Jump to content

Neutron stimulated emission computed tomography: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Nsect (talk | contribs)
Citation bot (talk | contribs)
Alter: title. Add: chapter. Removed parameters. | Use this bot. Report bugs. | #UCB_CommandLine
 
(33 intermediate revisions by 16 users not shown)
Line 1: Line 1:
{{Short description|Imaging technique using induced gamma rays}}
'''Neutron stimulated emission computed tomography (NSECT)''' uses neutron inelastic scattering to generate images of the spatial distribution of elements in a sample<ref>{{cite journal|last=Kapadia|first=Anuj|title=Neutron Stimulated Emission Computed Tomography: A new spectroscopic technique|journal=Neutron Imaging and Applications|year=2009|pages=265-288}}</ref>.
{{Infobox diagnostic

| name = Neutron stimulated emission computed tomography
== NSECT mechanism ==
| image =
A given [[atomic nucleus]], defined by its proton and neutron numbers, is a quantized system with a set of characteristic higher energy levels that it can occupy as a [[nuclear isomer | nuclear isomer]]. When the nucleus in its [[ground state]] is struck by a [[Fast_neutron#Fast_neutrons|fast neutron]] with kinetic energy greater than that of its first excited state, it can undergo an [[isomeric transition | isomeric transition]] to the excited state, receiving the necessary energy from the fast neutron through [[Inelastic_scattering|inelastic scatter]]. Promptly (on the order of picoseconds, on average<ref>{{cite web|title=Isomeric transition|url=http://en.wikipedia.org/wiki/Isomeric_transition|work=Wikipedia|accessdate=08/03/2011}}</ref>) after excitation, the excited nuclear isomer de-excites (either directly or through a series of cascades) to the ground state, emitting a characteristic [[Gamma_rays|gamma ray]] for each decay transition with energy equal to the difference in the energy levels involved. After irradiating the sample with neutrons, the measured number of emitted gamma rays of energy characteristic to the nucleus of interest is directly proportional to the number of such nuclei along the incident neutron beam trajectory. After repeating the measurement for neutron beam incidence around the sample, an image of the distribution of the nuclei in the sample can be reconstructed using [[tomography]].
| alt =
| caption =
| pronounce =
| purpose = detecting liver iron overload disorders
| test of =
| based on =
| synonyms =
| reference_range =
| calculator =
| DiseasesDB = <!--{{DiseasesDB2|numeric_id}}-->
| ICD10 = <!--{{ICD10|Group|Major|minor|LinkGroup|LinkMajor}} or {{ICD10PCS|code|char1/char2/char3/char4}}-->
| ICD9 =
| ICDO =
| MedlinePlus = <!--article_number-->
| eMedicine = <!--article_number-->
| MeshID =
| OPS301 = <!--{{OPS301|code}}-->
| LOINC = <!--{{LOINC|code}}-->
}}
'''Neutron stimulated emission computed tomography (NSECT)''' uses [[induced gamma emission]] through [[neutron]] [[inelastic scattering]] to generate [[image]]s of the [[spatial distribution]] of [[Chemical element|element]]s in a [[Sample (material)|sample]].<ref>{{cite book|last=Kapadia|first=Anuj|title=Neutron Imaging and Applications |chapter=Neutron Stimulated Emission Computed Tomography: A New Technique for Spectroscopic Medical Imaging |year=2009|pages=265–288|doi=10.1007/978-0-387-78693-3_15|series=Neutron Scattering Applications and Techniques|isbn=978-0-387-78692-6}}</ref>


