Jump to content

Hamiltonian fluid mechanics: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Citation bot (talk | contribs)
Removed parameters. | Use this bot. Report bugs. | Suggested by Abductive | #UCB_webform 3689/3840
 
(28 intermediate revisions by 16 users not shown)
Line 1: Line 1:
'''Hamiltonian fluid mechanics''' is the application of [[Hamiltonian mechanics|Hamiltonian]] methods to [[fluid mechanics]]. This formalism can only apply to non[[dissipative]] fluids.
'''Hamiltonian fluid mechanics''' is the application of [[Hamiltonian mechanics|Hamiltonian]] methods to [[fluid mechanics]]. Note that this formalism only applies to non[[dissipative]] fluids.


==Irrotational barotropic flow==
==Irrotational barotropic flow==
Line 6: Line 6:
Then, the [[Conjugate variables|conjugate fields]] are the [[mass density]] field ''ρ'' and the [[velocity potential]] ''φ''. The [[Poisson bracket]] is given by
Then, the [[Conjugate variables|conjugate fields]] are the [[mass density]] field ''ρ'' and the [[velocity potential]] ''φ''. The [[Poisson bracket]] is given by


:<math>[\varphi(\vec{x}),\rho(\vec{y}) ]=\delta^d(\vec{x}-\vec{y})</math>
:<math>\{\rho(\vec{y}),\varphi(\vec{x})\}=\delta^d(\vec{x}-\vec{y})</math>


and the Hamiltonian by:
and the Hamiltonian by:


:<math>\mathcal{H}=\int \mathrm{d}^d x \left( \frac{1}{2}\rho(\nabla \varphi)^2 +e(\rho) \right),</math>
:<math>H=\int \mathrm{d}^d x \mathcal{H}=\int \mathrm{d}^d x \left( \frac{1}{2}\rho(\nabla \varphi)^2 +e(\rho) \right),</math>


where ''e'' is the [[internal energy]] density, as a function of ''&rho;''.
where ''e'' is the [[internal energy]] density, as a function of ''&rho;''.
Line 23: Line 23:
:<math>
:<math>
\begin{align}
\begin{align}
\frac{\partial \rho}{\partial t}&=+\frac{\delta\mathcal{H}}{\delta\varphi}= -\nabla \cdot(\rho\vec{v}),
\frac{\partial \rho}{\partial t}&=+\frac{\partial \mathcal{H}}{\partial \varphi}= -\nabla \cdot(\rho\vec{u}),
\\
\\
\frac{\partial \varphi}{\partial t}&=-\frac{\delta\mathcal{H}}{\delta\rho}=-\frac{1}{2}\vec{v}\cdot\vec{v}-e',
\frac{\partial \varphi}{\partial t}&=-\frac{\partial \mathcal{H}}{\partial \rho}=-\frac{1}{2}\vec{u}\cdot\vec{u}-e',
\end{align}
\end{align}
</math>
</math>


where <math>\vec{v}\ \stackrel{\mathrm{def}}{=}\ \nabla \varphi</math> is the velocity and is [[vorticity-free]]. The second equation leads to the [[Euler equations]]:
where <math>\vec{u}\ \stackrel{\mathrm{def}}{=}\ \nabla \varphi</math> is the velocity and is [[vorticity-free]]. The second equation leads to the [[Euler equations]]:


:<math>\frac{\partial \vec{v}}{\partial t} + (\vec{v}\cdot\nabla) \vec{v} = -e''\nabla\rho = -\frac{1}{\rho}\nabla{p}</math>
:<math>\frac{\partial \vec{u}}{\partial t} + (\vec{u}\cdot\nabla) \vec{u} = -e''\nabla\rho = -\frac{1}{\rho}\nabla{p}</math>


after exploiting the fact that the [[vorticity]] is zero:
after exploiting the fact that the [[vorticity]] is zero:


:<math>\vec{\nabla}\times\vec{v}=\vec{0}.</math>
:<math>\nabla \times\vec{u}=\vec{0}.</math>

As fluid dynamics is described by non-canonical dynamics, which possess an infinite amount of Casimir invariants, an alternative formulation of Hamiltonian formulation of fluid dynamics can be introduced through the use of [[Nambu mechanics]]<ref>{{harvnb|Nevir|Blender|1993}}</ref><ref>{{harvnb|Blender|Badin|2015}}</ref>


