Jump to content

J-homomorphism: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
References: add wikilinks, cleanup
Image of the J-homomorphism: Replaced mod 4 conditions by equivalent mod 8 conditions for consistency
 
(12 intermediate revisions by 7 users not shown)
Line 1: Line 1:
{{short description|From a homotopy group of a special orthogonal group to a homotopy group of spheres}}
{{short description|From a homotopy group of a special orthogonal group to a homotopy group of spheres}}
In [[mathematics]], the '''''J''-homomorphism''' is a mapping from the [[homotopy group]]s of the [[special orthogonal group]]s to the [[homotopy groups of spheres]]. It was defined by {{harvs|txt|authorlink=George W. Whitehead|first=George W.|last=Whitehead|year=1942}}, extending a construction of {{harvs|txt|last=Hopf|first=Heinz|authorlink=Heinz Hopf|year=1935}}.
In [[mathematics]], the '''''J''-homomorphism''' is a mapping from the [[homotopy group]]s of the [[special orthogonal group]]s to the [[homotopy groups of spheres]]. It was defined by {{harvs|txt|author-link=George W. Whitehead|first=George W.|last=Whitehead|year=1942}}, extending a construction of {{harvs|txt|last=Hopf|first=Heinz|author-link=Heinz Hopf|year=1935}}.


==Definition==
==Definition==
Whitehead's original [[group homomorphism|homomorphism]] is defined geometrically, and gives a homomorphism


:<math>J \colon \pi_r (\mathrm{SO}(q)) \to \pi_{r+q}(S^q)</math>
Whitehead's original homomorphism is defined geometrically, and gives a homomorphism


of [[abelian group]]s for [[integer]]s ''q'', and <math>r \ge 2</math>. (Hopf defined this for the special case <math>q = r+1</math>.)
:<math>J \colon \pi_r (\mathrm{SO}(q)) \to \pi_{r+q}(S^q) \,\!</math>

of abelian groups for integers ''q'', and <math>r\ge 2</math>. (Hopf defined this for the special case <math>q = r+1</math>.)


The ''J''-homomorphism can be defined as follows.
The ''J''-homomorphism can be defined as follows.
An element of the special orthogonal group SO(''q'') can be regarded as a map
An element of the special orthogonal group SO(''q'') can be regarded as a map
:<math>S^{q-1}\rightarrow S^{q-1}</math>
:<math>S^{q-1}\rightarrow S^{q-1}</math>
and the homotopy group <math>\pi_r(\operatorname{SO}(q))</math>) consists of [[homotopy]] classes of maps from the ''r''-sphere to SO(''q'').
and the homotopy group <math>\pi_r(\operatorname{SO}(q))</math>) consists of [[homotopy]] classes of maps from the [[n-sphere|''r''-sphere]] to SO(''q'').
Thus an element of <math>\pi_r(\operatorname{SO}(q))</math> can be represented by a map
Thus an element of <math>\pi_r(\operatorname{SO}(q))</math> can be represented by a map
:<math>S^r\times S^{q-1}\rightarrow S^{q-1}</math>
:<math>S^r\times S^{q-1}\rightarrow S^{q-1}</math>
Line 22: Line 21:
Taking a limit as ''q'' tends to infinity gives the stable ''J''-homomorphism in [[stable homotopy theory]]:
Taking a limit as ''q'' tends to infinity gives the stable ''J''-homomorphism in [[stable homotopy theory]]:


:<math> J \colon \pi_r(\mathrm{SO}) \to \pi_r^S , \,\!</math>
:<math> J \colon \pi_r(\mathrm{SO}) \to \pi_r^S ,</math>


where SO is the infinite [[special orthogonal group]], and the right-hand side is the ''r''-th [[stable stem]] of the [[stable homotopy groups of spheres]].
where <math>\mathrm{SO}</math> is the infinite special orthogonal group, and the right-hand side is the ''r''-th [[stable stem]] of the [[stable homotopy groups of spheres]].


