Jump to content

MAPK13: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Citation bot (talk | contribs)
m Alter: title. | You can use this bot yourself. Report bugs here. | User-activated.
OAbot (talk | contribs)
m Open access bot: doi updated in citation with #oabot.
 
(9 intermediate revisions by 6 users not shown)
Line 1: Line 1:
{{Short description|Protein-coding gene in the species Homo sapiens}}
{{Infobox_gene}}
{{Infobox_gene}}
'''Mitogen-activated protein kinase 13''' (MAPK 13), also known as '''stress-activated protein kinase 4''' (SAPK4), is an [[enzyme]] that in humans is encoded by the ''MAPK13'' [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: mitogen-activated protein kinase 13| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=5603| accessdate = }}</ref>
'''Mitogen-activated protein kinase 13''' (MAPK 13), also known as '''stress-activated protein kinase 4''' (SAPK4), is an [[enzyme]] that in humans is encoded by the ''MAPK13'' [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: mitogen-activated protein kinase 13| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=5603}}</ref>


== Function ==
== Function ==
Line 12: Line 13:
{{refbegin | 2}}
{{refbegin | 2}}
*{{cite journal |vauthors=Efimova T, Broome AM, Eckert RL |title=Protein kinase Cdelta regulates keratinocyte death and survival by regulating activity and subcellular localization of a p38delta-extracellular signal-regulated kinase 1/2 complex. |journal=Mol. Cell. Biol. |volume=24 |issue= 18 |pages= 8167–83 |year= 2004 |pmid= 15340077 |doi= 10.1128/MCB.24.18.8167-8183.2004 |pmc=515052}}
*{{cite journal |vauthors=Efimova T, Broome AM, Eckert RL |title=Protein kinase Cdelta regulates keratinocyte death and survival by regulating activity and subcellular localization of a p38delta-extracellular signal-regulated kinase 1/2 complex. |journal=Mol. Cell. Biol. |volume=24 |issue= 18 |pages= 8167–83 |year= 2004 |pmid= 15340077 |doi= 10.1128/MCB.24.18.8167-8183.2004 |pmc=515052}}
*{{cite journal |vauthors=Joneson T, Bar-Sagi D |title=Ras effectors and their role in mitogenesis and oncogenesis. |journal=J. Mol. Med. |volume=75 |issue= 8 |pages= 587–93 |year= 1997 |pmid= 9297626 |doi= 10.1007/s001090050143}}
*{{cite journal |vauthors=Joneson T, Bar-Sagi D |title=Ras effectors and their role in mitogenesis and oncogenesis. |journal=J. Mol. Med. |volume=75 |issue= 8 |pages= 587–93 |year= 1997 |pmid= 9297626 |doi= 10.1007/s001090050143|s2cid=23541383 }}
*{{cite journal |author=Efimova T |title=p38delta mitogen-activated protein kinase regulates skin homeostasis and tumorigenesis. |journal=Cell Cycle |volume=9 |issue= 3 |pages= 498–05 |year= 2010 |pmid= 20090411 |doi= 10.4161/cc.9.3.10541}}
*{{cite journal |author=Efimova T |title=p38delta mitogen-activated protein kinase regulates skin homeostasis and tumorigenesis. |journal=Cell Cycle |volume=9 |issue= 3 |pages= 498–05 |year= 2010 |pmid= 20090411 |doi= 10.4161/cc.9.3.10541|url=https://digitalcommons.wustl.edu/open_access_pubs/2790 |doi-access=free }}
*{{cite journal |vauthors=Gutierrez-Sanmartin D, Varela-Ledo E, Aguilera A, etal |title=Implication of p38 mitogen-activated protein kinase isoforms (alpha, beta, gamma and delta) in CD4+ T-cell infection with human immunodeficiency virus type I. |journal=J. Gen. Virol. |volume=89 |issue= Pt 7 |pages= 1661–71 |year= 2008 |pmid= 18559936 |doi= 10.1099/vir.0.82971-0 }}
*{{cite journal |vauthors=Gutierrez-Sanmartin D, Varela-Ledo E, Aguilera A, etal |title=Implication of p38 mitogen-activated protein kinase isoforms (alpha, beta, gamma and delta) in CD4+ T-cell infection with human immunodeficiency virus type I. |journal=J. Gen. Virol. |volume=89 |issue= Pt 7 |pages= 1661–71 |year= 2008 |pmid= 18559936 |doi= 10.1099/vir.0.82971-0 |doi-access= free }}
*{{cite journal |vauthors=Zhang J, Harrison JS, Studzinski GP |title=Isoforms of p38MAPK gamma and delta contribute to differentiation of human AML cells induced by 1,25-dihydroxyvitamin D₃. |journal=Exp. Cell Res. |volume=317 |issue= 1 |pages= 117–30 |year= 2011 |pmid= 20804750 |doi= 10.1016/j.yexcr.2010.08.010 |pmc=2998239}}
*{{cite journal |vauthors=Zhang J, Harrison JS, Studzinski GP |title=Isoforms of p38MAPK gamma and delta contribute to differentiation of human AML cells induced by 1,25-dihydroxyvitamin D₃. |journal=Exp. Cell Res. |volume=317 |issue= 1 |pages= 117–30 |year= 2011 |pmid= 20804750 |doi= 10.1016/j.yexcr.2010.08.010 |pmc=2998239}}
*{{cite journal |vauthors=Segat L, Brandão LA, Guimarães RL|title=Polymorphisms in innate immunity genes and patients response to dendritic cell-based HIV immuno-treatment. |journal=Vaccine |volume=28 |issue= 10 |pages= 2201–6 |year= 2010 |pmid= 20056178 |doi= 10.1016/j.vaccine.2009.12.056 |display-authors=etal}}
