Jump to content

Typical subspace: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m cap
Added short description.
Tags: Mobile edit Mobile web edit Advanced mobile edit
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{short description|Term in quantum information theory}}
In [[quantum information theory]], the idea of a '''typical subspace''' plays an important role in the proofs of many coding theorems (the most prominent example being [[Schumacher compression]]). Its role is analogous to that of the [[typical set]] in classical [[information theory]].
In [[quantum information theory]], the idea of a '''typical subspace''' plays an important role in the proofs of many coding theorems (the most prominent example being [[Schumacher compression]]). Its role is analogous to that of the [[typical set]] in classical [[information theory]].


== Unconditional quantum typicality ==
== Unconditional quantum typicality ==


Consider a [[density operator]] <math>\rho</math> with the following [[spectral decomposition]]:
Consider a [[density operator]] <math>\rho</math> with the following [[decomposition of spectrum (functional analysis)|spectral decomposition]]:
:<math>
:<math>
\rho=\sum_{x}p_{X}\left( x\right) \left\vert x\right\rangle \left\langle
\rho=\sum_{x}p_{X}( x) \vert x\rangle \langle
x\right\vert .
x\vert .
</math>
</math>
The weakly typical subspace is defined as the span of all vectors such that
The weakly typical subspace is defined as the span of all vectors such that
the sample entropy <math>\overline{H}\left( x^{n}\right) </math> of their classical
the sample entropy <math>\overline{H}( x^{n}) </math> of their classical
label is close to the true [[entropy]] <math>H\left( X\right) </math> of the [[distribution (mathematics)|distribution]]
label is close to the true [[entropy]] <math>H( X) </math> of the [[distribution (mathematics)|distribution]]
<math>p_{X}\left( x\right) </math>:
<math>p_{X}( x) </math>:
:<math>
:<math>
T_{\delta}^{X^{n}}\equiv\text{span}\left\{ \left\vert x^{n}\right\rangle
T_{\delta}^{X^{n}}\equiv\text{span}\left\{ \left\vert x^{n}\right\rangle
:\left\vert \overline{H}\left( x^{n}\right) -H\left( X\right) \right\vert
:\left\vert \overline{H}( x^{n}) -H( X) \right\vert
\leq\delta\right\} ,
\leq\delta\right\} ,
</math>
</math>
where
where
:<math>
:<math>
\overline{H}\left( x^{n}\right) \equiv-\frac{1}{n}\log\left( p_{X^{n}
\overline{H}( x^{n}) \equiv-\frac{1}{n}\log( p_{X^{n}
}\left( x^{n}\right) \right) ,</math>
}( x^{n}) ) ,</math>
:<math>H\left( X\right) \equiv-\sum_{x}p_{X}\left( x\right) \log p_{X}\left(
:<math>H( X) \equiv-\sum_{x}p_{X}( x) \log p_{X}(
x\right) .</math>
x) .</math>
The [[projection (linear algebra)|projector]] <math>\Pi_{\rho,\delta}^{n}</math> onto the typical subspace of <math>\rho</math> is
The [[projection (linear algebra)|projector]] <math>\Pi_{\rho,\delta}^{n}</math> onto the typical subspace of <math>\rho</math> is
defined as
defined as
:<math>
:<math>
\Pi_{\rho,\delta}^{n}\equiv\sum_{x^{n}\in T_{\delta}^{X^{n}}}\left\vert
\Pi_{\rho,\delta}^{n}\equiv\sum_{x^{n}\in T_{\delta}^{X^{n}}}\vert
x^{n}\right\rangle \left\langle x^{n}\right\vert ,
x^{n}\rangle \langle x^{n}\vert ,
</math>
</math>
where we have "overloaded" the symbol
where we have "overloaded" the symbol
Line 33: Line 34:
:<math>
:<math>
T_{\delta}^{X^{n}}\equiv\left\{ x^{n}:\left\vert \overline{H}\left(
T_{\delta}^{X^{n}}\equiv\left\{ x^{n}:\left\vert \overline{H}\left(
x^{n}\right) -H\left( X\right) \right\vert \leq\delta\right\} .
x^{n}\right) -H( X) \right\vert \leq\delta\right\} .
</math>
</math>
The three important properties of the typical projector are as follows:
The three important properties of the typical projector are as follows:
Line 41: Line 42:
:<math>\text{Tr}\left\{ \Pi_{\rho,\delta}^{n}\right\} \leq2^{n\left[ H\left(
:<math>\text{Tr}\left\{ \Pi_{\rho,\delta}^{n}\right\} \leq2^{n\left[ H\left(
X\right) +\delta\right] },</math>
X\right) +\delta\right] },</math>
:<math>2^{-n\left[ H\left( X\right) +\delta\right] }\Pi_{\rho,\delta}^{n}
:<math>2^{-n\left[ H( X) +\delta\right] }\Pi_{\rho,\delta}^{n}
\leq\Pi_{\rho,\delta}^{n}\rho^{\otimes n}\Pi_{\rho,\delta}^{n}\leq2^{-n\left[
\leq\Pi_{\rho,\delta}^{n}\rho^{\otimes n}\Pi_{\rho,\delta}^{n}\leq2^{-n\left[
H\left( X\right) -\delta\right] }\Pi_{\rho,\delta}^{n},</math>
H( X) -\delta\right] }\Pi_{\rho,\delta}^{n},</math>
where the first property holds for arbitrary <math>\epsilon,\delta>0</math> and
where the first property holds for arbitrary <math>\epsilon,\delta>0</math> and
sufficiently large <math>n</math>.
sufficiently large <math>n</math>.
Line 49: Line 50:
== Conditional quantum typicality ==
== Conditional quantum typicality ==