==Image of the J-homomorphism==
==Image of the J-homomorphism==


The image of the ''J''-homomorphism was described by {{harvs|txt|last=Adams|first=Frank|authorlink=Frank Adams|year=1966}}, assuming the '''Adams conjecture''' of {{harvtxt|Adams|1963}} which was proved by {{harvs|txt|last=Quillen|first=Daniel|authorlink=Daniel Quillen|year=1971}}, as follows. The group <math>\pi_r(\operatorname{SO})</math> is given by [[Bott periodicity]]. It is always cyclic; and if ''r'' is positive, it is of order 2 if ''r'' is 0 or 1 mod 8, infinite if ''r'' is 3 mod 4, and order 1 otherwise {{harv|Switzer|1975|p=488}}. In particular the image of the stable ''J''-homomorphism is cyclic. The stable homotopy groups <math>\pi_r^S</math> are the direct sum of the (cyclic) image of the ''J''-homomorphism, and the kernel of the Adams e-invariant {{harv|Adams|1966}}, a homomorphism from the stable homotopy groups to <math>\Q/\Z</math>. The order of the image is 2 if ''r'' is 0 or 1 mod 8 and positive (so in this case the ''J''-homomorphism is injective). If <math>r= 4n-1</math> is 3 mod 4 and positive the image is a cyclic group of order equal to the denominator of <math>B_{2n}/4n</math>, where <math>B_{2n}</math> is a [[Bernoulli number]]. In the remaining cases where ''r'' is 2, 4, 5, or 6 mod 8 the image is trivial because <math>\pi_r(\operatorname{SO})</math> is trivial.
The [[image (mathematics)|image]] of the ''J''-homomorphism was described by {{harvs|txt|last=Adams|first=Frank|author-link=Frank Adams|year=1966}}, assuming the '''Adams conjecture''' of {{harvtxt|Adams|1963}} which was [[mathematical proof|proved]] by {{harvs|txt|last=Quillen|first=Daniel|author-link=Daniel Quillen|year=1971}}, as follows. The [[group (mathematics)|group]] <math>\pi_r(\operatorname{SO})</math> is given by [[Bott periodicity]]. It is always [[cyclic group|cyclic]]; and if ''r'' is positive, it is of [[order of a group|order]] 2 if ''r'' is 0 or 1 [[modular arithmetic|modulo]] 8, infinite if ''r'' is 3 or 7 modulo 8, and order 1 otherwise {{harv|Switzer|1975|p=488}}. In particular the image of the stable ''J''-homomorphism is cyclic. The stable homotopy groups <math>\pi_r^S</math> are the direct sum of the (cyclic) image of the ''J''-homomorphism, and the [[kernel (algebra)|kernel]] of the Adams e-invariant {{harv|Adams|1966}}, a homomorphism from the stable homotopy groups to <math>\Q/\Z</math>. If ''r'' is 0 or 1 mod 8 and positive, the order of the image is 2 (so in this case the ''J''-homomorphism is [[injective function|injective]]). If ''r'' is 3 or 7 mod 8, the image is a cyclic group of order equal to the denominator of <math>B_{2n}/4n</math>, where <math>B_{2n}</math> is a [[Bernoulli number]]. In the remaining cases where ''r'' is 2, 4, 5, or 6 mod 8 the image is [[trivial group|trivial]] because <math>\pi_r(\operatorname{SO})</math> is trivial.


