Hamiltonian fluid mechanics: Difference between revisions
Citation bot (talk | contribs) Removed parameters. | Use this bot. Report bugs. | Suggested by Abductive | #UCB_webform 3689/3840 |
|||
(13 intermediate revisions by 9 users not shown) | |||
Line 1: | Line 1: | ||
'''Hamiltonian fluid mechanics''' is the application of [[Hamiltonian mechanics|Hamiltonian]] methods to [[fluid mechanics]]. |
'''Hamiltonian fluid mechanics''' is the application of [[Hamiltonian mechanics|Hamiltonian]] methods to [[fluid mechanics]]. Note that this formalism only applies to non[[dissipative]] fluids. |
||
==Irrotational barotropic flow== |
==Irrotational barotropic flow== |
||
Line 6: | Line 6: | ||
Then, the [[Conjugate variables|conjugate fields]] are the [[mass density]] field ''ρ'' and the [[velocity potential]] ''φ''. The [[Poisson bracket]] is given by |
Then, the [[Conjugate variables|conjugate fields]] are the [[mass density]] field ''ρ'' and the [[velocity potential]] ''φ''. The [[Poisson bracket]] is given by |
||
:<math>\{\ |
:<math>\{\rho(\vec{y}),\varphi(\vec{x})\}=\delta^d(\vec{x}-\vec{y})</math> |
||
and the Hamiltonian by: |
and the Hamiltonian by: |
||
Line 23: | Line 23: | ||
:<math> |
:<math> |
||
\begin{align} |
\begin{align} |
||
\frac{\partial \rho}{\partial t}&=+\frac{ |
\frac{\partial \rho}{\partial t}&=+\frac{\partial \mathcal{H}}{\partial \varphi}= -\nabla \cdot(\rho\vec{u}), |
||
\\ |
\\ |
||
\frac{\partial \varphi}{\partial t}&=-\frac{ |
\frac{\partial \varphi}{\partial t}&=-\frac{\partial \mathcal{H}}{\partial \rho}=-\frac{1}{2}\vec{u}\cdot\vec{u}-e', |
||
\end{align} |
\end{align} |
||
</math> |
</math> |
||
Line 47: | Line 47: | ||
==References== |
==References== |
||
*{{cite book| isbn=978-3-319-59694-5 |last1=Badin|first1=Gualtiero|last2=Crisciani|first2=Fulvio| title=Variational Formulation of Fluid and Geophysical Fluid Dynamics - Mechanics, Symmetries and Conservation Laws - | publisher=Springer| year=2018 | pages=218 | doi= 10.1007/978-3-319-59695-2|bibcode=2018vffg.book.....B |s2cid=125902566}} |
|||
*{{cite article|encyclopedia=Encyclopedia of Mathematical Physics| volume=2 | pages=593-600| year=2006| title=Hamiltonian Fluid Mechanics | first=P.J. |last=Morrison|url=http://web2.ph.utexas.edu/~morrison/06EMP_morrison.pdf|editor=Elsevier|location=Amsterdam}} |
|||
*{{cite |
*{{cite encyclopedia|encyclopedia=Encyclopedia of Mathematical Physics| volume=2 | pages=593–600| year=2006| title=Hamiltonian Fluid Mechanics | first=P.J. |last=Morrison|url=http://web2.ph.utexas.edu/~morrison/06EMP_morrison.pdf|editor=Elsevier|location=Amsterdam}} |
||
*{{cite journal|last=Morrison|first=P. J.| title=Hamiltonian Description of the Ideal Fluid |journal=Reviews of Modern Physics|volume=70|number=2| date=April 1998 |pages=467–521|location=Austin, Texas|url=http://web2.ph.utexas.edu/~morrison/98RMP_morrison.pdf|bibcode=1998RvMP...70..467M|doi=10.1103/RevModPhys.70.467|hdl=2152/61087|hdl-access=free}} |
|||
*{{cite journal | journal=Annual Review of Fluid Mechanics | volume=20 | pages=225–256 | year=1988 | doi=10.1146/annurev.fl.20.010188.001301 | title=Hamiltonian Fluid Mechanics | author=R. Salmon|bibcode = 1988AnRFM..20..225S }} |
*{{cite journal | journal=Annual Review of Fluid Mechanics | volume=20 | pages=225–256 | year=1988 | doi=10.1146/annurev.fl.20.010188.001301 | title=Hamiltonian Fluid Mechanics | author=R. Salmon|bibcode = 1988AnRFM..20..225S | url=https://zenodo.org/record/1063670 }} |
||
*{{cite |
*{{cite book|last1=Shepherd|first1=Theodore G|title=Advances in Geophysics Volume 32|author-link=Ted Shepherd|chapter=Symmetries, Conservation Laws, and Hamiltonian Structure in Geophysical Fluid Dynamics|volume=32|year=1990|pages=287–338|doi=10.1016/S0065-2687(08)60429-X|bibcode=1990AdGeo..32..287S|isbn=9780120188321}} |
||
*{{cite book| |
