Jump to content

Coset construction: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
No edit summary
fix short description template
 
(17 intermediate revisions by 13 users not shown)
Line 1: Line 1:
{{Short description|Construction for Virasoro algebras}}
In [[mathematics]], the '''coset construction''' (or '''GKO construction''') is a method of constructing unitary highest weight representations of the [[Virasoro algebra]], introduced by [[Peter Goddard]], Adrian Kent and David Olive (1986). The construction produces the complete discrete series of highest weight representations of the Virasoro algebra and demonstrates their unitarity, thus establishing the classification of unitary highest weight representations.

In [[mathematics]], the '''coset construction''' (or '''GKO construction''') is a method of constructing unitary [[highest weight representation]]s of the [[Virasoro algebra]], introduced by [[Peter Goddard (physicist)|Peter Goddard]], [[Adrian Kent]] and [[David Olive]] (1986). The construction produces the complete [[discrete series]] of highest weight representations of the Virasoro algebra and demonstrates their unitarity, thus establishing the classification of unitary highest weight representations.
==References==
==References==
*P. Goddard, A. Kent and D. Olive [http://projecteuclid.org/Dienst/UI/1.0/Summarize/euclid.cmp/1104114626 ''Unitary representations of the Virasoro and super-Virasoro algebras''] Comm. Math. Phys. 103, no. 1 (1986), 105–119.
*{{cite journal |first1=P. |last1=Goddard |first2=A. |last2=Kent |first3=D. |last3=Olive |title=Unitary representations of the Virasoro and super-Virasoro algebras |journal=Comm. Math. Phys. |volume=103 |issue=1 |year=1986 |pages=105–119 |doi=10.1007/BF01464283 |bibcode=1986CMaPh.103..105G |s2cid=91181508 |url=http://projecteuclid.org/euclid.cmp/1104114626 }}
* {{springer|author=Victor Kac|title=Virasoro algebra|id=v/v096710}}
* {{springer|author=Victor Kac|title=Virasoro algebra|id=Virasoro_algebra}}
*V.G. Kac, A.K. Raina, ''Bombay lectures on highest weight representations'', World Sci. (1987) ISBN 9971503956
*{{cite book |first1=V. G. |last1=Kac |first2=A. K. |last2=Raina |title=Bombay lectures on highest weight representations |publisher=World Sci. |year=1987 |isbn=9971-5-0395-6}}
*A. J. Wassermann, [http://iml.univ-mrs.fr/~wasserm/ Lecture Notes on the Kac-Moody and Virasoro algebras]
*{{cite web |author1-link=Antony Wassermann |first1=Antony |last1=Wassermann |url=http://iml.univ-mrs.fr/~wasserm/ |title=Lecture Notes on the Kac-Moody and Virasoro algebras|archive-url=https://web.archive.org/web/20070322074425/http://iml.univ-mrs.fr/~wasserm/ |archive-date=2007-03-22 }}

[[Category:Conformal field theory]]
[[Category:Conformal field theory]]
[[Category:Lie algebras]]
[[Category:Lie algebras]]


{{quantum-stub}}

Latest revision as of 12:05, 7 January 2023

In mathematics, the coset construction (or GKO construction) is a method of constructing unitary highest weight representations of the Virasoro algebra, introduced by Peter Goddard, Adrian Kent and David Olive (1986). The construction produces the complete discrete series of highest weight representations of the Virasoro algebra and demonstrates their unitarity, thus establishing the classification of unitary highest weight representations.

References

[edit]
  • Goddard, P.; Kent, A.; Olive, D. (1986). "Unitary representations of the Virasoro and super-Virasoro algebras". Comm. Math. Phys. 103 (1): 105–119. Bibcode:1986CMaPh.103..105G. doi:10.1007/BF01464283. S2CID 91181508.
  • Victor Kac (2001) [1994], "Virasoro algebra", Encyclopedia of Mathematics, EMS Press
  • Kac, V. G.; Raina, A. K. (1987). Bombay lectures on highest weight representations. World Sci. ISBN 9971-5-0395-6.
  • Wassermann, Antony. "Lecture Notes on the Kac-Moody and Virasoro algebras". Archived from the original on 2007-03-22.