*{{cite journal |vauthors=Segat L, Brandão LA, Guimarães RL|title=Polymorphisms in innate immunity genes and patients response to dendritic cell-based HIV immuno-treatment. |journal=Vaccine |volume=28 |issue= 10 |pages= 2201–6 |year= 2010 |pmid= 20056178 |doi= 10.1016/j.vaccine.2009.12.056 |display-authors=etal|doi-access=free }}
*{{cite journal |vauthors=Zhou X, Ferraris JD, Dmitrieva NI, etal |title=MKP-1 inhibits high NaCl-induced activation of p38 but does not inhibit the activation of TonEBP/OREBP: opposite roles of p38alpha and p38delta. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=105 |issue= 14 |pages= 5620–5 |year= 2008 |pmid= 18367666 |doi= 10.1073/pnas.0801453105 |pmc=2291081}}
*{{cite journal |vauthors=Zhou X, Ferraris JD, Dmitrieva NI, etal |title=MKP-1 inhibits high NaCl-induced activation of p38 but does not inhibit the activation of TonEBP/OREBP: opposite roles of p38alpha and p38delta. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=105 |issue= 14 |pages= 5620–5 |year= 2008 |pmid= 18367666 |doi= 10.1073/pnas.0801453105 |pmc=2291081|bibcode=2008PNAS..105.5620Z |doi-access=free }}
*{{cite journal |vauthors=Coulthard LR, Taylor JC, Eyre S, etal |title=Genetic variants within the MAP kinase signalling network and anti-TNF treatment response in rheumatoid arthritis patients. |journal=Ann. Rheum. Dis. |volume=70 |issue= 1 |pages= 98–103 |year= 2011 |pmid= 20805296 |doi= 10.1136/ard.2010.133249 }}
*{{cite journal |vauthors=Coulthard LR, Taylor JC, Eyre S, etal |title=Genetic variants within the MAP kinase signalling network and anti-TNF treatment response in rheumatoid arthritis patients. |journal=Ann. Rheum. Dis. |volume=70 |issue= 1 |pages= 98–103 |year= 2011 |pmid= 20805296 |doi= 10.1136/ard.2010.133249 |s2cid=37511360 }}
*{{cite journal |vauthors=Efimova T, Broome AM, Eckert RL |title=A regulatory role for p38 delta MAPK in keratinocyte differentiation. Evidence for p38 delta-ERK1/2 complex formation. |journal=J. Biol. Chem. |volume=278 |issue= 36 |pages= 34277–85 |year= 2003 |pmid= 12810719 |doi= 10.1074/jbc.M302759200 }}
*{{cite journal |vauthors=Efimova T, Broome AM, Eckert RL |title=A regulatory role for p38 delta MAPK in keratinocyte differentiation. Evidence for p38 delta-ERK1/2 complex formation. |journal=J. Biol. Chem. |volume=278 |issue= 36 |pages= 34277–85 |year= 2003 |pmid= 12810719 |doi= 10.1074/jbc.M302759200 |doi-access= free }}
*{{cite journal |vauthors=Kim SJ, Zhang Z, Hitomi E, etal |title=Endoplasmic reticulum stress-induced caspase-4 activation mediates apoptosis and neurodegeneration in INCL. |journal=Hum. Mol. Genet. |volume=15 |issue= 11 |pages= 1826–34 |year= 2006 |pmid= 16644870 |doi= 10.1093/hmg/ddl105 }}
*{{cite journal |vauthors=Kim SJ, Zhang Z, Hitomi E, etal |title=Endoplasmic reticulum stress-induced caspase-4 activation mediates apoptosis and neurodegeneration in INCL. |journal=Hum. Mol. Genet. |volume=15 |issue= 11 |pages= 1826–34 |year= 2006 |pmid= 16644870 |doi= 10.1093/hmg/ddl105 |doi-access= free }}
*{{cite journal |vauthors=Talmud PJ, Drenos F, Shah S, etal |title=Gene-centric association signals for lipids and apolipoproteins identified via the HumanCVD BeadChip. |journal=Am. J. Hum. Genet. |volume=85 |issue= 5 |pages= 628–42 |year= 2009 |pmid= 19913121 |doi= 10.1016/j.ajhg.2009.10.014 |pmc=2775832}}
*{{cite journal |vauthors=Talmud PJ, Drenos F, Shah S, etal |title=Gene-centric association signals for lipids and apolipoproteins identified via the HumanCVD BeadChip. |journal=Am. J. Hum. Genet. |volume=85 |issue= 5 |pages= 628–42 |year= 2009 |pmid= 19913121 |doi= 10.1016/j.ajhg.2009.10.014 |pmc=2775832}}
*{{cite journal |vauthors=Mungall AJ, Palmer SA, Sims SK, etal |title=The DNA sequence and analysis of human chromosome 6. |journal=Nature |volume=425 |issue= 6960 |pages= 805–11 |year= 2003 |pmid= 14574404 |doi= 10.1038/nature02055 }}
*{{cite journal |vauthors=Mungall AJ, Palmer SA, Sims SK, etal |title=The DNA sequence and analysis of human chromosome 6. |journal=Nature |volume=425 |issue= 6960 |pages= 805–11 |year= 2003 |pmid= 14574404 |doi= 10.1038/nature02055 |bibcode=2003Natur.425..805M |doi-access= free }}
*{{cite journal |vauthors=Colland F, Jacq X, Trouplin V, etal |title=Functional proteomics mapping of a human signaling pathway. |journal=Genome Res. |volume=14 |issue= 7 |pages= 1324–32 |year= 2004 |pmid= 15231748 |doi= 10.1101/gr.2334104 |pmc=442148}}