*{{cite book| isbn=1-58488-023-6 |last=Swaters|first=Gordon E.| title=Introduction to Hamiltonian Fluid Dynamics and Stability Theory | publisher=Chapman & Hall/CRC| year=2000 | pages=274|location=Boca Raton, Florida}} |
||
⚫ | *{{cite journal | |
||
*{{cite journal | |
*{{cite journal |first1=P. |last1=Nevir |first2=R. |last2=Blender |title=A Nambu representation of incompressible hydrodynamics using helicity and enstrophy |journal=[[J. Phys. A]] |volume=26 |issue= 22 |year=1993 |pages=1189–1193 |doi=10.1088/0305-4470/26/22/010 |bibcode = 1993JPhA...26L1189N }} |
||
⚫ | *{{cite journal |first1=R. |last1=Blender |first2=G. |last2=Badin |title=Hydrodynamic Nambu mechanics derived by geometric constraints |journal=[[J. Phys. A]] |volume=48 |issue= 10 |year=2015 |pages=105501 |doi=10.1088/1751-8113/48/10/105501|arxiv = 1510.04832 |bibcode = 2015JPhA...48j5501B |s2cid=119661148 }} |
||
[[Category:Fluid dynamics]] |
[[Category:Fluid dynamics]] |
||
[[Category:Hamiltonian mechanics]] |
[[Category:Hamiltonian mechanics]] |
Latest revision as of 15:02, 24 September 2023
Hamiltonian fluid mechanics is the application of Hamiltonian methods to fluid mechanics. Note that this formalism only applies to nondissipative fluids.
Irrotational barotropic flow
[edit]Take the simple example of a barotropic, inviscid vorticity-free fluid.
Then, the conjugate fields are the mass density field ρ and the velocity potential φ. The Poisson bracket is given by
and the Hamiltonian by:
where e is the internal energy density, as a function of ρ. For this barotropic flow, the internal energy is related to the pressure p by:
where an apostrophe ('), denotes differentiation with respect to ρ.
This Hamiltonian structure gives rise to the following two equations of motion:
where is the velocity and is vorticity-free. The second equation leads to the Euler equations:
after exploiting the fact that the vorticity is zero:
As fluid dynamics is described by non-canonical dynamics, which possess an infinite amount of Casimir invariants, an alternative formulation of Hamiltonian formulation of fluid dynamics can be introduced through the use of Nambu mechanics[1][2]
See also
[edit]Notes
[edit]References
[edit]- Badin, Gualtiero; Crisciani, Fulvio (2018). Variational Formulation of Fluid and Geophysical Fluid Dynamics - Mechanics, Symmetries and Conservation Laws -. Springer. p. 218. Bibcode:2018vffg.book.....B. doi:10.1007/978-3-319-59695-2. ISBN 978-3-319-59694-5. S2CID 125902566.
- Morrison, P.J. (2006). "Hamiltonian Fluid Mechanics" (PDF). In Elsevier (ed.). Encyclopedia of Mathematical Physics. Vol. 2. Amsterdam. pp. 593–600.
{{cite encyclopedia}}
: CS1 maint: location missing publisher (link) - Morrison, P. J. (April 1998). "Hamiltonian Description of the Ideal Fluid" (PDF). Reviews of Modern Physics. 70 (2). Austin, Texas: 467–521. Bibcode:1998RvMP...70..467M. doi:10.1103/RevModPhys.70.467. hdl:2152/61087.
- R. Salmon (1988). "Hamiltonian Fluid Mechanics". Annual Review of Fluid Mechanics. 20: 225–256. Bibcode:1988AnRFM..20..225S. doi:10.1146/annurev.fl.20.010188.001301.
- Shepherd, Theodore G (1990). "Symmetries, Conservation Laws, and Hamiltonian Structure in Geophysical Fluid Dynamics". Advances in Geophysics Volume 32. Vol. 32. pp. 287–338. Bibcode:1990AdGeo..32..287S. doi:10.1016/S0065-2687(08)60429-X. ISBN 9780120188321.
- Swaters, Gordon E. (2000). Introduction to Hamiltonian Fluid Dynamics and Stability Theory. Boca Raton, Florida: Chapman & Hall/CRC. p. 274. ISBN 1-58488-023-6.
- Nevir, P.; Blender, R. (1993). "A Nambu representation of incompressible hydrodynamics using helicity and enstrophy". J. Phys. A. 26 (22): 1189–1193. Bibcode:1993JPhA...26L1189N. doi:10.1088/0305-4470/26/22/010.
- Blender, R.; Badin, G. (2015). "Hydrodynamic Nambu mechanics derived by geometric constraints". J. Phys. A. 48 (10): 105501. arXiv:1510.04832. Bibcode:2015JPhA...48j5501B. doi:10.1088/1751-8113/48/10/105501. S2CID 119661148.