Jump to content

Trunking: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
order sections by relevance. rm unnec subheads.
VLAN: nonsense assertion that being an open standard means that something is the only standard that can be used by multiple vendors
 
(34 intermediate revisions by 19 users not shown)
Line 1: Line 1:
{{Short description|Means of sharing telecommunications resources}}
{{About|the networking topic|the cable enclosure|Electrical conduit#Trunking|dangerous transportation|Trunking (auto)}}
{{Redirect|Trunk line|the rail line on Norway|Trunk Line|other uses|Trunkline (disambiguation)}}
{{refimprove|date=July 2016}}
{{refimprove|date=July 2016}}
{{about|the networking topic|dangerous transportation|Trunking (auto)}}
In [[telecommunication]]s, '''trunking''' is a method for a system to provide network access to many clients by sharing a set of lines or frequencies instead of providing them individually. This is analogous to the structure of a tree with one trunk and many branches. Examples of this include telephone systems and the [[two-way radio]]s commonly used by police agencies. Trunking, in the form of [[link aggregation]] and [[VLAN tagging]], has been applied in [[computer networking]] as well.


In [[telecommunication]]s, '''trunking''' is a technology for providing network access to multiple clients simultaneously by sharing a set of circuits, carriers, channels, or frequencies, instead of providing individual circuits or channels for each client. This is reminiscent to the structure of a tree with one trunk and many branches. Trunking in telecommunication originated in telegraphy, and later in telephone systems where a '''trunk line''' is a [[communications channel]] between [[telephone exchange]]s.
A '''trunk''' is a single [[communications channel]] between two points, each point being either the [[switching center]] or the node.


Other applications include the [[trunked radio system]]s commonly used by police agencies.<ref>{{cite journal |last1=Sharp |first1=D.S. |last2=Cackov |first2=N. |last3=Laskovic |first3=N. |last4=Shao |first4=Qing |last5=Trajkovic |first5=L. |title=Analysis of public safety traffic on trunked land mobile radio systems |journal=IEEE Journal on Selected Areas in Communications |date=2004 |volume=22 |issue=7 |pages=1197–1205 |doi=10.1109/JSAC.2004.829339 |s2cid=4912845 |url=https://ieeexplore.ieee.org/document/1327644}}</ref>
== Telecommunications ==
A '''trunk line''' is a [[electrical network|circuit]] connecting [[telephone switchboard]]s (or other switching equipment), as distinguished from [[local loop]] circuit which extends from [[telephone exchange]] switching equipment to individual [[telephones]] or information origination/termination equipment.<ref>{{FS1037C MS188}}</ref><ref>[[Title 47 of the Code of Federal Regulations]], Parts 0-199</ref>


In the form of [[link aggregation]] and [[VLAN tagging]], trunking has been applied in [[computer networking]].
Trunk lines are used for connecting a [[private branch exchange]] (PBX) to a telephone service provider.<ref>Versadial, [https://www.versadial.com/faqs/definitions-common-call-recording-terms Call Recording Terms/Definitions], last accessed 8 June 2015</ref> When needed they can be used by any telephone connected to the PBX, while the station lines to the [[extension (telephone)|extension]]s serve only one station telephones. Trunking saves cost, because there are usually fewer trunk lines than extension lines, since it is unusual in most offices to have all extension lines in use for external calls at once. Trunk lines transmit voice and data in formats such as analog, [[digital signal 1|T1]], [[digital signal 1|E1]], [[ISDN]] or [[primary rate interface|PRI]]. The [[dial tone]] lines for outgoing calls are called DDCO (Direct Dial Central Office) trunks.


