Jump to content

Contact electrification: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
top: grammar
Tag: New redirect
 
(8 intermediate revisions by 6 users not shown)
Line 1: Line 1:
#REDIRECT [[Triboelectric effect]]
{{Short description|Production of electrons when two disimilar metals come into contact}}
{{Disputed|date=April 2020}}


{{Rcat shell|
'''Contact electrification''' is a phrase that describes a phenomenon whereby surfaces become electrically charged, via a number of possible mechanisms, when two or more objects come within close proximity of one another. When two objects are "touched" together, sometimes the objects become spontaneously charged. One object may develop a net negative charge, while the other develops an equal and opposite positive charge. This effect may be caused by various physical processes – [[triboelectricity]], the Volta effect, differing [[work function]]s of metals, and others which are collective referred to as contact electrification.
{{R to related topic}}

}}
The contact electrification phenomenon allowed the construction of so-called 'frictional' [[electrostatic generator]]s such as Ramsden's or Winter's machines, but it also led directly{{Citation needed|date=April 2009}} to the development of useful devices such as [[Battery (electricity)|batteries]], [[fuel cell]]s, [[electroplating]], and [[thermocouple]]s. Contact between materials is responsible for such modern electrical technology as semiconductor junction devices including [[crystal radio receiver|radio detector diodes]], [[solar cell|photocell]]s, [[light-emitting diode|LED]]s, and [[thermoelectric cell]]s.{{Citation needed|date=April 2009}}

== History ==

The theory held that static electricity was generated by means of contact between dissimilar materials, and was in close agreement with the principles of [[static electricity]] as then understood. It was eventually replaced by the current theory of [[electrochemistry]], namely, that electricity is generated by the action of [[chemistry]] and the exchange of [[electron]]s between [[atom]]s making up the battery. An important fact leading to the rejection of the theory of contact tension was the observation that [[corrosion]], that is, the chemical degradation of the battery, seemed unavoidable with its use, and that the more electricity was drawn from the battery, the faster the corrosion proceeded.

The Volta effect (described below) corresponds to a weak [[electric potential]] difference developed by the contact of different metals. Nowadays, this is often known as a [[contact potential difference]]. This effect was first discovered by [[Alessandro Volta]], and can be measured using a [[capacitance electroscope]] comprising different metals. However, this effect does not, by itself, account for the action of electric batteries.

A number of [[high voltage]] [[dry pile]]s were invented between the early 19th century and the 1830s in an attempt to determine the answer to this question, and specifically to support Volta’s hypothesis of contact tension. The [[Oxford Electric Bell]] is one example. [[Francis Ronalds]] in 1814 was one of the first to realise that dry piles also worked through chemical reaction rather than metal to metal contact, even though corrosion was not visible due to the very small currents generated.<ref>{{Cite book|title=Sir Francis Ronalds: Father of the Electric Telegraph|last=Ronalds|first=B.F.|publisher=Imperial College Press|year=2016|isbn=978-1-78326-917-4|location=London}}</ref><ref>{{Cite journal|last=Ronalds|first=B.F.|date=July 2016|title=Francis Ronalds (1788-1873): The First Electrical Engineer?|journal=Proceedings of the IEEE|doi=10.1109/JPROC.2016.2571358|s2cid=20662894 }}</ref>

==Triboelectric contact==
{{main|Triboelectric effect}}
If two different [[Insulator (electricity)|insulators]] are touched together, such as when a piece of rubber is touched against a piece of glass, then the surface of the rubber will acquire an excess negative charge, and the glass will acquire an equal positive charge. If the surfaces are then pulled apart, a very [[high voltage]] is produced. This so-called "tribo" or "rubbing" effect is not well understood. It may be caused by electron-stealing via [[quantum tunneling]], or by transfer of surface ions. Friction is not required, although in many situations it greatly increases the phenomenon. Certain phenomena related to frictionally generated electrostatic charges have been known since antiquity, though of course the modern theory of electricity was developed after the [[Scientific Revolution]].

===Solid-solid contact===
The mechanism of contact electrification (CE) between solid-solid has been debated for more than 2600 years. A most controversial topic in CE is the identity of the charge carriers: electron transfer, ion transfer or even materials species transfer. Recent studies by using Kelvin probe force microscopy suggest that electron transfer is the dominating charge carrier in CE for solid-solid cases.<ref>{{cite journal |last1=Wang |first1=Z.L. |last2=Wang |first2=A.C. |title=On the origin of contact electrification |journal=Materials Today |date=2019 |volume=30 |page=34 |doi=10.1016/j.mattod.2019.05.016|s2cid=189987682 }}</ref> When the interatomic distance between two atoms belonging to two materials is shorter than the normal bonding length (typically ~0.2 nm), the electrons will transfer at the interface. It implies that a strong electron cloud overlap (or wave function overlap) between the two atoms/molecules in the repulsive region will reduce the interatomic potential barrier (Fig. 1), and result in electron transition between the atoms/molecules. The contact/friction force in CE is to induce strong overlap between the electron clouds (or wave function in physics, bonding in chemistry).<ref>{{cite journal |last1=Xu |first1=C. |last2=Zi |first2=Y. |last3=Wang |first3=A.C. |last4=Zou |first4=H. |last5=Dai |first5=Y. |last6=He |first6=X. |last7=Wang |first7=P. |last8=Wang |first8=C. |last9=Feng |first9=P. |last10=Li |first10=D. |last11=Wang |first11=Z.L. |title=On Electron Transfer Mechanism in Contact-Electrification Effect |journal=Advanced Materials |date=2018 |volume=30 |issue=15 |page=1706790 |doi=10.1002/adma.201706790|pmid=29508454 |s2cid=3757981 }}</ref>
[[File:Overlapped electron-cloud model.jpg|thumb|Fig. 1 The overlapped electron-cloud (OEC) model for general case contact-electrification.]]