:{| class="wikitable" style="text-align: center; background-color:white"
:{| class="wikitable" style="text-align: center; background-color:white"
Line 52: Line 51:
! style="width:5%" | 17
! style="width:5%" | 17
|-
|-
! style="text-align:right" | π<sub>''r''</sub>(SO)
! style="text-align:right" | <math>\pi_r(\operatorname{SO})</math>
| 1 || 2 || 1 || '''Z''' || 1 || 1 || 1 || '''Z''' || 2 || 2 || 1 || '''Z''' || 1 || 1 || 1 || '''Z''' || 2 || 2
| 1 || 2 || 1 || <math>\Z</math> || 1 || 1 || 1 || <math>\Z</math> || 2 || 2 || 1 || <math>\Z</math> || 1 || 1 || 1 || <math>\Z</math> || 2 || 2
|-
|-
! style="text-align:right" | |im(''J'')|
! style="text-align:right" | <math>|\operatorname{im}(J)|</math>
| 1 || 2 || 1 || 24 || 1 || 1 || 1 || 240 || 2 || 2 || 1 || 504 || 1 || 1 || 1 || 480 || 2 || 2
| 1 || 2 || 1 || 24 || 1 || 1 || 1 || 240 || 2 || 2 || 1 || 504 || 1 || 1 || 1 || 480 || 2 || 2
|-
|-
! style="text-align:right" | π<sub>''r''</sub><sup>''S''</sup>
! style="text-align:right" | <math>\pi_r^S</math>
| '''Z''' || 2 || 2 || 24 || 1 || 1 || 2 || 240 || 2<sup>2</sup> || 2<sup>3</sup> || 6 || 504 || 1 || 3 || 2<sup>2</sup> || 480×2 || 2<sup>2</sup> || 2<sup>4</sup>
| <math>\Z</math> || 2 || 2 || 24 || 1 || 1 || 2 || 240 || 2<sup>2</sup> || 2<sup>3</sup> || 6 || 504 || 1 || 3 || 2<sup>2</sup> || 480×2 || 2<sup>2</sup> || 2<sup>4</sup>
|-
|-
! style="text-align:right" | ''B''<sub>2''n''</sub>
! style="text-align:right" | <math>B_{2n}</math>
| || || || <sup>1</sup>⁄<sub>6</sub> || || || || −<sup>1</sup>⁄<sub>30</sub> || || || || <sup>1</sup>⁄<sub>42</sub> || || || || −<sup>1</sup>⁄<sub>30</sub> || ||
| || || || <sup>1</sup>⁄<sub>6</sub> || || || || −<sup>1</sup>⁄<sub>30</sub> || || || || <sup>1</sup>⁄<sub>42</sub> || || || || −<sup>1</sup>⁄<sub>30</sub> || ||
|}
|}


==Applications==
==Applications==
{{harvs|txt|last=Atiyah | first=Michael | author-link=Michael Atiyah |year=1961}} introduced the group ''J''(''X'') of a space ''X'', which for ''X'' a sphere is the image of the ''J''-homomorphism in a suitable dimension.


The [[cokernel]] of the ''J''-homomorphism <math>J \colon \pi_n(\mathrm{SO}) \to \pi_n^S</math> appears in the group [[Exotic sphere|Θ<sub>''n''</sub>]] of [[H-cobordism|''h''-cobordism]] classes of oriented [[homotopy sphere|homotopy ''n''-spheres]] ({{harvtxt|Kosinski |1992}}).
{{harvtxt|Atiyah|1961}} introduced the group ''J''(''X'') of a space ''X'', which for ''X'' a sphere is the image of the ''J''-homomorphism in a suitable dimension.

The [[cokernel]] of the ''J''-homomorphism appears in the group of [[exotic sphere]]s ({{harvtxt|Kosinski |1992}}).


