Jump to content

Errors and residuals: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
mNo edit summary
 
(2 intermediate revisions by 2 users not shown)
Line 4: Line 4:


In [[statistics]] and [[mathematical optimization|optimization]], '''errors''' and '''residuals''' are two closely related and easily confused measures of the [[deviation (statistics)|deviation]] of an [[observed value]] of an [[Elementary event|element]] of a [[Sample (statistics)|statistical sample]] from its "[[true value]]" (not necessarily observable). The '''error''' of an [[observation]] is the deviation of the observed value from the true value of a quantity of interest (for example, a [[population mean]]). The '''residual''' is the difference between the observed value and the ''[[Estimation|estimated]]'' value of the quantity of interest (for example, a [[sample mean]]). The distinction is most important in [[regression analysis]], where the concepts are sometimes called the '''regression errors''' and '''regression residuals''' and where they lead to the concept of [[studentized residual]]s.
In [[statistics]] and [[mathematical optimization|optimization]], '''errors''' and '''residuals''' are two closely related and easily confused measures of the [[deviation (statistics)|deviation]] of an [[observed value]] of an [[Elementary event|element]] of a [[Sample (statistics)|statistical sample]] from its "[[true value]]" (not necessarily observable). The '''error''' of an [[observation]] is the deviation of the observed value from the true value of a quantity of interest (for example, a [[population mean]]). The '''residual''' is the difference between the observed value and the ''[[Estimation|estimated]]'' value of the quantity of interest (for example, a [[sample mean]]). The distinction is most important in [[regression analysis]], where the concepts are sometimes called the '''regression errors''' and '''regression residuals''' and where they lead to the concept of [[studentized residual]]s.
In [[econometrics]], "errors" are also called '''disturbances'''.<ref name="Kennedy 2008 p. 576">{{cite book | last=Kennedy | first=P. | title=A Guide to Econometrics | publisher=Wiley | year=2008 | isbn=978-1-4051-8257-7 | url=https://books.google.com/books?id=69MDEAAAQBAJ&pg=PA576 | access-date=2022-05-13 | page=576}}</ref><ref name="Wooldridge 2019 p. 57">{{cite book | last=Wooldridge | first=J.M. | title=Introductory Econometrics: A Modern Approach | publisher=Cengage Learning | year=2019 | isbn=978-1-337-67133-0 | url=https://books.google.com/books?id=TONhEAAAQBAJ&pg=PA57 | access-date=2022-05-13 | page=57}}</ref><ref name="Das 2019 p. 7">{{cite book | last=Das | first=P. | title=Econometrics in Theory and Practice: Analysis of Cross Section, Time Series and Panel Data with Stata 15.1 | publisher=Springer Singapore | year=2019 | isbn=978-981-329-019-8 | url=https://books.google.com/books?id=rK6tDwAAQBAJ&pg=PA7 | access-date=2022-05-13 | page=7}}</ref>
In [[econometrics]], "errors" are also called '''disturbances'''.<ref name="Kennedy 2008 p. 576">{{cite book|last=Kennedy|first=P.|title=A Guide to Econometrics|publisher=Wiley|year=2008|isbn=978-1-4051-8257-7|url=https://books.google.com/books?id=69MDEAAAQBAJ&pg=PA576|access-date=2022-05-13|page=576}}</ref><ref name="Wooldridge 2019 p. 57">{{cite book|last=Wooldridge|first=J.M.|title=Introductory Econometrics: A Modern Approach|publisher=Cengage Learning|year=2019|isbn=978-1-337-67133-0|url=https://books.google.com/books?id=TONhEAAAQBAJ&pg=PA57|access-date=2022-05-13|page=57}}</ref><ref name="Das 2019 p. 7">{{cite book|last=Das|first=P.|title=Econometrics in Theory and Practice: Analysis of Cross Section, Time Series and Panel Data with Stata 15.1|publisher=Springer Singapore|year=2019|isbn=978-981-329-019-8|url=https://books.google.com/books?id=rK6tDwAAQBAJ&pg=PA7|access-date=2022-05-13|page=7}}</ref>


==Introduction==
==Introduction==
Line 20: Line 20:


==In univariate distributions==
==In univariate distributions==
If we assume a normally distributed population with mean μ and [[standard deviation]] σ, and choose individuals independently, then we have

If we assume a [[normal distribution|normally distributed]] population with mean μ and [[standard deviation]] σ, and choose individuals independently, then we have