== Clinical Applications ==
== Clinical Applications ==
NSECT has been shown to be effective in detecting liver iron overload disorders<ref>{{cite book|last=Kapadia|first=Anuj|title=Accuracy and patient dose in neutron stimulated emission computed tomography for diagnosis of iron overload: Simulations in GEANT4|year=2007|publisher=Duke University|location=Durham, NC}}</ref> and breast cancer <ref>{{cite journal|last=Kapadia|first=Anuj|coauthors=Sharma, Amy C.; Tourassi, Georgia D.; Bender, Janelle E.; Howell, Calvin R.; Crowell, Alexander S;. Kiser, Matthew R.; Harrawood, Brian P.; Pedroni, Ronald S.; Floyd Jr, Carey E.|title=Neutron Stimulated Emission Computed Tomography for Diagnosis of Breast Cancer|journal=IEEE Transactions on Nuclear Science|year=2008|volume=55|issue=1|pages=501-509|doi=10.1109/TNS.2007.909847}}</ref>. Due to its sensitivity in measuring elemental concentrations, NSECT is currently being developed for cancer staging, among other medical applications.
NSECT has been shown to be effective in detecting liver [[Iron overload| iron overload disorders]]<ref>{{cite book|last=Kapadia|first=Anuj|title=Accuracy and patient dose in neutron stimulated emission computed tomography for diagnosis of iron overload: Simulations in GEANT4|year=2007|publisher=Duke University|location=Durham, NC}}</ref> and [[breast cancer]].<ref>{{cite journal|last=Kapadia|first=Anuj|author2=Sharma, Amy C.|author3-link=Georgia Tourassi|author3=Georgia Tourassi|author4=Bender, Janelle E.|author5=Howell, Calvin R.|author6=Crowell, Alexander S.|author7=Kiser, Matthew R.|author8=Harrawood, Brian P.|author9=Pedroni, Ronald S.|year=2008|title=Neutron Stimulated Emission Computed Tomography for Diagnosis of Breast Cancer|journal=IEEE Transactions on Nuclear Science|volume=55|issue=1|pages=501–509|bibcode=2008ITNS...55..501K|citeseerx=10.1.1.660.9231|doi=10.1109/TNS.2007.909847|author10=Floyd Jr, Carey E.|s2cid=11928052}}</ref> Due to its [[Sensitivity analysis|sensitivity]] in measuring [[Concentrations|elemental concentrations]], NSECT is currently being developed for [[cancer staging]], among other [[Medicine|medical applications]].

== NSECT mechanism ==
A given [[atomic nucleus]], defined by its [[Proton number|proton]] and [[neutron number]]s, is a [[Quantization (physics)|quantized]] system with a [[Nuclear shell model|set of characteristic higher energy levels]] that it can occupy as a [[nuclear isomer]]. When the nucleus in its [[ground state]] is struck by a [[Fast neutron#Fast neutrons|fast neutron]] with [[kinetic energy]] greater than that of its first excited state, it can undergo an [[isomeric transition]] to one of its [[excited state]]s by receiving the necessary energy from the [[Fast neutron#Fast neutrons|fast neutron]] through [[Inelastic scattering|inelastic scatter]]. Promptly (on the order of [[picosecond]]s, on average) after excitation, the excited [[nuclear isomer]] de-excites (either directly or through a series of cascades) to the ground state, emitting a characteristic [[Gamma rays|gamma ray]] for each decay transition with energy equal to the difference in the energy levels involved (see [[induced gamma emission]]). After [[Irradiate|irradiating]] the sample with [[neutrons]], the measured number of emitted [[gamma rays]] of energy characteristic to the [[atomic nucleus|nucleus]] of interest is directly proportional to the number of such nuclei along the incident [[Particle beam|neutron beam trajectory]]. After repeating the measurement for neutron beam incidence at positions around the sample, an image of the distribution of the nuclei in the sample can be reconstructed as done in [[tomography]].


==References==
==References==
<references />
<references />


== Further Reading ==
== Further reading ==
* [http://deckard.mc.duke.edu/nsect.html NSECT at Ravin Advanced Imaging Laboratories, Duke University]
* [http://deckard.mc.duke.edu/nsect.html NSECT at Ravin Advanced Imaging Laboratories, Duke University]
* [http://nsect.wikispaces.com/file/view/2006_Floyd_Intro_to_NSECT_PMB.pdf PDF] Floyd CE, Bender JE, Sharma AC, Kapadia A, Xia J, and Harrawood B, Tourassi GD, Lo JY, Crowell A, and Howell C. "Introduction to neutron stimulated emission computed tomography," Physics in medicine and biology. 51:3375. 2006.
* [http://iopscience.iop.org/0031-9155/51/14/006] Floyd CE, Bender JE, Sharma AC, Kapadia A, Xia J, and Harrawood B, Tourassi GD, Lo JY, Crowell A, and Howell C. "Introduction to neutron stimulated emission computed tomography," Physics in Medicine and Biology. 51:3375. 2006.
* [http://nsect.wikispaces.com/file/view/0031-9155_52_20_003.pdf PDF]Sharma AC, Harrawood BP, Bender JE, Tourassi GD, and Kapadia AJ. "Neutron stimulated emission computed tomography: a Monte Carlo simulation approach,"Physics in medicine and biology. 52:6117. 2007.
* [http://iopscience.iop.org/0031-9155/52/20/003] Sharma AC, Harrawood BP, Bender JE, Tourassi GD, and Kapadia AJ. "Neutron stimulated emission computed tomography: a Monte Carlo simulation approach,"Physics in Medicine and Biology. 52:6117. 2007.
* [http://nsect.wikispaces.com/file/view/0031-9155_53_9_008.pdf PDF]Floyd CE, Kapadia, AJ, et al. "Neutron-stimulated emission computed tomography of a multi-element phantom," Physics in medicine and biology. 53:2313. 2008.
* [http://iopscience.iop.org/0031-9155/53/9/008] Floyd CE, Kapadia, AJ, et al. "Neutron-stimulated emission computed tomography of a multi-element phantom," Physics in Medicine and Biology. 53:2313. 2008.