==References==
==References==
*{{Citation | last1=Atiyah | first1=Michael Francis | author1-link=Michael Atiyah | title=Thom complexes | doi=10.1112/plms/s3-11.1.291 | mr=0131880 | year=1961 | journal=Proceedings of the London Mathematical Society |series=Third Series | issn=0024-6115 | volume=11 | pages=291–310}}
*{{Citation | last=Atiyah | first=Michael Francis | author-link=Michael Atiyah | title=Thom complexes | doi=10.1112/plms/s3-11.1.291 | mr=0131880 | year=1961 | journal=[[London Mathematical Society|Proceedings of the London Mathematical Society]] |series=Third Series | volume=11 | pages=291–310}}
*{{citation|first=J. F. |last=Adams|title=On the groups J(X) I|journal= Topology |volume=2|year=1963|doi=10.1016/0040-9383(63)90001-6|pages=181|issue=3 }}
*{{citation|first=J. F. |last=Adams|author-link=Frank Adams|title=On the groups J(X) I|journal= [[Topology (journal)|Topology]] |volume=2|year=1963|doi=10.1016/0040-9383(63)90001-6|pages=181|issue=3 |doi-access=free}}
*{{citation|first=J. F. |last=Adams|title=On the groups J(X) II|journal= Topology |volume=3|year=1965a|doi=10.1016/0040-9383(65)90040-6|pages=137|issue=2 }}
*{{citation|first=J. F. |last=Adams|author-link=Frank Adams|title=On the groups J(X) II|journal= [[Topology (journal)|Topology]] |volume=3|year=1965a|doi=10.1016/0040-9383(65)90040-6|pages=137|issue=2 |doi-access=free}}
*{{citation|first=J. F. |last=Adams|title=On the groups J(X) III|journal= Topology |volume=3|year=1965b|doi=10.1016/0040-9383(65)90054-6|pages=193|issue=3 }}
*{{citation|first=J. F. |last=Adams|author-link=Frank Adams|title=On the groups J(X) III|journal= [[Topology (journal)|Topology]] |volume=3|year=1965b|doi=10.1016/0040-9383(65)90054-6|pages=193|issue=3 |doi-access=}}
*{{citation|first=John F. |last=Adams|author-link=Frank Adams|title=On the groups J(X) IV|journal= [[Topology (journal)|Topology]]|volume=5|year=1966|doi= 10.1016/0040-9383(66)90004-8|pages=21 }} {{citation|title= Correction|journal= [[Topology (journal)|Topology]]|volume=7|year=1968|doi= 10.1016/0040-9383(68)90010-4|author= Adams, J|pages= 331|issue= 3 }}
*{{citation|first=J. F. |last=Adams|author-link=Frank Adams|title=On the groups J(X) IV|journal= [[Topology (journal)|Topology]]|volume=5|year=1966|doi= 10.1016/0040-9383(66)90004-8|pages=21 |doi-access=}}. {{citation|title= Correction|journal= [[Topology (journal)|Topology]]|volume=7|year=1968|doi= 10.1016/0040-9383(68)90010-4|pages= 331|issue= 3 |doi-access= }}
*{{Citation | last=Hopf | first=Heinz | author-link=Heinz Hopf | title=Über die Abbildungen von Sphären auf Sphäre niedrigerer Dimension | url=http://matwbn.icm.edu.pl/tresc.php?wyd=1&tom=25 | year=1935 | journal=[[Fundamenta Mathematicae]] | volume=25 | pages=427–440}}
*{{Citation | last=Hopf | first=Heinz | author-link=Heinz Hopf | title=Über die Abbildungen von Sphären auf Sphäre niedrigerer Dimension | url=http://matwbn.icm.edu.pl/tresc.php?wyd=1&tom=25 | year=1935 | journal=[[Fundamenta Mathematicae]] | volume=25 | pages=427–440}}
*{{Citation |author=Kosinski, Antoni A. |title=Differential Manifolds |publisher=[[Academic Press]] |location=San Diego, CA |year=1992 |pages=[https://archive.org/details/differentialmani0000kosi/page/195 195ff] |isbn=0-12-421850-4 |url=https://archive.org/details/differentialmani0000kosi/page/195 }}
*{{Citation |last=Kosinski|first= Antoni A. |title=Differential Manifolds |publisher=[[Academic Press]] |location=San Diego, CA |year=1992 |pages=[https://archive.org/details/differentialmani0000kosi/page/195 195ff] |isbn=0-12-421850-4 |url=https://archive.org/details/differentialmani0000kosi/page/195 }}
*{{citation|first=John W.|last= Milnor |author-link=John Milnor|title=Differential topology forty-six years later|journal= [[Notices of the American Mathematical Society]] |volume=58|year=2011|issue= 6 |pages=804&ndash;809|url=http://www.ams.org/notices/201106/rtx110600804p.pdf}}
*{{citation|first=John W.|last= Milnor |author-link=John Milnor|title=Differential topology forty-six years later|journal= [[Notices of the American Mathematical Society]] |volume=58|year=2011|issue= 6 |pages=804&ndash;809|url=https://www.ams.org/notices/201106/rtx110600804p.pdf}}
*{{Citation | last=Quillen | first=Daniel | author-link=Daniel Quillen | title=The Adams conjecture | doi=10.1016/0040-9383(71)90018-8 | mr=0279804 | year=1971 | journal=[[Topology (journal)|Topology]] | volume=10 | pages=67–80}}
*{{Citation | last=Quillen | first=Daniel | author-link=Daniel Quillen | title=The Adams conjecture | doi=10.1016/0040-9383(71)90018-8 | mr=0279804 | year=1971 | journal=[[Topology (journal)|Topology]] | volume=10 | pages=67–80| doi-access= }}
*{{citation|first=Robert M. |last=Switzer |title=Algebraic Topology—Homotopy and Homology |publisher=[[Springer-Verlag]] |year=1975 |isbn=978-0-387-06758-2}}
*{{citation|first=Robert M. |last=Switzer |title=Algebraic Topology—Homotopy and Homology |publisher=[[Springer-Verlag]] |year=1975 |isbn=978-0-387-06758-2}}
*{{Citation | last=Whitehead | first=George W. | author-link=George W. Whitehead|title=On the homotopy groups of spheres and rotation groups | jstor=1968956 | mr=0007107 | year=1942 | journal=[[Annals of Mathematics]] |series=Second Series | volume=43 | pages=634–640 | issue=4 | doi=10.2307/1968956}}
*{{Citation | last=Whitehead | first=George W. | author-link=George W. Whitehead|title=On the homotopy groups of spheres and rotation groups | jstor=1968956 | mr=0007107 | year=1942 | journal=[[Annals of Mathematics]] |series=Second Series | volume=43 | pages=634–640 | issue=4 | doi=10.2307/1968956}}
* {{Citation |last=Whitehead | first=George W. | author-link=George W. Whitehead|title=Elements of homotopy theory |publisher=[[Springer Science+Business Media|Springer]] |location=Berlin |year=1978 |pages= |isbn=0-387-90336-4 |doi=|mr= 0516508 }}
* {{Citation |last=Whitehead | first=George W. | author-link=George W. Whitehead|title=Elements of homotopy theory |publisher=[[Springer Science+Business Media|Springer]] |location=Berlin |year=1978 |isbn=0-387-90336-4 |mr= 0516508 }}


