J-homomorphism: Difference between revisions
m →Definition: rm unneeded paren |
→Image of the J-homomorphism: Replaced mod 4 conditions by equivalent mod 8 conditions for consistency |
||
(29 intermediate revisions by 13 users not shown) | |||
Line 1: | Line 1: | ||
In [[mathematics]], the '''''J''-homomorphism''' is a mapping from the [[homotopy group]]s of the [[special orthogonal group]]s to the [[homotopy groups of spheres]]. It was defined by {{harvs|txt| |
{{short description|From a homotopy group of a special orthogonal group to a homotopy group of spheres}} |
||
In [[mathematics]], the '''''J''-homomorphism''' is a mapping from the [[homotopy group]]s of the [[special orthogonal group]]s to the [[homotopy groups of spheres]]. It was defined by {{harvs|txt|author-link=George W. Whitehead|first=George W.|last=Whitehead|year=1942}}, extending a construction of {{harvs|txt|last=Hopf|first=Heinz|author-link=Heinz Hopf|year=1935}}. |
|||
==Definition== |
==Definition== |
||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
The ''J''-homomorphism can be defined as follows. |
The ''J''-homomorphism can be defined as follows. |
||
An element of the special orthogonal group SO(''q'') can be regarded as a map |
An element of the special orthogonal group SO(''q'') can be regarded as a map |
||
:<math>S^{q-1}\rightarrow S^{q-1}</math> |
:<math>S^{q-1}\rightarrow S^{q-1}</math> |
||
and the homotopy group |
and the homotopy group <math>\pi_r(\operatorname{SO}(q))</math>) consists of [[homotopy]] classes of maps from the [[n-sphere|''r''-sphere]] to SO(''q''). |
||
Thus an element of |
Thus an element of <math>\pi_r(\operatorname{SO}(q))</math> can be represented by a map |
||
:<math>S^r\times S^{q-1}\rightarrow S^{q-1}</math> |
:<math>S^r\times S^{q-1}\rightarrow S^{q-1}</math> |
||
Applying the [[Hopf construction]] to this gives a map |
|||
:<math> |
:<math>S^{r+q}= S^r*S^{q-1}\rightarrow S( S^{q-1}) =S^q</math> |
||
⚫ | |||
On the other hand, there is a natural map |
|||
:<math>S^{r+q}\rightarrow S^{r+q}/(S^r\times S^{q-1}) \cong S(S^r\times S^{q-1})</math> |
|||
which contracts a copy of <math>S^r\times S^{q-1}</math> inside <math>S^{r+q}</math> to a point, and composing these gives a map |
|||
:<math>S^{r+q}\rightarrow S^{q}</math> |
|||
⚫ | |||
Taking a limit as ''q'' tends to infinity gives the stable ''J''-homomorphism in [[stable homotopy theory]]: |
|||
:<math> J \colon \pi_r(\mathrm{SO}) \to \pi_r^S , |
:<math> J \colon \pi_r(\mathrm{SO}) \to \pi_r^S ,</math> |
||
where SO is the infinite |
where <math>\mathrm{SO}</math> is the infinite special orthogonal group, and the right-hand side is the ''r''-th [[stable stem]] of the [[stable homotopy groups of spheres]]. |
||
==Image of the J-homomorphism== |
==Image of the J-homomorphism== |
||
⚫ | The [[image (mathematics)|image]] of the ''J''-homomorphism was described by {{harvs|txt|last=Adams|first=Frank|author-link=Frank Adams|year=1966}}, assuming the '''Adams conjecture''' of {{harvtxt|Adams|1963}} which was [[mathematical proof|proved]] by {{harvs|txt|last=Quillen|first=Daniel|author-link=Daniel Quillen|year=1971}}, as follows. The [[group (mathematics)|group]] <math>\pi_r(\operatorname{SO})</math> is given by [[Bott periodicity]]. It is always [[cyclic group|cyclic]]; and if ''r'' is positive, it is of [[order of a group|order]] 2 if ''r'' is 0 or 1 [[modular arithmetic|modulo]] 8, infinite if ''r'' is 3 or 7 modulo 8, and order 1 otherwise {{harv|Switzer|1975|p=488}}. In particular the image of the stable ''J''-homomorphism is cyclic. The stable homotopy groups <math>\pi_r^S</math> are the direct sum of the (cyclic) image of the ''J''-homomorphism, and the [[kernel (algebra)|kernel]] of the Adams e-invariant {{harv|Adams|1966}}, a homomorphism from the stable homotopy groups to <math>\Q/\Z</math>. If ''r'' is 0 or 1 mod 8 and positive, the order of the image is 2 (so in this case the ''J''-homomorphism is [[injective function|injective]]). If ''r'' is 3 or 7 mod 8, the image is a cyclic group of order equal to the denominator of <math>B_{2n}/4n</math>, where <math>B_{2n}</math> is a [[Bernoulli number]]. In the remaining cases where ''r'' is 2, 4, 5, or 6 mod 8 the image is [[trivial group|trivial]] because <math>\pi_r(\operatorname{SO})</math> is trivial. |