*{{cite journal |vauthors=Colland F, Jacq X, Trouplin V, etal |title=Functional proteomics mapping of a human signaling pathway. |journal=Genome Res. |volume=14 |issue= 7 |pages= 1324–32 |year= 2004 |pmid= 15231748 |doi= 10.1101/gr.2334104 |pmc=442148}}
*{{cite journal |vauthors=Gerhard DS, Wagner L, Feingold EA, etal |title=The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121–7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 |pmc=528928}}
*{{cite journal |vauthors=Gerhard DS, Wagner L, Feingold EA, etal |title=The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121–7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 |pmc=528928}}
*{{cite journal |vauthors=Ozawa S, Ito S, Kato Y, etal |title=Human p38 delta MAP kinase mediates UV irradiation induced up-regulation of the gene expression of chemokine BRAK/CXCL14. |journal=Biochem. Biophys. Res. Commun. |volume=396 |issue= 4 |pages= 1060–4 |year= 2010 |pmid= 20478268 |doi= 10.1016/j.bbrc.2010.05.072 }}
*{{cite journal |vauthors=Ozawa S, Ito S, Kato Y, etal |title=Human p38 delta MAP kinase mediates UV irradiation induced up-regulation of the gene expression of chemokine BRAK/CXCL14. |journal=Biochem. Biophys. Res. Commun. |volume=396 |issue= 4 |pages= 1060–4 |year= 2010 |pmid= 20478268 |doi= 10.1016/j.bbrc.2010.05.072 }}
*{{cite journal |vauthors=Kitatani K, Sheldon K, Anelli V, etal |title=Acid beta-glucosidase 1 counteracts p38delta-dependent induction of interleukin-6: possible role for ceramide as an anti-inflammatory lipid. |journal=J. Biol. Chem. |volume=284 |issue= 19 |pages= 12979–88 |year= 2009 |pmid= 19279008 |doi= 10.1074/jbc.M809500200 |pmc=2676030}}
*{{cite journal |vauthors=Kitatani K, Sheldon K, Anelli V, etal |title=Acid beta-glucosidase 1 counteracts p38delta-dependent induction of interleukin-6: possible role for ceramide as an anti-inflammatory lipid. |journal=J. Biol. Chem. |volume=284 |issue= 19 |pages= 12979–88 |year= 2009 |pmid= 19279008 |doi= 10.1074/jbc.M809500200 |pmc=2676030|doi-access=free }}
*{{cite journal |vauthors=Tan FL, Ooi A, Huang D, etal |title=p38delta/MAPK13 as a diagnostic marker for cholangiocarcinoma and its involvement in cell motility and invasion. |journal=Int. J. Cancer |volume=126 |issue= 10 |pages= 2353–61 |year= 2010 |pmid= 19816939 |doi= 10.1002/ijc.24944 }}
*{{cite journal |vauthors=Tan FL, Ooi A, Huang D, etal |title=p38delta/MAPK13 as a diagnostic marker for cholangiocarcinoma and its involvement in cell motility and invasion. |journal=Int. J. Cancer |volume=126 |issue= 10 |pages= 2353–61 |year= 2010 |pmid= 19816939 |doi= 10.1002/ijc.24944 |s2cid=34276751 |doi-access=free }}
*{{cite journal |vauthors=Sofroniew MV, Howe CL, Mobley WC |title=Nerve growth factor signaling, neuroprotection, and neural repair. |journal=Annu. Rev. Neurosci. |volume=24 |issue= |pages= 1217–81 |year= 2001 |pmid= 11520933 |doi= 10.1146/annurev.neuro.24.1.1217 }}
*{{cite journal|author3-link=William C. Mobley |vauthors=Sofroniew MV, Howe CL, Mobley WC |title=Nerve growth factor signaling, neuroprotection, and neural repair. |journal=Annu. Rev. Neurosci. |volume=24 |pages= 1217–81 |year= 2001 |pmid= 11520933 |doi= 10.1146/annurev.neuro.24.1.1217 }}
*{{cite journal |vauthors=Bailey SD, Xie C, Do R, etal |title=Variation at the NFATC2 locus increases the risk of thiazolidinedione-induced edema in the Diabetes REduction Assessment with ramipril and rosiglitazone Medication (DREAM) study. |journal=Diabetes Care |volume=33 |issue= 10 |pages= 2250–3 |year= 2010 |pmid= 20628086 |doi= 10.2337/dc10-0452 |pmc=2945168}}
*{{cite journal |vauthors=Bailey SD, Xie C, Do R, etal |title=Variation at the NFATC2 locus increases the risk of thiazolidinedione-induced edema in the Diabetes REduction Assessment with ramipril and rosiglitazone Medication (DREAM) study. |journal=Diabetes Care |volume=33 |issue= 10 |pages= 2250–3 |year= 2010 |pmid= 20628086 |doi= 10.2337/dc10-0452 |pmc=2945168}}
*{{cite journal |vauthors=Sumara G, Formentini I, Collins S, etal |title=Regulation of PKD by the MAPK p38delta in insulin secretion and glucose homeostasis. |journal=Cell |volume=136 |issue= 2 |pages= 235–48 |year= 2009 |pmid= 19135240 |doi= 10.1016/j.cell.2008.11.018 |pmc=2638021}}
*{{cite journal |vauthors=Sumara G, Formentini I, Collins S, etal |title=Regulation of PKD by the MAPK p38delta in insulin secretion and glucose homeostasis. |journal=Cell |volume=136 |issue= 2 |pages= 235–48 |year= 2009 |pmid= 19135240 |doi= 10.1016/j.cell.2008.11.018 |pmc=2638021}}
Line 36: Line 37:
{{Serine/threonine-specific protein kinases|g2}}
{{Serine/threonine-specific protein kinases|g2}}
{{Enzymes}}
{{Enzymes}}
{{Portal bar|Molecular and Cellular Biology|border=no}}
{{Portal bar|Biology|border=no}}


