Template:Reg polyhedra db: Difference between revisions
No edit summary |
ReneeWrites (talk | contribs) No edit summary |
||
(5 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{{{{1}}}|{{{2}}}| |
{{{{{1}}}|{{{2}}}| |
||
|T-name=Tetrahedron|T-image=tetrahedron.png|T-image2=tetrahedron.jpg|T-image3=tetrahedron.gif|T-dimage=tetrahedron.png |
|T-name=Tetrahedron|T-sh=3> 2z|T-image=tetrahedron.png|T-image2=tetrahedron.jpg|T-image3=tetrahedron.gif|T-dimage=tetrahedron.png |
||
|T-Wythoff=3 | 2 3<BR>| 2 2 2 |
|T-Wythoff=3 | 2 3<BR>| 2 2 2 |
||
|T-W=1|T-U=01|T-K=06|T-C=15|T-V=4|T-E=6|T-F=4|T-Fdetail=4{3}|T-chi=2 |
|T-W=1|T-U=01|T-K=06|T-C=15|T-V=4|T-E=6|T-F=4|T-Fdetail=4{3}|T-chi=2 |
||
Line 13: | Line 13: | ||
|T-CD={{Coxeter–Dynkin diagram|node_1|3|node|3|node}} = {{Coxeter–Dynkin diagram|node_h|4|node|3|node}}<BR>{{Coxeter–Dynkin diagram|node_h|2x|node_h|4|node}}<BR>{{Coxeter–Dynkin diagram|node_h|2x|node_h|2x|node_h}} |
|T-CD={{Coxeter–Dynkin diagram|node_1|3|node|3|node}} = {{Coxeter–Dynkin diagram|node_h|4|node|3|node}}<BR>{{Coxeter–Dynkin diagram|node_h|2x|node_h|4|node}}<BR>{{Coxeter–Dynkin diagram|node_h|2x|node_h|2x|node_h}} |
||
|O-name=Octahedron|O-image=Octahedron.png|O-image2=octahedron.jpg|O-image3=octahedron.gif|O-dimage=hexahedron.png |
|O-name=Octahedron|O-sh=4<> 3z|O-image=Octahedron.png|O-image2=octahedron.jpg|O-image3=octahedron.gif|O-dimage=hexahedron.png |
||
|O-Wythoff=4 | 2 3 |
|O-Wythoff=4 | 2 3 |
||
|O-W=2|O-U=05|O-K=10|O-C=17|O-V=6|O-E=12|O-F=8|O-Fdetail=8{3}|O-chi=2 |
|O-W=2|O-U=05|O-K=10|O-C=17|O-V=6|O-E=12|O-F=8|O-Fdetail=8{3}|O-chi=2 |
||
|O-vfig=3.3.3.3|O-vfigimage=octahedron_vertfig. |
|O-vfig=3.3.3.3|O-vfigimage=octahedron_vertfig.svg|O-netimage=Octahedron flat.svg |
||
|O-ffig=V4.4.4 |
|O-ffig=V4.4.4 |
||
|O-conway=O<BR>aT| |
|O-conway=O<BR>aT| |
||
Line 22: | Line 22: | ||
|O-rotgroup=[[Octahedral symmetry|O]], [4,3]<sup>+</sup>, (432) |
|O-rotgroup=[[Octahedral symmetry|O]], [4,3]<sup>+</sup>, (432) |
||
|O-B=Oct|O-dual=Cube|O-dihedral=109.47122° = arccos(−{{frac|1|3}}) |
|O-B=Oct|O-dual=Cube|O-dihedral=109.47122° = arccos(−{{frac|1|3}}) |
||
|O-special=[[deltahedron]] |
|O-special=[[deltahedron]], [[Hanner polytope]] |
||
|O-schl={3,4}|O-schl2=r{3,3} or <math>\begin{Bmatrix} 3 \\ 3 \end{Bmatrix}</math> |
|O-schl={3,4}|O-schl2=r{3,3} or <math>\begin{Bmatrix} 3 \\ 3 \end{Bmatrix}</math><BR>{}+{}+{}=3{} |
||
|O-CD={{Coxeter–Dynkin diagram|node|4|node|3|node_1}} |
|O-CD={{Coxeter–Dynkin diagram|node|4|node|3|node_1}} |
||