==Telecommunications==
In the UK and the Commonwealth countries, a ''trunk call'' was the term for [[long distance calling]] which traverses one or more trunk lines and involving more than one telephone exchange. This is in contrast to making a [[local call]] which involves a single exchange and typically no trunk lines.
A trunk line is a [[Electrical network|circuit]] connecting [[telephone switchboard]]s (or other switching equipment), as distinguished from [[local loop]] circuit which extends from [[telephone exchange]] switching equipment to individual [[telephones]] or information origination/termination equipment.<ref>{{FS1037C MS188}}</ref><ref>[[Title 47 of the Code of Federal Regulations]], Parts 0-199</ref>


Trunk lines are used for connecting a [[private branch exchange]] (PBX) to a telephone service provider.<ref>{{cite web |website=Versadial.com |url=https://www.versadial.com/faqs/definitions-common-call-recording-terms |title=Call Recording Terms/Definitions |access-date=8 June 2015 }}</ref> When needed they can be used by any telephone connected to the PBX, while the station lines to the [[Extension (telephone)|extensions]] serve only one station’s telephones. Trunking saves cost, because there are usually fewer trunk lines than extension lines, since it is unusual in most offices to have all extension lines in use for external calls at once. Trunk lines transmit voice and data in formats such as [[Analog signal|analog]], [[Digital signal 1|T1]], [[Digital signal 1|E1]], [[ISDN]], [[Primary rate interface|PRI]] or [[SIP trunking|SIP]]. The [[dial tone]] lines for outgoing calls are called DDCO (Direct Dial Central Office) trunks.
Trunking also refers to the connection of [[switch]]es and [[telecommunication circuit|circuits]] within a [[telephone exchange]].<ref>{{cite book |last=Flood |first=J. E. |title=Telecommunications Switching, Traffic and Networks |chapter=Telecommunications Traffic |location=New York |publisher=Prentice-Hall |year=1998 |ISBN=0130333093 }}</ref> Trunking is closely related to the concept of [[Grade of service|grading]]. Trunking allows a group of [[inlet]] switches at the same time. Thus the [[service provider]] can provide a lesser number of circuits than might otherwise be required, allowing many users to "share" a smaller number of connections and achieve capacity savings.<ref>Motorola, [http://www.motorola.com/LMPS/RNSG/trunking Trunking Communications Overview], last accessed 13 February 2005.</ref>


In the UK and the Commonwealth countries, a ''trunk call'' was the term for [[long-distance calling]] which traverses one or more trunk lines and involving more than one telephone exchange. This is in contrast to making a [[local call]] which involves a single exchange and typically no trunk lines.
== Computer networks ==

Trunking also refers to the connection of [[switch]]es and [[Telecommunication circuit|circuits]] within a [[telephone exchange]].<ref>{{cite book |last=Flood |first=J. E. |title=Telecommunications Switching, Traffic and Networks |chapter=Telecommunications Traffic |location=New York |publisher=Prentice-Hall |year=1998 |isbn=0130333093 }}</ref> Trunking is closely related to the concept of [[Grade of service|grading]]. Trunking allows a group of [[inlet]] switches at the same time. Thus the [[service provider]] can provide a lesser number of circuits than might otherwise be required, allowing many users to "share" a smaller number of connections and achieve capacity savings.<ref>Motorola, [http://www.motorola.com/LMPS/RNSG/trunking Trunking Communications Overview], last accessed 13 February 2005.</ref>

==Computer networks==
===Link aggregation===
===Link aggregation===
In [[computer networking]], [[port trunking]] is the use of multiple concurrent network connections to aggregate the link speed of each participating port and cable, also called [[link aggregation]]. Such high-bandwidth link groups may be used to interconnect switches or to connect high-performance servers to a network.
In [[computer networking]], [[port trunking]] is the use of multiple concurrent network connections to aggregate the link speed of each participating port and cable, also called [[link aggregation]]. Such high-bandwidth link groups may be used to interconnect switches or to connect high-performance servers to a network.