===Liquid-solid contact===
Besides ion transfer at liquid-solid interface, electron transfer occurs as well. As for the liquid-solid case, molecules in the liquid would have electron cloud overlap with the atoms on the solid surface at the very first contact with a virginal solid surface,<ref>{{cite journal |last1=Lin |first1=S.Q. |last2=Xu |first2=L. |last3=Wang |first3=A.C. |last4=Wang |first4=Z.L. |title=Quantifying electron-transfer and ion-transfer in liquid-solid contact electrification and the formation mechanism of electric double-layer |journal=Nature Communications |date=2020 |volume=11 |issue=1 |page=399 |doi=10.1038/s41467-019-14278-9 |pmid=31964882 |pmc=6972942 |doi-access=free }}</ref><ref>{{cite journal |last1=Nie |first1=J.H. |last2=Ren |first2=Z. |last3=Xu |first3=L. |last4=Lin |first4=S.Q. |last5=Zhan |first5=F. |last6=Chen |first6=X.Y. |last7=Wang |first7=Z.L. |title=Probing Contact Electrification Induced Electron and Ion Transfers at a Liquid-Solid Interface |journal=Advanced Materials |date=2019 |volume=31 |issue=2 |page=1905696 |doi=10.1002/adma.201905696|pmid=31782572 |s2cid=208357834 }}</ref> and electron transfer is required in order to create the first layer of electrostatic charges on the solid surface. Then, ion transfer is the second step, which is a redistribution of the ions in solution considering electrostatic interactions with the charged solid surface (Fig. 2). Both electron transfer and ion transfer co-exist at liquid-solid interface.
[[File:Two-step model for EDL.jpg|thumb|Fig. 2 The "two-step" model (Wang model) for the formation of electric double-layer (EDL) at a liquid-solid interface, in which the electron transfer plays a dominant role in the first step.]]

==Electrolytic-metallic contact==
{{See also|Dry pile}}
If a piece of metal is touched against an [[electrolyte|electrolytic]] material, the metal will spontaneously become charged, while the electrolyte will acquire an equal and opposite charge. Upon first contact, a chemical reaction called a '[[half-cell reaction]]' occurs on the metal surface. As metal ions are transferred to or from the electrolyte, and as the metal and electrolyte become oppositely charged, the increasing voltage at the thin insulating [[electrical double layer|layer]] between metal and electrolyte will oppose the motion of the flowing ions, causing the chemical reaction to come to a stop. If a second piece of a different type of metal is placed in the same electrolyte bath, it will charge up and rise to a different voltage. If the first metal piece is touched against the second, the voltage on the two metal pieces will be forced closer together, and the chemical reactions will run constantly. In this way the 'contact electrification' becomes continuous. At the same time, an electric current will appear, with the path forming a closed loop which leads from one metal part to the other, through the chemical reactions on the first metal surface, through the electrolyte, then back through the chemical reactions on the second metal surface. In this way, contact electrification leads to the invention of the [[Galvanic cell]] or [[Battery (electricity)|battery]].

==Metallic contact==
{{main|Galvani potential}}
{{main|Volta potential}}
If two metals having differing [[work function]]s are touched together, one steals electrons from the other, and the opposite net charges grow larger and larger; this is the Volta effect. The process is halted when the difference in [[electric potential]] (electrostatic potential) between the two metals reaches a particular value, namely the difference in work function values - usually less than one volt. At this point, the Fermi levels for the two metals are equal, and there is no voltage difference between them. [If there were a voltage difference between them, then a current would flow between them: so "zero current" implies "zero voltage difference".]

==Semiconductor contact==
If a metal touches a semiconductor material, or if two different semiconductors are placed into contact, one becomes charged slightly positive and the other slightly negative. It is found that if this junction between semiconductors is connected to a power supply, and if the power supply is set to a voltage slightly higher than the natural voltage appearing because of contact electrification, then for one polarity of voltage there will be a current between the two semiconductor parts, but if the polarity is reversed, the current stops. Thus contact between materials lead to the invention of the semiconductor [[diode]] or [[rectifier]] and triggered the revolution in [[Semiconductor device|semiconductor electronics]] and [[Semiconductor physics|physics]].

In materials with a [[direct band gap]], if bright light is aimed at one part of the contact area between the two semiconductors, the voltage at that spot will rise, and an electric current will appear. When considering light in the context of contact electrification{{what|date=April 2014}}, the light energy is changed directly into electrical energy, allowing creation of [[solar cell]]s. Later it was found that the same process can be reversed, and if a current is forced backwards across the contact region between the semiconductors, sometimes light will be emitted, allowing creation of the [[light-emitting diode]] (LED).

==References==
<references/>

[[Category:Electrical phenomena]]
[[Category:Obsolete theories in physics]]

Latest revision as of 07:41, 7 July 2023