|C-name=Hexahedron|C-image=hexahedron.png|C-image2=hexahedron.jpg|C-image3=hexahedron.gif|C-dimage=Octahedron.png |
|C-name=Hexahedron|C-sh=4=|C-image=hexahedron.png|C-image2=hexahedron.jpg|C-image3=hexahedron.gif|C-dimage=Octahedron.png |
||
|C-altname=(Hexahedron)<BR>|C-Wythoff=3 | 2 4 |
|C-altname=(Hexahedron)<BR>|C-Wythoff=3 | 2 4 |
||
|C-W=3|C-U=06|C-K=11|C-C=18|C-V=8|C-E=12|C-F=6|C-Fdetail=6{4}|C-chi=2 |
|C-W=3|C-U=06|C-K=11|C-C=18|C-V=8|C-E=12|C-F=6|C-Fdetail=6{4}|C-chi=2 |
||
Line 35: | Line 35: | ||
|C-conway=C| |
|C-conway=C| |
||
|C-B=Cube|C-dual=Octahedron|C-dihedral=90° |
|C-B=Cube|C-dual=Octahedron|C-dihedral=90° |
||
|C-special=[[zonohedron]]|C-schl={4,3}|C-schl2=t{2,4} or {4}×{}<BR>tr{2,2} |
|C-special=[[zonohedron]], [[Hanner polytope]] |
||
|C-schl={4,3}|C-schl2=t{2,4} or {4}×{}<BR>tr{2,2}<BR>{}×{}×{} = {}<sup>3</sup> |
|||
|C-CD={{Coxeter–Dynkin diagram|node_1|4|node|3|node}} |
|C-CD={{Coxeter–Dynkin diagram|node_1|4|node|3|node}} |
||
|D-name=Dodecahedron|D-image=Dodecahedron.png|D-image2=dodecahedron.jpg|D-image3=dodecahedron.gif|D-dimage=icosahedron.png |
|D-name=Dodecahedron|D-sh=5d|D-image=Dodecahedron.png|D-image2=dodecahedron.jpg|D-image3=dodecahedron.gif|D-dimage=icosahedron.png |
||
|D-Wythoff=3 | 2 5 |
|D-Wythoff=3 | 2 5 |
||
|D-W=5|D-U=23|D-K=28|D-C=26|D-V=20|D-E=30|D-F=12|D-Fdetail=12{5}|D-chi=2 |
|D-W=5|D-U=23|D-K=28|D-C=26|D-V=20|D-E=30|D-F=12|D-Fdetail=12{5}|D-chi=2 |
||
Line 46: | Line 47: | ||
|D-group=[[Icosahedral symmetry|I<sub>h</sub>]], H<sub>3</sub>, [5,3], (*532) |
|D-group=[[Icosahedral symmetry|I<sub>h</sub>]], H<sub>3</sub>, [5,3], (*532) |
||
|D-rotgroup=[[Icosahedral symmetry|I]], [5,3]<sup>+</sup>, (532) |
|D-rotgroup=[[Icosahedral symmetry|I]], [5,3]<sup>+</sup>, (532) |
||
|D-B=Doe|D-dual=Regular icosahedron|D-dihedral=116.56505° = arccos(−{{frac|1| |
|D-B=Doe|D-dual=Regular icosahedron|D-dihedral=116.56505° = arccos(−{{frac|1|√5}}) |
||
|D-special=|D-schl={5,3}|D-schl2= |
|D-special=|D-schl={5,3}|D-schl2= |
||
|D-CD={{Coxeter–Dynkin diagram|node_1|5|node|3|node}} |
|D-CD={{Coxeter–Dynkin diagram|node_1|5|node|3|node}} |
||
|I-name=Icosahedron|I-image=icosahedron.png|I-image2=icosahedron.jpg|I-image3=icosahedron.gif|I-dimage=dodecahedron.png |
|I-name=Icosahedron|I-sh=5<z>|I-image=icosahedron.png|I-image2=icosahedron.jpg|I-image3=icosahedron.gif|I-dimage=dodecahedron.png |
||
|I-Wythoff=5 | 2 3 |
|I-Wythoff=5 | 2 3 |
||
|I-W=4|I-U=22|I-K=27|I-C=25|I-V=12|I-E=30|I-F=20|I-Fdetail=20{3}|I-chi=2 |
|I-W=4|I-U=22|I-K=27|I-C=25|I-V=12|I-E=30|I-F=20|I-Fdetail=20{3}|I-chi=2 |