===VLAN===
===VLAN===
In the context of Ethernet [[VLAN]]s, [[Avaya]]{{Citation needed|date=March 2012}} and [[Cisco]]<ref>{{cite web |url=http://www.ciscopress.com/articles/article.asp?p=29803&seqNum=3 |title=VLANs and Trunking |publisher=[[Cisco Press]] |date=2002-10-25 |accessdate=2012-03-15}}</ref> use the term '''{{visible anchor|Ethernet trunking}}''' to mean carrying multiple VLANs through a single network link through the use of a trunking protocol. To allow for multiple VLANs on one link, frames from individual VLANs must be identified. The most common and preferred method, [[IEEE 802.1Q]] adds a tag to the [[Ethernet frame]], labeling it as belonging to a certain VLAN. Since 802.1Q is an [[open standard]], it is the only option in an environment with multiple-vendor equipment. Cisco also has a (now deprecated) proprietary trunking protocol called [[Cisco Inter-Switch Link|Inter-Switch Link]] which encapsulates the Ethernet frame with its own container, which labels the frame as belonging to a specific VLAN. [[3Com]] used proprietary ''Virtual LAN Trunking'' (VLT) before 802.1Q was defined.<ref>{{Cite book|title=SuperStack II Switch 3000 TX 8 Port User Guide | date=June 1997 |chapter=Connecting Common VLANs Between Switch Units |id=Document No. DUA1694-1AAA04}}</ref>
In the context of Ethernet [[VLAN]]s, [[Cisco]] uses the term '''{{visible anchor|Ethernet trunking}}''' to mean carrying multiple VLANs through a single network link through the use of a trunking protocol.<ref>{{cite web |url=http://www.ciscopress.com/articles/article.asp?p=29803 |title=VLANs and Trunking |publisher=[[Cisco Press]] |date=2002-10-25 |access-date=2012-03-15}}</ref> To allow for multiple VLANs on one link, frames from individual VLANs must be identified. The most common and preferred method, [[IEEE 802.1Q]], adds a tag to the [[Ethernet frame]] labeling it as belonging to a certain VLAN. Since 802.1Q is an [[open standard]] it can work with equipment from any vendor. Cisco also has a (now deprecated) proprietary trunking protocol called [[Cisco Inter-Switch Link|Inter-Switch Link]] which encapsulates the Ethernet frame with its own container, which labels the frame as belonging to a specific VLAN. [[3Com]] used proprietary ''Virtual LAN Trunking'' (VLT) before 802.1Q was defined.<ref>{{Cite book |title=SuperStack II Switch 3000 TX 8 Port User Guide |date=June 1997 |chapter=Connecting Common VLANs Between Switch Units |id=Document No. DUA1694-1AAA04 }}</ref>


== Radio communications ==
==Radio communications==
{{main|Trunked radio system}}
{{Main|Trunked radio system}}
In two-way radio communications, trunking refers to the ability of transmissions to be served by free channels whose availability is determined by algorithmic protocols. In conventional (i.e., not trunked) radio, users of a single service share one or more exclusive radio channels and must wait their turn to use them, analogous to the operation of a group of cashiers in a grocery store, where each cashier serves his/her own line of customers. The cashier represents each radio channel, and each customer represents a radio user transmitting on their radio.
In two-way radio communications, trunking refers to the ability of transmissions to be served by free channels whose availability is determined by algorithmic protocols. In conventional (i.e., not trunked) radio, users of a single service share one or more exclusive radio channels and must wait their turn to use them, analogous to the operation of a group of cashiers in a grocery store, where each cashier serves his/her own line of customers. The cashier represents each radio channel, and each customer represents a radio user transmitting on their radio.


[[Trunked radio system]]s (TRS) pool all of the cashiers (channels) into one group and use a store manager (site controller) that assigns incoming shoppers to free cashiers as determined by the store's policies (TRS protocols).
[[Trunked radio system]]s (TRS) pool all of the cashiers (channels) into one group and use a store manager (site controller) that assigns incoming shoppers to free cashiers as determined by the store's policies (TRS protocols).


In a TRS, individual transmissions in any conversation may take place on several different channels. In the shopping analogy, this is as if a family of shoppers checks out all at once and are assigned different cashiers by the traffic manager. Similarly, if a single shopper checks out more than once, they may be assigned a different cashier each time.
In a TRS, individual transmissions in any conversation may take place on several different channels. In the shopping analogy, this is as if a family of shoppers checks out all at once and are assigned different cashiers by the traffic manager. Similarly, if a single shopper checks out more than once, they may be assigned a different cashier each time.
Line 31: Line 36:
Trunked radio systems provide greater efficiency at the cost of greater management overhead. The store manager's orders must be conveyed to all the shoppers. This is done by assigning one or more radio channels as the "control channel". The control channel transmits data from the site controller that runs the TRS, and is continuously monitored by all of the field radios in the system so that they know how to follow the various conversations between members of their talkgroups (families) and other talkgroups as they hop from radio channel to radio channel.
Trunked radio systems provide greater efficiency at the cost of greater management overhead. The store manager's orders must be conveyed to all the shoppers. This is done by assigning one or more radio channels as the "control channel". The control channel transmits data from the site controller that runs the TRS, and is continuously monitored by all of the field radios in the system so that they know how to follow the various conversations between members of their talkgroups (families) and other talkgroups as they hop from radio channel to radio channel.