{{NLM content}}
{{NLM content}}

Latest revision as of 21:49, 13 August 2023

MAPK13
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesMAPK13, MAPK 13, MAPK-13, PRKM13, SAPK4, p38delta, mitogen-activated protein kinase 13
External IDsOMIM: 602899; MGI: 1346864; HomoloGene: 48133; GeneCards: MAPK13; OMA:MAPK13 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_002754

NM_011950

RefSeq (protein)

NP_002745

NP_036080

Location (UCSC)Chr 6: 36.13 – 36.14 MbChr 17: 28.99 – 29 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Mitogen-activated protein kinase 13 (MAPK 13), also known as stress-activated protein kinase 4 (SAPK4), is an enzyme that in humans is encoded by the MAPK13 gene.[5]

Function

[edit]

The protein encoded by this gene is a member of the MAP kinase family. MAP kinases act as an integration point for multiple biochemical signals, and are involved in a wide variety of cellular processes such as proliferation, differentiation, transcription regulation and development. This kinase is closely related to p38 MAP kinase, both of which can be activated by proinflammatory cytokines and cellular stress. MAP kinase kinases 3, and 6 can phosphorylate and activate this kinase. Transcription factor ATF2, and microtubule dynamics regulator stathmin have been shown to be the substrates of this kinase.[5]

References

[edit]
  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000156711Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000004864Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ a b "Entrez Gene: mitogen-activated protein kinase 13".

Further reading

[edit]

This article incorporates text from the United States National Library of Medicine, which is in the public domain.