||
The image of the ''J''-homomorphism was described by {{harvtxt|Adams|1966}}, assuming the '''Adams conjecture''' of {{harvtxt|Adams|1963}} which was proved by {{harvtxt|Quillen|1971}}, as follows. |
|||
⚫ | The |
||
:{| class="wikitable" style="text-align: center; background-color:white" |
:{| class="wikitable" style="text-align: center; background-color:white" |
||
Line 56: | Line 51: | ||
! style="width:5%" | 17 |
! style="width:5%" | 17 |
||
|- |
|- |
||
! style="text-align:right" | |
! style="text-align:right" | <math>\pi_r(\operatorname{SO})</math> |
||
| 1 || 2 || 1 || |
| 1 || 2 || 1 || <math>\Z</math> || 1 || 1 || 1 || <math>\Z</math> || 2 || 2 || 1 || <math>\Z</math> || 1 || 1 || 1 || <math>\Z</math> || 2 || 2 |
||
|- |
|- |
||
! style="text-align:right" | |im( |
! style="text-align:right" | <math>|\operatorname{im}(J)|</math> |
||
| 1 || 2 || 1 || 24 || 1 || 1 || 1 || 240 || 2 || 2 || 1 || 504 || 1 || 1 || 1 || 480 || 2 || 2 |
| 1 || 2 || 1 || 24 || 1 || 1 || 1 || 240 || 2 || 2 || 1 || 504 || 1 || 1 || 1 || 480 || 2 || 2 |
||
|- |
|- |
||
! style="text-align:right" | |
! style="text-align:right" | <math>\pi_r^S</math> |
||
| |
| <math>\Z</math> || 2 || 2 || 24 || 1 || 1 || 2 || 240 || 2<sup>2</sup> || 2<sup>3</sup> || 6 || 504 || 1 || 3 || 2<sup>2</sup> || 480×2 || 2<sup>2</sup> || 2<sup>4</sup> |
||
|- |
|- |
||
! style="text-align:right" | |
! style="text-align:right" | <math>B_{2n}</math> |
||
| || || || <sup>1</sup>⁄<sub>6</sub> || || || || −<sup>1</sup>⁄<sub>30</sub> || || || || <sup>1</sup>⁄<sub>42</sub> || || || || −<sup>1</sup>⁄<sub>30</sub> || || |
| || || || <sup>1</sup>⁄<sub>6</sub> || || || || −<sup>1</sup>⁄<sub>30</sub> || || || || <sup>1</sup>⁄<sub>42</sub> || || || || −<sup>1</sup>⁄<sub>30</sub> || || |
||
|} |
|} |
||
==Applications== |
==Applications== |
||
⚫ | |||
The [[cokernel]] of the ''J''-homomorphism <math>J \colon \pi_n(\mathrm{SO}) \to \pi_n^S</math> appears in the group [[Exotic sphere|Θ<sub>''n''</sub>]] of [[H-cobordism|''h''-cobordism]] classes of oriented [[homotopy sphere|homotopy ''n''-spheres]] ({{harvtxt|Kosinski |1992}}). |
|||
⚫ | |||
The [[cokernel]] of the ''J''-homomorphism appears in the group of [[exotic sphere]]s. |
|||
==References== |
==References== |
||
*{{Citation | |
*{{Citation | last=Atiyah | first=Michael Francis | author-link=Michael Atiyah | title=Thom complexes | doi=10.1112/plms/s3-11.1.291 | mr=0131880 | year=1961 | journal=[[London Mathematical Society|Proceedings of the London Mathematical Society]] |series=Third Series | volume=11 | pages=291–310}} |
||
*{{citation|first=J. F. |last=Adams|title=On the groups J(X) I|journal= Topology |volume=2|year=1963|doi=10.1016/0040-9383(63)90001-6|pages=181|issue=3 }} |
*{{citation|first=J. F. |last=Adams|author-link=Frank Adams|title=On the groups J(X) I|journal= [[Topology (journal)|Topology]] |volume=2|year=1963|doi=10.1016/0040-9383(63)90001-6|pages=181|issue=3 |doi-access=free}} |
||
*{{citation|first=J. F. |last=Adams|title=On the groups J(X) II|journal= Topology |volume=3|year=1965a|doi=10.1016/0040-9383(65)90040-6|pages=137|issue=2 }} |