TRS's have grown massively in their complexity since their introduction, and now include multi-site systems that can cover entire states or groups of states. This is similar to the idea of a chain of grocery stores. The shopper generally goes to the nearest grocery store, but if there are complications or congestion, the shopper may opt to go to a neighboring store. Each store in the chain can talk to each other and pass messages between shoppers at different stores if necessary, and they provide backup to each other: if a store has to be closed for repair, then other stores pick up the customers.
TRS's have grown massively in their complexity since their introduction, and now include multi-site systems that can cover entire states or groups of states. This is similar to the idea of a chain of grocery stores. The shopper generally goes to the nearest grocery store, but if there are complications or congestion, the shopper may opt to go to a neighboring store. Each store in the chain can talk to each other and pass messages between shoppers at different stores if necessary, and they provide backup to each other: if a store has to be closed for repair, then other stores pick up the customers.


TRS's have greater risks to overcome than conventional radio systems in that a loss of the store manager (site controller) would cause the system's traffic to no longer be managed. In this case, most of the time the TRS will automatically switch to an alternate control channel, or in more rare circumstances, conventional operation. In spite of these risks, TRS's usually maintain reasonable uptime.
TRS's have greater risks to overcome than conventional radio systems in that a loss of the store manager (site controller) would cause the system's traffic to no longer be managed. In this case, most of the time the TRS will automatically switch to an alternate control channel, or in more rare circumstances, conventional operation. In spite of these risks, TRS's usually maintain reasonable uptime.
Line 39: Line 44:
==References==
==References==
{{Reflist}}
{{Reflist}}



[[Category:Communication circuits]]
[[Category:Communication circuits]]

Latest revision as of 09:28, 25 August 2023

In telecommunications, trunking is a technology for providing network access to multiple clients simultaneously by sharing a set of circuits, carriers, channels, or frequencies, instead of providing individual circuits or channels for each client. This is reminiscent to the structure of a tree with one trunk and many branches. Trunking in telecommunication originated in telegraphy, and later in telephone systems where a trunk line is a communications channel between telephone exchanges.

Other applications include the trunked radio systems commonly used by police agencies.[1]

In the form of link aggregation and VLAN tagging, trunking has been applied in computer networking.

Telecommunications

[edit]

A trunk line is a circuit connecting telephone switchboards (or other switching equipment), as distinguished from local loop circuit which extends from telephone exchange switching equipment to individual telephones or information origination/termination equipment.[2][3]

Trunk lines are used for connecting a private branch exchange (PBX) to a telephone service provider.[4] When needed they can be used by any telephone connected to the PBX, while the station lines to the extensions serve only one station’s telephones. Trunking saves cost, because there are usually fewer trunk lines than extension lines, since it is unusual in most offices to have all extension lines in use for external calls at once. Trunk lines transmit voice and data in formats such as analog, T1, E1, ISDN, PRI or SIP. The dial tone lines for outgoing calls are called DDCO (Direct Dial Central Office) trunks.

In the UK and the Commonwealth countries, a trunk call was the term for long-distance calling which traverses one or more trunk lines and involving more than one telephone exchange. This is in contrast to making a local call which involves a single exchange and typically no trunk lines.

Trunking also refers to the connection of switches and circuits within a telephone exchange.[5] Trunking is closely related to the concept of grading. Trunking allows a group of inlet switches at the same time. Thus the service provider can provide a lesser number of circuits than might otherwise be required, allowing many users to "share" a smaller number of connections and achieve capacity savings.[6]

Computer networks

[edit]
[edit]

In computer networking, port trunking is the use of multiple concurrent network connections to aggregate the link speed of each participating port and cable, also called link aggregation. Such high-bandwidth link groups may be used to interconnect switches or to connect high-performance servers to a network.