==See also==
==See also==
*[[Luke's variational principle]]
*[[Luke's variational principle]]
*[[Hamiltonian field theory]]

== Notes ==
{{reflist|2}}


==References==
==References==
*{{cite book| isbn=978-3-319-59694-5 |last1=Badin|first1=Gualtiero|last2=Crisciani|first2=Fulvio| title=Variational Formulation of Fluid and Geophysical Fluid Dynamics - Mechanics, Symmetries and Conservation Laws - | publisher=Springer| year=2018 | pages=218 | doi= 10.1007/978-3-319-59695-2|bibcode=2018vffg.book.....B |s2cid=125902566}}
*{{cite article|encyclopedia=Encyclopedia of Mathematical Physics| volume=2 | pages=593-600| year=2006| title=Hamiltonian Fluid Mechanics | first=P.J. |last=Morrison|url=http://web2.ph.utexas.edu/~morrison/06EMP_morrison.pdf|editor=Elsevier|city=Amsterdam}}
*{{cite article|last=Morrison|first=P. J.| title=Hamiltonian Description of the Ideal Fluid |journal=Reviews of Modern Physics|volume=70|number=2| year=1998|month=April|pages=467-521|location=Austin, Texas|DOI=10.1103/RevModPhys.70.467|url=http://web2.ph.utexas.edu/~morrison/98RMP_morrison.pdf}}
*{{cite encyclopedia|encyclopedia=Encyclopedia of Mathematical Physics| volume=2 | pages=593–600| year=2006| title=Hamiltonian Fluid Mechanics | first=P.J. |last=Morrison|url=http://web2.ph.utexas.edu/~morrison/06EMP_morrison.pdf|editor=Elsevier|location=Amsterdam}}
*{{cite journal|last=Morrison|first=P. J.| title=Hamiltonian Description of the Ideal Fluid |journal=Reviews of Modern Physics|volume=70|number=2| date=April 1998 |pages=467–521|location=Austin, Texas|url=http://web2.ph.utexas.edu/~morrison/98RMP_morrison.pdf|bibcode=1998RvMP...70..467M|doi=10.1103/RevModPhys.70.467|hdl=2152/61087|hdl-access=free}}
*{{cite journal | journal=Annual Review of Fluid Mechanics | volume=20 | pages=225–256 | year=1988 | doi=10.1146/annurev.fl.20.010188.001301 | title=Hamiltonian Fluid Mechanics | author=R. Salmon|bibcode = 1988AnRFM..20..225S }}
*{{cite journal | journal=Annual Review of Fluid Mechanics | volume=20 | pages=225–256 | year=1988 | doi=10.1146/annurev.fl.20.010188.001301 | title=Hamiltonian Fluid Mechanics | author=R. Salmon|bibcode = 1988AnRFM..20..225S | url=https://zenodo.org/record/1063670 }}
*{{cite journal | doi=10.1016/S0065-2687(08)60429-X | title=Symmetries, conservation laws, and Hamiltonian structure in geophysical fluid dynamics | author=T. G. Shepherd | year=1990 | journal=Advances in Geophysics | volume=32 | pages=287–338 |bibcode = 1990AdGeo..32..287S }}
*{{cite book|last1=Shepherd|first1=Theodore G|title=Advances in Geophysics Volume 32|author-link=Ted Shepherd|chapter=Symmetries, Conservation Laws, and Hamiltonian Structure in Geophysical Fluid Dynamics|volume=32|year=1990|pages=287–338|doi=10.1016/S0065-2687(08)60429-X|bibcode=1990AdGeo..32..287S|isbn=9780120188321}}
*{{cite book| ISBN=1-58488-023-6 |last=Swaters|first=Gordon E.| title=Introduction to Hamiltonian Fluid Dynamics and Stability Theory | publisher=Chapman & Hall/CRC| year=2000 | pages=274|location=Boca Raton, Florida}}
*{{cite book| isbn=1-58488-023-6 |last=Swaters|first=Gordon E.| title=Introduction to Hamiltonian Fluid Dynamics and Stability Theory | publisher=Chapman & Hall/CRC| year=2000 | pages=274|location=Boca Raton, Florida}}
*{{cite journal |first1=P. |last1=Nevir |first2=R. |last2=Blender |title=A Nambu representation of incompressible hydrodynamics using helicity and enstrophy |journal=[[J. Phys. A]] |volume=26 |issue= 22 |year=1993 |pages=1189–1193 |doi=10.1088/0305-4470/26/22/010 |bibcode = 1993JPhA...26L1189N }}
*{{cite journal |first1=R. |last1=Blender |first2=G. |last2=Badin |title=Hydrodynamic Nambu mechanics derived by geometric constraints |journal=[[J. Phys. A]] |volume=48 |issue= 10 |year=2015 |pages=105501 |doi=10.1088/1751-8113/48/10/105501|arxiv = 1510.04832 |bibcode = 2015JPhA...48j5501B |s2cid=119661148 }}
[[Category:Fluid dynamics]]
[[Category:Fluid dynamics]]
[[Category:Hamiltonian mechanics]]
[[Category:Hamiltonian mechanics]]