Consider an ensemble <math>\left\{ p_{X}\left( x\right) ,\rho_{x}\right\}
Consider an ensemble <math>\left\{ p_{X}( x) ,\rho_{x}\right\}
_{x\in\mathcal{X}}</math> of states. Suppose that each state <math>\rho_{x}</math> has the
_{x\in\mathcal{X}}</math> of states. Suppose that each state <math>\rho_{x}</math> has the
following [[spectral decomposition]]:
following [[decomposition of spectrum (functional analysis)|spectral decomposition]]:
:<math>
:<math>
\rho_{x}=\sum_{y}p_{Y|X}\left( y|x\right) \left\vert y_{x}\right\rangle
\rho_{x}=\sum_{y}p_{Y|X}( y|x) \vert y_{x}\rangle
\left\langle y_{x}\right\vert .
\langle y_{x}\vert .
</math>
</math>
Consider a [[density operator]] <math>\rho_{x^{n}}</math> which is conditional on a classical
Consider a [[density operator]] <math>\rho_{x^{n}}</math> which is conditional on a classical
Line 63: Line 64:
We define the weak conditionally typical subspace as the span of vectors
We define the weak conditionally typical subspace as the span of vectors
(conditional on the sequence <math>x^{n}</math>) such that the sample conditional entropy
(conditional on the sequence <math>x^{n}</math>) such that the sample conditional entropy
<math>\overline{H}\left( y^{n}|x^{n}\right) </math> of their classical labels is close
<math>\overline{H}( y^{n}|x^{n}) </math> of their classical labels is close
to the true [[conditional entropy]] <math>H\left( Y|X\right) </math> of the [[distribution (mathematics)|distribution]]
to the true [[conditional entropy]] <math>H( Y|X) </math> of the [[distribution (mathematics)|distribution]]
<math>p_{Y|X}\left( y|x\right) p_{X}\left( x\right) </math>:
<math>p_{Y|X}( y|x) p_{X}( x) </math>:
:<math>
:<math>
T_{\delta}^{Y^{n}|x^{n}}\equiv\text{span}\left\{ \left\vert y_{x^{n}}
T_{\delta}^{Y^{n}|x^{n}}\equiv\text{span}\left\{ \left\vert y_{x^{n}}
^{n}\right\rangle :\left\vert \overline{H}\left( y^{n}|x^{n}\right)
^{n}\right\rangle :\left\vert \overline{H}( y^{n}|x^{n})
-H\left( Y|X\right) \right\vert \leq\delta\right\} ,
-H( Y|X) \right\vert \leq\delta\right\} ,
</math>
</math>
where
where
:<math>
:<math>
\overline{H}\left( y^{n}|x^{n}\right) \equiv-\frac{1}{n}\log\left(
\overline{H}( y^{n}|x^{n}) \equiv-\frac{1}{n}\log\left(
p_{Y^{n}|X^{n}}\left( y^{n}|x^{n}\right) \right) ,</math>
p_{Y^{n}|X^{n}}( y^{n}|x^{n}) \right) ,</math>
:<math>H\left( Y|X\right) \equiv-\sum_{x}p_{X}\left( x\right) \sum_{y}
:<math>H( Y|X) \equiv-\sum_{x}p_{X}( x) \sum_{y}
p_{Y|X}\left( y|x\right) \log p_{Y|X}\left( y|x\right) .
p_{Y|X}( y|x) \log p_{Y|X}( y|x) .
</math>
</math>
The [[projection (linear algebra)|projector]] <math>\Pi_{\rho_{x^{n}},\delta}</math> onto the weak conditionally typical
The [[projection (linear algebra)|projector]] <math>\Pi_{\rho_{x^{n}},\delta}</math> onto the weak conditionally typical
Line 82: Line 83:
:<math>
:<math>
\Pi_{\rho_{x^{n}},\delta}\equiv\sum_{y^{n}\in T_{\delta}^{Y^{n}|x^{n}}
\Pi_{\rho_{x^{n}},\delta}\equiv\sum_{y^{n}\in T_{\delta}^{Y^{n}|x^{n}}
}\left\vert y_{x^{n}}^{n}\right\rangle \left\langle y_{x^{n}}^{n}\right\vert ,
}\vert y_{x^{n}}^{n}\rangle \langle y_{x^{n}}^{n}\vert ,
</math>
</math>
where we have again overloaded the symbol <math>T_{\delta}^{Y^{n}|x^{n}}</math> to refer
where we have again overloaded the symbol <math>T_{\delta}^{Y^{n}|x^{n}}</math> to refer
Line 88: Line 89:
:<math>
:<math>
T_{\delta}^{Y^{n}|x^{n}}\equiv\left\{ y^{n}:\left\vert \overline{H}\left(
T_{\delta}^{Y^{n}|x^{n}}\equiv\left\{ y^{n}:\left\vert \overline{H}\left(
y^{n}|x^{n}\right) -H\left( Y|X\right) \right\vert \leq\delta\right\} .
y^{n}|x^{n}\right) -H( Y|X) \right\vert \leq\delta\right\} .
</math>
</math>
The three important properties of the weak conditionally typical projector are
The three important properties of the weak conditionally typical projector are
Line 96: Line 97:
\rho_{X^{n}}\right\} \right\} \geq1-\epsilon,</math>
\rho_{X^{n}}\right\} \right\} \geq1-\epsilon,</math>
:<math>\text{Tr}\left\{ \Pi_{\rho_{x^{n}},\delta}\right\} \leq2^{n\left[
:<math>\text{Tr}\left\{ \Pi_{\rho_{x^{n}},\delta}\right\} \leq2^{n\left[
H\left( Y|X\right) +\delta\right] },</math>
H( Y|X) +\delta\right] },</math>
:<math>2^{-n\left[ H\left( Y|X\right) +\delta\right] }\ \Pi_{\rho_{x^{n}}
:<math>2^{-n\left[ H( Y|X) +\delta\right] }\ \Pi_{\rho_{x^{n}}
,\delta} \leq\Pi_{\rho_{x^{n}},\delta}\ \rho_{x^{n}}\ \Pi_{\rho_{x^{n}
,\delta} \leq\Pi_{\rho_{x^{n}},\delta}\ \rho_{x^{n}}\ \Pi_{\rho_{x^{n}
},\delta} \leq2^{-n\left[ H\left( Y|X\right) -\delta\right] }\ \Pi
},\delta} \leq2^{-n\left[ H( Y|X) -\delta\right] }\ \Pi
_{\rho_{x^{n}},\delta},
_{\rho_{x^{n}},\delta},
</math>
</math>
where the first property holds for arbitrary <math>\epsilon,\delta>0</math> and
where the first property holds for arbitrary <math>\epsilon,\delta>0</math> and
sufficiently large <math>n</math>, and the expectation is with respect to the
sufficiently large <math>n</math>, and the expectation is with respect to the
distribution <math>p_{X^{n}}\left( x^{n}\right) </math>.
distribution <math>p_{X^{n}}( x^{n}) </math>.