||
Line 58: | Line 59: | ||
|I-group=[[Icosahedral symmetry|I<sub>h</sub>]], H<sub>3</sub>, [5,3], (*532) |
|I-group=[[Icosahedral symmetry|I<sub>h</sub>]], H<sub>3</sub>, [5,3], (*532) |
||
|I-rotgroup=[[Icosahedral symmetry|I]], [5,3]<sup>+</sup>, (532) |
|I-rotgroup=[[Icosahedral symmetry|I]], [5,3]<sup>+</sup>, (532) |
||
|I-B=Ike|I-dual=Regular dodecahedron|I-dihedral=138.189685° = arccos(−{{frac| |
|I-B=Ike|I-dual=Regular dodecahedron|I-dihedral=138.189685° = arccos(−{{frac|√5|3}}) |
||
|I-special=[[deltahedron]] |
|I-special=[[deltahedron]] |
||
|I-schl={3,5}|I-schl2=s{3,4}<BR>sr{3,3} or <math>s\begin{Bmatrix} 3 \\ 3 \end{Bmatrix}</math> |
|I-schl={3,5}|I-schl2=s{3,4}<BR>sr{3,3} or <math>s\begin{Bmatrix} 3 \\ 3 \end{Bmatrix}</math> |
||
Line 114: | Line 115: | ||
|gsD-image=Great stellated dodecahedron.png|gsD-image3=GreatStellatedDodecahedron.gif|gsD-dimage=Great icosahedron.png |
|gsD-image=Great stellated dodecahedron.png|gsD-image3=GreatStellatedDodecahedron.gif|gsD-dimage=Great icosahedron.png |
||
|gsD-vfigimage=Great stellated dodecahedron_vertfig.png|gsD-vfig=({{frac|5|2}})<sup>3</sup> |
|gsD-vfigimage=Great stellated dodecahedron_vertfig.png|gsD-vfig=({{frac|5|2}})<sup>3</sup> |
||
|gsD-ffig=(3<sup>5</sup>)/2 |
|gsD-ffig=V(3<sup>5</sup>)/2 |
||
|gsD-Wythoff=3 | 2 {{frac|5|2}} |
|gsD-Wythoff=3 | 2 {{frac|5|2}} |
||
|gsD-W=22|gsD-U=52|gsD-K=57|gsD-C=68 |
|gsD-W=22|gsD-U=52|gsD-K=57|gsD-C=68 |
||
|gsD-V=20|gsD-E=30|gsD-F=12|gsD-Fdetail=12 {{{frac|5|2}}} |
|gsD-V=20|gsD-E=30|gsD-F=12|gsD-Fdetail=12 { {{frac|5|2}} } |
||
|gsD-conway= |
|gsD-conway= |
||
|gsD-chi=2 |
|gsD-chi=2 |
||
|gsD-group=[[Icosahedral symmetry|I<sub>h</sub>]], H<sub>3</sub>, [5,3], (*532) |
|gsD-group=[[Icosahedral symmetry|I<sub>h</sub>]], H<sub>3</sub>, [5,3], (*532) |
Latest revision as of 12:15, 6 November 2023
{{{{{1}}}|{{{2}}}|
|T-name=Tetrahedron|T-sh=3> 2z|T-image=tetrahedron.png|T-image2=tetrahedron.jpg|T-image3=tetrahedron.gif|T-dimage=tetrahedron.png
|T-Wythoff=3 | 2 3
| 2 2 2
|T-W=1|T-U=01|T-K=06|T-C=15|T-V=4|T-E=6|T-F=4|T-Fdetail=4{3}|T-chi=2
|T-vfig=3.3.3|T-vfigimage=tetrahedron_vertfig.png|T-netimage=Tetrahedron flat.svg
|T-ffig=V3.3.3
|T-conway=T|
|T-group=Td, A3, [3,3], (*332)
|T-rotgroup=T, [3,3]+, (332)
|T-B=Tet|T-dual=Self-dual|T-dihedral=70.528779° = arccos(1⁄3)
|T-special=deltahedron|T-schl={3,3}|T-schl2=h{4,3}, s{2,4}, sr{2,2}
|T-CD= =
|O-name=Octahedron|O-sh=4<> 3z|O-image=Octahedron.png|O-image2=octahedron.jpg|O-image3=octahedron.gif|O-dimage=hexahedron.png
|O-Wythoff=4 | 2 3
