Radicial morphism: Difference between revisions
←Created page with 'In algebraic geometry, a domain in mathematics, a morphism of schemes :''f'':''X'' → ''Y'' is called '''radicial''' or '''...' |
m convert special characters (via WP:JWB) |
||
(13 intermediate revisions by 11 users not shown) | |||
Line 1: | Line 1: | ||
In [[algebraic geometry |
In [[algebraic geometry]], a [[morphism]] of [[scheme (mathematics)|schemes]] |
||
:''f'':''X'' |
:''f'': ''X'' → ''Y'' |
||
is called '''radicial''' or '''universally injective''', if, for every '' |
is called '''radicial''' or '''universally injective''', if, for every field ''K'' the induced map ''X''(''K'') → ''Y''(''K'') is [[injective]]. (EGA I, (3.5.4)) This is a generalization of the notion of a [[purely inseparable extension]] of fields (sometimes called a [[radicial extension]], which should not be confused with a [[radical extension]].) |
||
It suffices to check this for ''K'' algebraically closed. |
|||
⚫ | |||
⚫ | |||
:''k''(''f''(''x'')) ⊂ ''k''(''x'') |
:''k''(''f''(''x'')) ⊂ ''k''(''x'') |
||
is radicial, i.e. [[purely inseparable field extension|purely inseparable]]. |
is radicial, i.e. [[purely inseparable field extension|purely inseparable]]. |
||
It is also equivalent to every base change of ''f'' being injective on the underlying topological spaces. (Thus the term ''universally injective''.) |
|||
Radicial morphisms are stable under composition, products and base change. If ''gf'' is radicial, so is ''f''. |
|||
==References== |
==References== |
||
* {{Citation | last1=Grothendieck | first1=Alexandre | author1-link=Alexandre Grothendieck | last2=Dieudonné | first2=Jean | author2-link=Jean Dieudonné | title=Éléments de géométrie algébrique (rédigés avec la collaboration de Jean Dieudonné) : I. Le langage des schémas | url=http://www.numdam.org:80/numdam-bin/feuilleter?id=PMIHES_1960__4_ | year=1960 | journal=[[ |
* {{Citation | last1=Grothendieck | first1=Alexandre | author1-link=Alexandre Grothendieck | last2=Dieudonné | first2=Jean | author2-link=Jean Dieudonné | title=Éléments de géométrie algébrique (rédigés avec la collaboration de Jean Dieudonné) : I. Le langage des schémas | url=http://www.numdam.org:80/numdam-bin/feuilleter?id=PMIHES_1960__4_ | year=1960 | journal=[[Publications Mathématiques de l'IHÉS]] | issn=1618-1913 | volume=4 | issue=1 | pages=5–228 | doi=10.1007/BF02684778}}, section I.3.5. |
||
* {{Citation | last1=Bourbaki | first1=Nicolas | author1-link= |
* {{Citation | last1=Bourbaki | first1=Nicolas | author1-link= Nicolas Bourbaki | title=Algebra | publisher=[[Springer-Verlag]] | location=Berlin, New York | isbn=978-3-540-19373-9 | year=1988}}, see section V.5. |
||
[[Category:Morphisms of schemes]] |
Latest revision as of 04:56, 24 May 2021
In algebraic geometry, a morphism of schemes
- f: X → Y
is called radicial or universally injective, if, for every field K the induced map X(K) → Y(K) is injective. (EGA I, (3.5.4)) This is a generalization of the notion of a purely inseparable extension of fields (sometimes called a radicial extension, which should not be confused with a radical extension.)
It suffices to check this for K algebraically closed.
This is equivalent to the following condition: f is injective on the topological spaces and for every point x in X, the extension of the residue fields
- k(f(x)) ⊂ k(x)
is radicial, i.e. purely inseparable.
It is also equivalent to every base change of f being injective on the underlying topological spaces. (Thus the term universally injective.)
Radicial morphisms are stable under composition, products and base change. If gf is radicial, so is f.
References
[edit]- Grothendieck, Alexandre; Dieudonné, Jean (1960), "Éléments de géométrie algébrique (rédigés avec la collaboration de Jean Dieudonné) : I. Le langage des schémas", Publications Mathématiques de l'IHÉS, 4 (1): 5–228, doi:10.1007/BF02684778, ISSN 1618-1913, section I.3.5.
- Bourbaki, Nicolas (1988), Algebra, Berlin, New York: Springer-Verlag, ISBN 978-3-540-19373-9, see section V.5.