== See also ==
== See also ==

Latest revision as of 00:33, 15 May 2021

In quantum information theory, the idea of a typical subspace plays an important role in the proofs of many coding theorems (the most prominent example being Schumacher compression). Its role is analogous to that of the typical set in classical information theory.

Unconditional quantum typicality

[edit]

Consider a density operator with the following spectral decomposition:

The weakly typical subspace is defined as the span of all vectors such that the sample entropy of their classical label is close to the true entropy of the distribution :

where

The projector onto the typical subspace of is defined as

where we have "overloaded" the symbol to refer also to the set of -typical sequences:

The three important properties of the typical projector are as follows:

where the first property holds for arbitrary and sufficiently large .

Conditional quantum typicality

[edit]

Consider an ensemble of states. Suppose that each state has the following spectral decomposition:

Consider a density operator which is conditional on a classical sequence :

We define the weak conditionally typical subspace as the span of vectors (conditional on the sequence ) such that the sample conditional entropy of their classical labels is close to the true conditional entropy of the distribution :

where

The projector onto the weak conditionally typical subspace of is as follows:

where we have again overloaded the symbol to refer to the set of weak conditionally typical sequences:

The three important properties of the weak conditionally typical projector are as follows:

where the first property holds for arbitrary and sufficiently large , and the expectation is with respect to the distribution .

See also

[edit]

References

[edit]