Latest revision as of 15:02, 24 September 2023

Hamiltonian fluid mechanics is the application of Hamiltonian methods to fluid mechanics. Note that this formalism only applies to nondissipative fluids.

Irrotational barotropic flow

[edit]

Take the simple example of a barotropic, inviscid vorticity-free fluid.

Then, the conjugate fields are the mass density field ρ and the velocity potential φ. The Poisson bracket is given by

and the Hamiltonian by:

where e is the internal energy density, as a function of ρ. For this barotropic flow, the internal energy is related to the pressure p by:

where an apostrophe ('), denotes differentiation with respect to ρ.

This Hamiltonian structure gives rise to the following two equations of motion:

where is the velocity and is vorticity-free. The second equation leads to the Euler equations:

after exploiting the fact that the vorticity is zero:

As fluid dynamics is described by non-canonical dynamics, which possess an infinite amount of Casimir invariants, an alternative formulation of Hamiltonian formulation of fluid dynamics can be introduced through the use of Nambu mechanics[1][2]

See also

[edit]

Notes

[edit]

References

[edit]
  • Badin, Gualtiero; Crisciani, Fulvio (2018). Variational Formulation of Fluid and Geophysical Fluid Dynamics - Mechanics, Symmetries and Conservation Laws -. Springer. p. 218. Bibcode:2018vffg.book.....B. doi:10.1007/978-3-319-59695-2. ISBN 978-3-319-59694-5. S2CID 125902566.
  • Morrison, P.J. (2006). "Hamiltonian Fluid Mechanics" (PDF). In Elsevier (ed.). Encyclopedia of Mathematical Physics. Vol. 2. Amsterdam. pp. 593–600.{{cite encyclopedia}}: CS1 maint: location missing publisher (link)
  • Morrison, P. J. (April 1998). "Hamiltonian Description of the Ideal Fluid" (PDF). Reviews of Modern Physics. 70 (2). Austin, Texas: 467–521. Bibcode:1998RvMP...70..467M. doi:10.1103/RevModPhys.70.467. hdl:2152/61087.
  • R. Salmon (1988). "Hamiltonian Fluid Mechanics". Annual Review of Fluid Mechanics. 20: 225–256. Bibcode:1988AnRFM..20..225S. doi:10.1146/annurev.fl.20.010188.001301.
  • Shepherd, Theodore G (1990). "Symmetries, Conservation Laws, and Hamiltonian Structure in Geophysical Fluid Dynamics". Advances in Geophysics Volume 32. Vol. 32. pp. 287–338. Bibcode:1990AdGeo..32..287S. doi:10.1016/S0065-2687(08)60429-X. ISBN 9780120188321.
  • Swaters, Gordon E. (2000). Introduction to Hamiltonian Fluid Dynamics and Stability Theory. Boca Raton, Florida: Chapman & Hall/CRC. p. 274. ISBN 1-58488-023-6.
  • Nevir, P.; Blender, R. (1993). "A Nambu representation of incompressible hydrodynamics using helicity and enstrophy". J. Phys. A. 26 (22): 1189–1193. Bibcode:1993JPhA...26L1189N. doi:10.1088/0305-4470/26/22/010.
  • Blender, R.; Badin, G. (2015). "Hydrodynamic Nambu mechanics derived by geometric constraints". J. Phys. A. 48 (10): 105501. arXiv:1510.04832. Bibcode:2015JPhA...48j5501B. doi:10.1088/1751-8113/48/10/105501. S2CID 119661148.