:<math>X_1, \dots, X_n \sim N\left(\mu, \sigma^2\right)\,</math>
:<math>X_1, \dots, X_n \sim N\left(\mu, \sigma^2\right)\,</math>
Line 45: Line 44:
: <math>\frac 1 {\sigma^2}\sum_{i=1}^n e_i^2\sim\chi^2_n.</math>
: <math>\frac 1 {\sigma^2}\sum_{i=1}^n e_i^2\sim\chi^2_n.</math>


However, this quantity is not observable as the population mean is unknown. The sum of squares of the '''residuals''', on the other hand, is observable. The quotient of that sum by σ<sup>2</sup> has a chi-squared distribution with only ''n''&nbsp;−&nbsp;1 degrees of freedom:
However, this quantity is not observable as the population mean is unknown. The sum of squares of the '''residuals''', on the other hand, is observable. The quotient of that sum by σ<sup>2</sup> has a chi-squared distribution with only ''n''&nbsp;−&nbsp;1 degrees of freedom:


:<math> \frac 1 {\sigma^2} \sum_{i=1}^n r_i^2 \sim \chi^2_{n-1}. </math>
:<math> \frac 1 {\sigma^2} \sum_{i=1}^n r_i^2 \sim \chi^2_{n-1}. </math>
Line 52: Line 51:


===Remark===
===Remark===
It is remarkable that the [[Squared deviations|sum of squares of the residuals]] and the sample mean can be shown to be independent of each other, using, e.g. [[Basu's theorem]].<!-- Basu's theorem is definitely overkill in this case. It can be proved by far simpler methods. --> That fact, and the normal and chi-squared distributions given above form the basis of calculations involving the t-statistic:

It is remarkable that the [[Squared deviations|sum of squares of the residuals]] and the sample mean can be shown to be independent of each other, using, e.g. [[Basu's theorem]].<!-- Basu's theorem is definitely overkill in this case. It can be proved by far simpler methods. --> That fact, and the normal and chi-squared distributions given above form the basis of calculations involving the [[t-statistic]]:


:<math> T = \frac{\overline{X}_n - \mu_0}{S_n/\sqrt{n}}, </math>
:<math> T = \frac{\overline{X}_n - \mu_0}{S_n/\sqrt{n}}, </math>


where <math>\overline{X}_n - \mu_0</math> represents the errors, <math>S_n</math> represents the sample standard deviation for a sample of size ''n'', and unknown ''σ'', and the denominator term <math>S_n/\sqrt n</math> accounts for the standard deviation of the errors according to:<ref name=":0" />
where <math>\overline{X}_n - \mu_0</math> represents the errors, <math>S_n</math> represents the sample standard deviation for a sample of size ''n'', and unknown ''σ'', and the denominator term <math>S_n/\sqrt n</math> accounts for the standard deviation of the errors according to:<ref name="modernintro">{{Cite book|title=A modern introduction to probability and statistics : understanding why and how|date=2005-06-15|publisher=Springer London|author1=Frederik Michel Dekking|author2=Cornelis Kraaikamp|author3=Hendrik Paul Lopuhaä|author4=Ludolf Erwin Meester|isbn=978-1-85233-896-1|location=London|oclc=262680588}}</ref>


<math display="block">\operatorname{Var}\left(\overline{X}_n\right) = \frac{\sigma^2} n</math>
<math display="block">\operatorname{Var}\left(\overline{X}_n\right) = \frac{\sigma^2} n</math>


The [[probability distribution]]s of the numerator and the denominator separately depend on the value of the unobservable population standard deviation ''σ'', but ''σ'' appears in both the numerator and the denominator and cancels. That is fortunate because it means that even though we do not know&nbsp;''σ'', we know the probability distribution of this quotient: it has a [[Student's t-distribution]] with ''n''&nbsp;−&nbsp;1 degrees of freedom. We can therefore use this quotient to find a [[confidence interval]] for&nbsp;''μ''. This t-statistic can be interpreted as "the number of standard errors away from the regression line."<ref>{{Cite book|title=Practical statistics for data scientists : 50 essential concepts|last=Bruce, Peter C., 1953-|others=Bruce, Andrew, 1958-|isbn=978-1-4919-5293-1|edition=First|location=Sebastopol, CA|oclc=987251007|date = 2017-05-10}}</ref>
The [[probability distribution]]s of the numerator and the denominator separately depend on the value of the unobservable population standard deviation ''σ'', but ''σ'' appears in both the numerator and the denominator and cancels. That is fortunate because it means that even though we do not know&nbsp;''σ'', we know the probability distribution of this quotient: it has a [[Student's t-distribution]] with ''n''&nbsp;−&nbsp;1 degrees of freedom. We can therefore use this quotient to find a [[confidence interval]] for&nbsp;''μ''. This t-statistic can be interpreted as "the number of standard errors away from the regression line."<ref>{{Cite book|title=Practical statistics for data scientists : 50 essential concepts|author1=Peter Bruce|author2=Andrew Bruce|isbn=978-1-4919-5296-2|edition=First|publisher=O'Reilly Media Inc|location=Sebastopol, CA|oclc=987251007|date=2017-05-10}}</ref>