*{{citation|first=J. F. |last=Adams|author-link=Frank Adams|title=On the groups J(X) II|journal= [[Topology (journal)|Topology]] |volume=3|year=1965a|doi=10.1016/0040-9383(65)90040-6|pages=137|issue=2 |doi-access=free}} |
||
*{{citation|first=J. F. |last=Adams|title=On the groups J(X) III|journal= Topology |volume=3|year=1965b|doi=10.1016/0040-9383(65)90054-6|pages=193|issue=3 }} |
*{{citation|first=J. F. |last=Adams|author-link=Frank Adams|title=On the groups J(X) III|journal= [[Topology (journal)|Topology]] |volume=3|year=1965b|doi=10.1016/0040-9383(65)90054-6|pages=193|issue=3 |doi-access=}} |
||
*{{citation|first=J. F. |last=Adams|title=On the groups J(X) IV|journal= Topology |volume=5|year=1966|doi= 10.1016/0040-9383(66)90004-8|pages=21 }} {{citation|title= Correction|journal= Topology |volume=7|year=1968|doi= 10.1016/0040-9383(68)90010-4 |
*{{citation|first=J. F. |last=Adams|author-link=Frank Adams|title=On the groups J(X) IV|journal= [[Topology (journal)|Topology]]|volume=5|year=1966|doi= 10.1016/0040-9383(66)90004-8|pages=21 |doi-access=}}. {{citation|title= Correction|journal= [[Topology (journal)|Topology]]|volume=7|year=1968|doi= 10.1016/0040-9383(68)90010-4|pages= 331|issue= 3 |doi-access= }} |
||
*{{Citation | |
*{{Citation | last=Hopf | first=Heinz | author-link=Heinz Hopf | title=Über die Abbildungen von Sphären auf Sphäre niedrigerer Dimension | url=http://matwbn.icm.edu.pl/tresc.php?wyd=1&tom=25 | year=1935 | journal=[[Fundamenta Mathematicae]] | volume=25 | pages=427–440}} |
||
*{{Citation |last=Kosinski|first= Antoni A. |title=Differential Manifolds |publisher=[[Academic Press]] |location=San Diego, CA |year=1992 |pages=[https://archive.org/details/differentialmani0000kosi/page/195 195ff] |isbn=0-12-421850-4 |url=https://archive.org/details/differentialmani0000kosi/page/195 }} |
|||
*{{citation|first=John W.|last= Milnor |title=Differential topology forty-six years later|journal= [[Notices of the American Mathematical Society]] |volume=58|year=2011|issue= 6 |pages=804–809|url= |
*{{citation|first=John W.|last= Milnor |author-link=John Milnor|title=Differential topology forty-six years later|journal= [[Notices of the American Mathematical Society]] |volume=58|year=2011|issue= 6 |pages=804–809|url=https://www.ams.org/notices/201106/rtx110600804p.pdf}} |
||
*{{Citation | |
*{{Citation | last=Quillen | first=Daniel | author-link=Daniel Quillen | title=The Adams conjecture | doi=10.1016/0040-9383(71)90018-8 | mr=0279804 | year=1971 | journal=[[Topology (journal)|Topology]] | volume=10 | pages=67–80| doi-access= }} |
||
*{{citation|first=Robert M. |last=Switzer |title=Algebraic Topology—Homotopy and Homology |publisher=[[Springer-Verlag]] |year=1975 |isbn=978-0-387-06758-2}} |
*{{citation|first=Robert M. |last=Switzer |title=Algebraic Topology—Homotopy and Homology |publisher=[[Springer-Verlag]] |year=1975 |isbn=978-0-387-06758-2}} |
||
*{{Citation | |
*{{Citation | last=Whitehead | first=George W. | author-link=George W. Whitehead|title=On the homotopy groups of spheres and rotation groups | jstor=1968956 | mr=0007107 | year=1942 | journal=[[Annals of Mathematics]] |series=Second Series | volume=43 | pages=634–640 | issue=4 | doi=10.2307/1968956}} |
||
* {{Citation | |
* {{Citation |last=Whitehead | first=George W. | author-link=George W. Whitehead|title=Elements of homotopy theory |publisher=[[Springer Science+Business Media|Springer]] |location=Berlin |year=1978 |isbn=0-387-90336-4 |mr= 0516508 }} |
||
[[Category:Homotopy theory]] |
[[Category:Homotopy theory]] |
Latest revision as of 21:06, 22 August 2023
In mathematics, the J-homomorphism is a mapping from the homotopy groups of the special orthogonal groups to the homotopy groups of spheres. It was defined by George W. Whitehead (1942), extending a construction of Heinz Hopf (1935).