[[Category:Medical imaging]]
[[Category:Medical imaging]]

Latest revision as of 15:42, 27 August 2023

Neutron stimulated emission computed tomography
Purposedetecting liver iron overload disorders

Neutron stimulated emission computed tomography (NSECT) uses induced gamma emission through neutron inelastic scattering to generate images of the spatial distribution of elements in a sample.[1]

Clinical Applications

[edit]

NSECT has been shown to be effective in detecting liver iron overload disorders[2] and breast cancer.[3] Due to its sensitivity in measuring elemental concentrations, NSECT is currently being developed for cancer staging, among other medical applications.

NSECT mechanism

[edit]

A given atomic nucleus, defined by its proton and neutron numbers, is a quantized system with a set of characteristic higher energy levels that it can occupy as a nuclear isomer. When the nucleus in its ground state is struck by a fast neutron with kinetic energy greater than that of its first excited state, it can undergo an isomeric transition to one of its excited states by receiving the necessary energy from the fast neutron through inelastic scatter. Promptly (on the order of picoseconds, on average) after excitation, the excited nuclear isomer de-excites (either directly or through a series of cascades) to the ground state, emitting a characteristic gamma ray for each decay transition with energy equal to the difference in the energy levels involved (see induced gamma emission). After irradiating the sample with neutrons, the measured number of emitted gamma rays of energy characteristic to the nucleus of interest is directly proportional to the number of such nuclei along the incident neutron beam trajectory. After repeating the measurement for neutron beam incidence at positions around the sample, an image of the distribution of the nuclei in the sample can be reconstructed as done in tomography.

References

[edit]
  1. ^ Kapadia, Anuj (2009). "Neutron Stimulated Emission Computed Tomography: A New Technique for Spectroscopic Medical Imaging". Neutron Imaging and Applications. Neutron Scattering Applications and Techniques. pp. 265–288. doi:10.1007/978-0-387-78693-3_15. ISBN 978-0-387-78692-6.
  2. ^ Kapadia, Anuj (2007). Accuracy and patient dose in neutron stimulated emission computed tomography for diagnosis of iron overload: Simulations in GEANT4. Durham, NC: Duke University.
  3. ^ Kapadia, Anuj; Sharma, Amy C.; Georgia Tourassi; Bender, Janelle E.; Howell, Calvin R.; Crowell, Alexander S.; Kiser, Matthew R.; Harrawood, Brian P.; Pedroni, Ronald S.; Floyd Jr, Carey E. (2008). "Neutron Stimulated Emission Computed Tomography for Diagnosis of Breast Cancer". IEEE Transactions on Nuclear Science. 55 (1): 501–509. Bibcode:2008ITNS...55..501K. CiteSeerX 10.1.1.660.9231. doi:10.1109/TNS.2007.909847. S2CID 11928052.

Further reading

[edit]
  • NSECT at Ravin Advanced Imaging Laboratories, Duke University
  • [1] Floyd CE, Bender JE, Sharma AC, Kapadia A, Xia J, and Harrawood B, Tourassi GD, Lo JY, Crowell A, and Howell C. "Introduction to neutron stimulated emission computed tomography," Physics in Medicine and Biology. 51:3375. 2006.
  • [2] Sharma AC, Harrawood BP, Bender JE, Tourassi GD, and Kapadia AJ. "Neutron stimulated emission computed tomography: a Monte Carlo simulation approach,"Physics in Medicine and Biology. 52:6117. 2007.
  • [3] Floyd CE, Kapadia, AJ, et al. "Neutron-stimulated emission computed tomography of a multi-element phantom," Physics in Medicine and Biology. 53:2313. 2008.