[[Category:Homotopy theory]]
[[Category:Homotopy theory]]

Latest revision as of 21:06, 22 August 2023

In mathematics, the J-homomorphism is a mapping from the homotopy groups of the special orthogonal groups to the homotopy groups of spheres. It was defined by George W. Whitehead (1942), extending a construction of Heinz Hopf (1935).

Definition

[edit]

Whitehead's original homomorphism is defined geometrically, and gives a homomorphism

of abelian groups for integers q, and . (Hopf defined this for the special case .)

The J-homomorphism can be defined as follows. An element of the special orthogonal group SO(q) can be regarded as a map

and the homotopy group ) consists of homotopy classes of maps from the r-sphere to SO(q). Thus an element of can be represented by a map

Applying the Hopf construction to this gives a map

in , which Whitehead defined as the image of the element of under the J-homomorphism.

Taking a limit as q tends to infinity gives the stable J-homomorphism in stable homotopy theory:

where is the infinite special orthogonal group, and the right-hand side is the r-th stable stem of the stable homotopy groups of spheres.

Image of the J-homomorphism

[edit]

The image of the J-homomorphism was described by Frank Adams (1966), assuming the Adams conjecture of Adams (1963) which was proved by Daniel Quillen (1971), as follows. The group is given by Bott periodicity. It is always cyclic; and if r is positive, it is of order 2 if r is 0 or 1 modulo 8, infinite if r is 3 or 7 modulo 8, and order 1 otherwise (Switzer 1975, p. 488). In particular the image of the stable J-homomorphism is cyclic. The stable homotopy groups are the direct sum of the (cyclic) image of the J-homomorphism, and the kernel of the Adams e-invariant (Adams 1966), a homomorphism from the stable homotopy groups to . If r is 0 or 1 mod 8 and positive, the order of the image is 2 (so in this case the J-homomorphism is injective). If r is 3 or 7 mod 8, the image is a cyclic group of order equal to the denominator of , where is a Bernoulli number. In the remaining cases where r is 2, 4, 5, or 6 mod 8 the image is trivial because is trivial.

r 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 2 1 1 1 1 2 2 1 1 1 1 2 2
1 2 1 24 1 1 1 240 2 2 1 504 1 1 1 480 2 2
2 2 24 1 1 2 240 22 23 6 504 1 3 22 480×2 22 24
16 130 142 130

Applications

[edit]

Michael Atiyah (1961) introduced the group J(X) of a space X, which for X a sphere is the image of the J-homomorphism in a suitable dimension.

The cokernel of the J-homomorphism appears in the group Θn of h-cobordism classes of oriented homotopy n-spheres (Kosinski (1992)).

References

[edit]