Q-theta function: Difference between revisions
Appearance
Content deleted Content added
m fix TeX |
Silvermatsu (talk | contribs) |
||
(29 intermediate revisions by 24 users not shown) | |||
Line 1: | Line 1: | ||
{{DISPLAYTITLE:''q''-theta function}} |
|||
⚫ | |||
{{more citations needed|date=January 2021}} |
|||
⚫ | |||
<ref>{{cite book |doi=10.1017/CBO9780511526251|title=Basic Hypergeometric Series |year=2004 |last1=Gasper |first1=George |last2=Rahman |first2=Mizan |isbn=9780521833578 }}</ref><ref>{{cite journal|s2cid=16996893 |doi=10.1070/RM2008v063n03ABEH004533 |title=Essays on the theory of elliptic hypergeometric functions |year=2008 |last1=Spiridonov |first1=V. P. |journal=Russian Mathematical Surveys |volume=63 |issue=3 |pages=405–472 |arxiv=0805.3135 |bibcode=2008RuMaS..63..405S }}</ref> It is given by |
|||
:<math>\theta(z;q)=\prod_{n=0}^\infty (1-q^nz)(1-q^{n+1}/z) |
:<math>\theta(z;q):=\prod_{n=0}^\infty (1-q^nz)\left(1-q^{n+1}/z\right)</math> |
||
where one takes |
where one takes 0 ≤ |''q''| < 1. It obeys the identities |
||
:<math>\theta(z;q)=\theta(q |
:<math>\theta(z;q)=\theta\left(\frac{q}{z};q\right)=-z\theta\left(\frac{1}{z};q\right). </math> |
||
It may also be expressed as: |
|||
:<math>\theta(z;q)=(z;q)_\infty (q/z;q)_\infty</math> |
|||
where <math>(\cdot \cdot )_\infty</math> is the [[q-Pochhammer symbol]]. |
|||
==See also== |
==See also== |
||
* [[elliptic hypergeometric series]] |
|||
* [[theta function|Jacobi theta function]] |
* [[theta function|Jacobi theta function]] |
||
* [[Ramanujan theta function]] |
|||
==References== |
|||
{{reflist}} |
|||
{{mathstub}} |
|||
[[Category:Q-analogs]] |
[[Category:Q-analogs]] |
||
[[Category:Theta functions]] |
|||
{{combin-stub}} |
Latest revision as of 03:10, 3 February 2023
This article needs additional citations for verification. (January 2021) |
In mathematics, the q-theta function (or modified Jacobi theta function) is a type of q-series which is used to define elliptic hypergeometric series. [1][2] It is given by
where one takes 0 ≤ |q| < 1. It obeys the identities
It may also be expressed as:
where is the q-Pochhammer symbol.
See also
[edit]References
[edit]- ^ Gasper, George; Rahman, Mizan (2004). Basic Hypergeometric Series. doi:10.1017/CBO9780511526251. ISBN 9780521833578.
- ^ Spiridonov, V. P. (2008). "Essays on the theory of elliptic hypergeometric functions". Russian Mathematical Surveys. 63 (3): 405–472. arXiv:0805.3135. Bibcode:2008RuMaS..63..405S. doi:10.1070/RM2008v063n03ABEH004533. S2CID 16996893.