|O-W=2|O-U=05|O-K=10|O-C=17|O-V=6|O-E=12|O-F=8|O-Fdetail=8{3}|O-chi=2
|O-vfig=3.3.3.3|O-vfigimage=octahedron_vertfig.svg|O-netimage=Octahedron flat.svg
|O-ffig=V4.4.4
|O-conway=O
aT|
|O-group=Oh, BC3, [4,3], (*432)
|O-rotgroup=O, [4,3]+, (432)
|O-B=Oct|O-dual=Cube|O-dihedral=109.47122° = arccos(−1⁄3)
|O-special=deltahedron, Hanner polytope
|O-schl={3,4}|O-schl2=r{3,3} or
{}+{}+{}=3{}
|O-CD=
|C-name=Hexahedron|C-sh=4=|C-image=hexahedron.png|C-image2=hexahedron.jpg|C-image3=hexahedron.gif|C-dimage=Octahedron.png
|C-altname=(Hexahedron)
|C-Wythoff=3 | 2 4
|C-W=3|C-U=06|C-K=11|C-C=18|C-V=8|C-E=12|C-F=6|C-Fdetail=6{4}|C-chi=2
|C-group=Oh, B3, [4,3], (*432)
|C-rotgroup=O, [4,3]+, (432)
|C-vfig=4.4.4|C-vfigimage=Cube_vertfig.png|C-netimage=Hexahedron flat color.svg
|C-ffig=V3.3.3.3
|C-conway=C|
|C-B=Cube|C-dual=Octahedron|C-dihedral=90°
|C-special=zonohedron, Hanner polytope
|C-schl={4,3}|C-schl2=t{2,4} or {4}×{}
tr{2,2}
{}×{}×{} = {}3
|C-CD=
|D-name=Dodecahedron|D-sh=5d|D-image=Dodecahedron.png|D-image2=dodecahedron.jpg|D-image3=dodecahedron.gif|D-dimage=icosahedron.png |D-Wythoff=3 | 2 5 |D-W=5|D-U=23|D-K=28|D-C=26|D-V=20|D-E=30|D-F=12|D-Fdetail=12{5}|D-chi=2 |D-vfig=5.5.5|D-vfigimage=dodecahedron_vertfig.png|D-netimage=Dodecahedron flat.svg |D-ffig=V3.3.3.3.3 |D-conway=D| |D-group=Ih, H3, [5,3], (*532) |D-rotgroup=I, [5,3]+, (532) |D-B=Doe|D-dual=Regular icosahedron|D-dihedral=116.56505° = arccos(−1⁄√5) |D-special=|D-schl={5,3}|D-schl2= |D-CD=
|I-name=Icosahedron|I-sh=5<z>|I-image=icosahedron.png|I-image2=icosahedron.jpg|I-image3=icosahedron.gif|I-dimage=dodecahedron.png
|I-Wythoff=5 | 2 3
|I-W=4|I-U=22|I-K=27|I-C=25|I-V=12|I-E=30|I-F=20|I-Fdetail=20{3}|I-chi=2
|I-vfig=3.3.3.3.3|I-vfigimage=icosahedron_vertfig.svg|I-netimage=Icosahedron flat.svg
|I-ffig=V5.5.5
|I-conway=I
sT|
|I-group=Ih, H3, [5,3], (*532)
|I-rotgroup=I, [5,3]+, (532)
|I-B=Ike|I-dual=Regular dodecahedron|I-dihedral=138.189685° = arccos(−√5⁄3)
|I-special=deltahedron
|I-schl={3,5}|I-schl2=s{3,4}
sr{3,3} or
|I-CD=
|gI-name=Great icosahedron|gI-image=Great icosahedron.png|gI-image3=GreatIcosahedron.gif|gI-dimage=Great stellated dodecahedron.png |gI-vfigimage=Great icosahedron vertfig.svg|gI-vfig=(35)/2 |gI-ffig=V(53)/2 |gI-Wythoff=5⁄2 | 2 3 |gI-altname=(16th stellation of icosahedron) |gI-W=41|gI-U=53|gI-K=58|gI-C=69 |gI-V=12|gI-E=30|gI-F=20|gI-Fdetail=20{3} |gI-chi=2 |gI-conway=| |gI-group=Ih, H3, [5,3], (*532) |gI-rotgroup=I, [5,3]+, (532) |gI-B=Gike|gI-dual=Great stellated dodecahedron|gI-dihedral=? |gI-special=deltahedron|gI-schl={3,5⁄2}|gI-schl2= |gI-CD= |gI-stellation=icosahedron
