[2] The usage of large quantities of insecticides to control vector populations is not ideal, and other cultural methods to control vector populations are of increasing importance to a complete integrated pest management strategy.[2] Other strategies include producing resistant varieties through a transgenic, RNAi-mediated approach.[8] Management by insecticides, imidacloprid 17.8 SL (0.003%) was most effective than spinosad 48 EC (0.02%), malathion 50 EC (0.05%), acephate 75 SP (0.1%) and methyl-demeton 25EC (0.025%). Management of chilli leaf curl was done by seed extract of plants and insecticides at different concentrations.

References

[edit]
  1. ^ a b "Chilli leaf curl virus". www.genome.jp. Retrieved 2018-07-10.
  2. ^ a b c d e f Thakur, Hament; Jindal, Salesh Kumar; Sharma, Abhishek; Dhaliwal, Major Singh (2018-01-20). "Chilli leaf curl virus disease: a serious threat for chilli cultivation". Journal of Plant Diseases and Protection. 125 (3): 239–249. doi:10.1007/s41348-018-0146-8. ISSN 1861-3829. S2CID 90840755.
  3. ^ a b c Kumar, Y.; Hallan, V.; Zaidi, A. A. (2011-05-12). "Chilli leaf curl Palampur virus is a distinct begomovirus species associated with a betasatellite". Plant Pathology. 60 (6): 1040–1047. doi:10.1111/j.1365-3059.2011.02475.x. ISSN 0032-0862.
  4. ^ a b Jyothsna, P.; Haq, Q. M. I.; Singh, Priyanka; Sumiya, K. V.; Praveen, Shelly; Rawat, Ramaveer; Briddon, Rob W.; Malathi, V. G. (2013-01-10). "Infection of tomato leaf curl New Delhi virus (ToLCNDV), a bipartite begomovirus with betasatellites, results in enhanced level of helper virus components and antagonistic interaction between DNA B and betasatellites". Applied Microbiology and Biotechnology. 97 (12): 5457–5471. doi:10.1007/s00253-012-4685-9. ISSN 0175-7598. PMID 23306645. S2CID 15660646.
  5. ^ "American Phytopathological Society". American Phytopathological Society. Retrieved 2018-07-10.
  6. ^ a b c Menike, G. D. N.; Costa, D. M. De (2017-05-25). "Variation of field symptoms and molecular diversity of the virus isolates associated with chilli leaf curl complex in different agroecological regions of Sri Lanka". Tropical Agricultural Research. 28 (2): 144. doi:10.4038/tar.v28i2.8192.
  7. ^ "CAB Direct". www.cabdirect.org. Retrieved 2018-07-10.
  8. ^ Sharma, Veerandra Kumar; Basu, Saumik; Chakraborty, Supriya (August 2015). "RNAi mediated broad-spectrum transgenic resistance in Nicotiana benthamiana to chilli-infecting begomoviruses". Plant Cell Reports. 34 (8): 1389–1399. doi:10.1007/s00299-015-1795-8. ISSN 1432-203X. PMID 25916177. S2CID 14960560.