Definition
[edit]Whitehead's original homomorphism is defined geometrically, and gives a homomorphism
of abelian groups for integers q, and . (Hopf defined this for the special case .)
The J-homomorphism can be defined as follows. An element of the special orthogonal group SO(q) can be regarded as a map
and the homotopy group ) consists of homotopy classes of maps from the r-sphere to SO(q). Thus an element of can be represented by a map
Applying the Hopf construction to this gives a map
in , which Whitehead defined as the image of the element of under the J-homomorphism.
Taking a limit as q tends to infinity gives the stable J-homomorphism in stable homotopy theory:
where is the infinite special orthogonal group, and the right-hand side is the r-th stable stem of the stable homotopy groups of spheres.
Image of the J-homomorphism
[edit]The image of the J-homomorphism was described by Frank Adams (1966), assuming the Adams conjecture of Adams (1963) which was proved by Daniel Quillen (1971), as follows. The group is given by Bott periodicity. It is always cyclic; and if r is positive, it is of order 2 if r is 0 or 1 modulo 8, infinite if r is 3 or 7 modulo 8, and order 1 otherwise (Switzer 1975, p. 488). In particular the image of the stable J-homomorphism is cyclic. The stable homotopy groups are the direct sum of the (cyclic) image of the J-homomorphism, and the kernel of the Adams e-invariant (Adams 1966), a homomorphism from the stable homotopy groups to . If r is 0 or 1 mod 8 and positive, the order of the image is 2 (so in this case the J-homomorphism is injective). If r is 3 or 7 mod 8, the image is a cyclic group of order equal to the denominator of , where is a Bernoulli number. In the remaining cases where r is 2, 4, 5, or 6 mod 8 the image is trivial because is trivial.
r 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1 2 1 1 1 1 2 2 1 1 1 1 2 2 1 2 1 24 1 1 1 240 2 2 1 504 1 1 1 480 2 2 2 2 24 1 1 2 240 22 23 6 504 1 3 22 480×2 22 24 1⁄6 −1⁄30 1⁄42 −1⁄30
Applications
[edit]Michael Atiyah (1961) introduced the group J(X) of a space X, which for X a sphere is the image of the J-homomorphism in a suitable dimension.
The cokernel of the J-homomorphism appears in the group Θn of h-cobordism classes of oriented homotopy n-spheres (Kosinski (1992)).
References
[edit]- Atiyah, Michael Francis (1961), "Thom complexes", Proceedings of the London Mathematical Society, Third Series, 11: 291–310, doi:10.1112/plms/s3-11.1.291, MR 0131880
- Adams, J. F. (1963), "On the groups J(X) I", Topology, 2 (3): 181, doi:10.1016/0040-9383(63)90001-6
- Adams, J. F. (1965a), "On the groups J(X) II", Topology, 3 (2): 137, doi:10.1016/0040-9383(65)90040-6
- Adams, J. F. (1965b), "On the groups J(X) III", Topology, 3 (3): 193, doi:10.1016/0040-9383(65)90054-6
- Adams, J. F. (1966), "On the groups J(X) IV", Topology, 5: 21, doi:10.1016/0040-9383(66)90004-8. "Correction", Topology, 7 (3): 331, 1968, doi:10.1016/0040-9383(68)90010-4
- Hopf, Heinz (1935), "Über die Abbildungen von Sphären auf Sphäre niedrigerer Dimension", Fundamenta Mathematicae, 25: 427–440
- Kosinski, Antoni A. (1992), Differential Manifolds, San Diego, CA: Academic Press, pp. 195ff, ISBN 0-12-421850-4
- Milnor, John W. (2011), "Differential topology forty-six years later" (PDF), Notices of the American Mathematical Society, 58 (6): 804–809
- Quillen, Daniel (1971), "The Adams conjecture", Topology, 10: 67–80, doi:10.1016/0040-9383(71)90018-8, MR 0279804
- Switzer, Robert M. (1975), Algebraic Topology—Homotopy and Homology, Springer-Verlag, ISBN 978-0-387-06758-2
- Whitehead, George W. (1942), "On the homotopy groups of spheres and rotation groups", Annals of Mathematics, Second Series, 43 (4): 634–640, doi:10.2307/1968956, JSTOR 1968956, MR 0007107
- Whitehead, George W. (1978), Elements of homotopy theory, Berlin: Springer, ISBN 0-387-90336-4, MR 0516508