|gD-name=Great dodecahedron |gD-image=Great dodecahedron.png|gD-image3=GreatDodecahedron.gif|gD-dimage=Small stellated dodecahedron.png |gD-vfigimage=Great dodecahedron_vertfig.png|gD-vfig=(55)/2 |gD-ffig=V(5⁄2)5 |gD-Wythoff=5⁄2 | 2 5 |gD-W=21|gD-U=35|gD-K=40|gD-C=44 |gD-V=12|gD-E=30|gD-F=12|gD-Fdetail=12{5} |gD-chi=-6 |gD-conway=| |gD-group=Ih, H3, [5,3], (*532) |gD-rotgroup=I, [5,3]+, (532) |gD-B=Gad|gD-dual=Small stellated dodecahedron|gD-dihedral=? |gD-special=|gD-schl={5,5⁄2}|gD-schl2= |gD-CD= |gD-stellation=regular dodecahedron
|lsD-name=Small stellated dodecahedron |lsD-image=Small stellated dodecahedron.png|lsD-image3=SmallStellatedDodecahedron.gif|lsD-dimage=Great dodecahedron.png |lsD-vfigimage=Small stellated dodecahedron_vertfig.png|lsD-vfig=(5⁄2)5 |lsD-ffig=V(55)/2 |lsD-Wythoff=5 | 2 5⁄2 |lsD-W=20|lsD-U=34|lsD-K=39|lsD-C=43 |lsD-V=12|lsD-E=30|lsD-F=12|lsD-Fdetail=12 5 |lsD-chi=-6 |lsD-conway=| |lsD-group=Ih, H3, [5,3], (*532) |lsD-rotgroup=I, [5,3]+, (532) |lsD-B=Sissid|lsD-dual=Great dodecahedron|lsD-dihedral=? |lsD-special=|lsD-schl={5⁄2,5}|lsD-schl2= |lsD-CD= |lsD-stellation=regular dodecahedron
|gsD-name=Great stellated dodecahedron |gsD-image=Great stellated dodecahedron.png|gsD-image3=GreatStellatedDodecahedron.gif|gsD-dimage=Great icosahedron.png |gsD-vfigimage=Great stellated dodecahedron_vertfig.png|gsD-vfig=(5⁄2)3 |gsD-ffig=V(35)/2 |gsD-Wythoff=3 | 2 5⁄2 |gsD-W=22|gsD-U=52|gsD-K=57|gsD-C=68 |gsD-V=20|gsD-E=30|gsD-F=12|gsD-Fdetail=12 { 5⁄2 } |gsD-conway= |gsD-chi=2 |gsD-group=Ih, H3, [5,3], (*532) |gsD-rotgroup=I, [5,3]+, (532) |gsD-B=Gissid|gsD-dual=Great icosahedron|gsD-dihedral=? |gsD-special=|gsD-schl={5⁄2,3}|gsD-schl2= |gsD-CD= |gsD-stellation=regular dodecahedron
}}
See User:Tomruen/polyhedron database documentation.
See also
- {{Polyhedra}}
Tables:
- {{Cupolae}}
- {{Polyhedron operators}}
- {{Reg hyperbolic tiling stat table}}
- {{Reg tiling stat table}}
- {{Uniform hyperbolic tiling stat table}}
- {{Uniform tiling full table}}
- {{Uniform tiling list table}}
- {{Uniform tiling stat table}}
Database:
- {{Regular polygon db}}
- {{Prism polyhedra db}}
- {{Reg polyhedra db}}
- {{Semireg dual polyhedra db}}
- {{Semireg polyhedra db}}
- {{Uniform hyperbolic tiles db}}
- {{Uniform polyhedra db}}
- {{Uniform tiles db}}
Info- and navboxes:
- {{Honeycombs}}
- {{Infobox polygon}}
- {{Infobox polyhedron}}
- {{Polyhedron types}}
- {{Tessellation}}
Other:
- {{Coxeter–Dynkin diagram}}
- {{Honeycomb}}