VLAN

[edit]

In the context of Ethernet VLANs, Cisco uses the term Ethernet trunking to mean carrying multiple VLANs through a single network link through the use of a trunking protocol.[7] To allow for multiple VLANs on one link, frames from individual VLANs must be identified. The most common and preferred method, IEEE 802.1Q, adds a tag to the Ethernet frame labeling it as belonging to a certain VLAN. Since 802.1Q is an open standard it can work with equipment from any vendor. Cisco also has a (now deprecated) proprietary trunking protocol called Inter-Switch Link which encapsulates the Ethernet frame with its own container, which labels the frame as belonging to a specific VLAN. 3Com used proprietary Virtual LAN Trunking (VLT) before 802.1Q was defined.[8]

Radio communications

[edit]

In two-way radio communications, trunking refers to the ability of transmissions to be served by free channels whose availability is determined by algorithmic protocols. In conventional (i.e., not trunked) radio, users of a single service share one or more exclusive radio channels and must wait their turn to use them, analogous to the operation of a group of cashiers in a grocery store, where each cashier serves his/her own line of customers. The cashier represents each radio channel, and each customer represents a radio user transmitting on their radio.

Trunked radio systems (TRS) pool all of the cashiers (channels) into one group and use a store manager (site controller) that assigns incoming shoppers to free cashiers as determined by the store's policies (TRS protocols).

In a TRS, individual transmissions in any conversation may take place on several different channels. In the shopping analogy, this is as if a family of shoppers checks out all at once and are assigned different cashiers by the traffic manager. Similarly, if a single shopper checks out more than once, they may be assigned a different cashier each time.

Trunked radio systems provide greater efficiency at the cost of greater management overhead. The store manager's orders must be conveyed to all the shoppers. This is done by assigning one or more radio channels as the "control channel". The control channel transmits data from the site controller that runs the TRS, and is continuously monitored by all of the field radios in the system so that they know how to follow the various conversations between members of their talkgroups (families) and other talkgroups as they hop from radio channel to radio channel.

TRS's have grown massively in their complexity since their introduction, and now include multi-site systems that can cover entire states or groups of states. This is similar to the idea of a chain of grocery stores. The shopper generally goes to the nearest grocery store, but if there are complications or congestion, the shopper may opt to go to a neighboring store. Each store in the chain can talk to each other and pass messages between shoppers at different stores if necessary, and they provide backup to each other: if a store has to be closed for repair, then other stores pick up the customers.

TRS's have greater risks to overcome than conventional radio systems in that a loss of the store manager (site controller) would cause the system's traffic to no longer be managed. In this case, most of the time the TRS will automatically switch to an alternate control channel, or in more rare circumstances, conventional operation. In spite of these risks, TRS's usually maintain reasonable uptime.

TRS's are more difficult to monitor via radio scanner than conventional systems; however, larger manufacturers of radio scanners have introduced models that, with a little extra programming, are able to follow TRS's quite efficiently.

References

[edit]
  1. ^ Sharp, D.S.; Cackov, N.; Laskovic, N.; Shao, Qing; Trajkovic, L. (2004). "Analysis of public safety traffic on trunked land mobile radio systems". IEEE Journal on Selected Areas in Communications. 22 (7): 1197–1205. doi:10.1109/JSAC.2004.829339. S2CID 4912845.
  2. ^ Public Domain This article incorporates public domain material from Federal Standard 1037C. General Services Administration. Archived from the original on 2022-01-22. (in support of MIL-STD-188).
  3. ^ Title 47 of the Code of Federal Regulations, Parts 0-199
  4. ^ "Call Recording Terms/Definitions". Versadial.com. Retrieved 8 June 2015.
  5. ^ Flood, J. E. (1998). "Telecommunications Traffic". Telecommunications Switching, Traffic and Networks. New York: Prentice-Hall. ISBN 0130333093.
  6. ^ Motorola, Trunking Communications Overview, last accessed 13 February 2005.
  7. ^ "VLANs and Trunking". Cisco Press. 2002-10-25. Retrieved 2012-03-15.
  8. ^ "Connecting Common VLANs Between Switch Units". SuperStack II Switch 3000 TX 8 Port User Guide. June 1997. Document No. DUA1694-1AAA04.