==Regressions==
==Regressions==
In [[regression analysis]], the distinction between ''errors'' and ''residuals'' is subtle and important, and leads to the concept of [[studentized residual]]s. Given an unobservable function that relates the independent variable to the dependent variable – say, a line – the deviations of the dependent variable observations from this function are the unobservable errors. If one runs a regression on some data, then the deviations of the dependent variable observations from the ''fitted'' function are the residuals. If the linear model is applicable, a scatterplot of residuals plotted against the independent variable should be random about zero with no trend to the residuals.<ref name="modernintro"/> If the data exhibit a trend, the regression model is likely incorrect; for example, the true function may be a quadratic or higher order polynomial. If they are random, or have no trend, but "fan out" - they exhibit a phenomenon called [[heteroscedasticity]]. If all of the residuals are equal, or do not fan out, they exhibit [[homoscedasticity]].


However, a terminological difference arises in the expression [[mean squared error]] (MSE). The mean squared error of a regression is a number computed from the sum of squares of the computed ''residuals'', and not of the unobservable ''errors''. If that sum of squares is divided by ''n'', the number of observations, the result is the mean of the squared residuals. Since this is a [[bias (statistics)|biased]] estimate of the variance of the unobserved errors, the bias is removed by dividing the sum of the squared residuals by ''df'' = ''n''&nbsp;−&nbsp;''p''&nbsp;−&nbsp;1, instead of ''n'', where ''df'' is the number of [[degrees of freedom (statistics)|degrees of freedom]] (''n'' minus the number of parameters (excluding the intercept) p being estimated - 1). This forms an unbiased estimate of the variance of the unobserved errors, and is called the mean squared error.<ref>{{cite book|last1=Steel|first1=Robert G. D.|last2=Torrie|first2=James H.|title=Principles and Procedures of Statistics, with Special Reference to Biological Sciences|url=https://archive.org/details/principlesproce00stee|url-access=registration|year=1960|publisher=McGraw-Hill|page=[https://archive.org/details/principlesproce00stee/page/288 288]}}</ref>
In [[regression analysis]], the distinction between ''errors'' and ''residuals'' is subtle and important, and leads to the concept of [[studentized residual]]s. Given an unobservable function that relates the independent variable to the dependent variable – say, a line – the deviations of the dependent variable observations from this function are the unobservable errors. If one runs a regression on some data, then the deviations of the dependent variable observations from the ''fitted'' function are the residuals. If the linear model is applicable, a scatterplot of residuals plotted against the independent variable should be random about zero with no trend to the residuals.<ref name=":0">{{Cite book|title=A modern introduction to probability and statistics : understanding why and how|date=2005|publisher=Springer|others=Dekking, Michel, 1946-|isbn=978-1-85233-896-1|location=London|oclc=262680588}}</ref> If the data exhibit a trend, the regression model is likely incorrect; for example, the true function may be a quadratic or higher order polynomial. If they are random, or have no trend, but "fan out" - they exhibit a phenomenon called [[heteroscedasticity]]. If all of the residuals are equal, or do not fan out, they exhibit [[homoscedasticity]].


However, a terminological difference arises in the expression [[mean squared error]] (MSE). The mean squared error of a regression is a number computed from the sum of squares of the computed ''residuals'', and not of the unobservable ''errors''. If that sum of squares is divided by ''n'', the number of observations, the result is the mean of the squared residuals. Since this is a [[bias (statistics)|biased]] estimate of the variance of the unobserved errors, the bias is removed by dividing the sum of the squared residuals by ''df'' = ''n''&nbsp;−&nbsp;''p''&nbsp;−&nbsp;1, instead of ''n'', where ''df'' is the number of [[degrees of freedom (statistics)|degrees of freedom]] (''n'' minus the number of parameters (excluding the intercept) p being estimated - 1). This forms an unbiased estimate of the variance of the unobserved errors, and is called the mean squared error.<ref>{{cite book |last1=Steel |first1=Robert G. D. |last2=Torrie |first2=James H. |title=Principles and Procedures of Statistics, with Special Reference to Biological Sciences |url=https://archive.org/details/principlesproce00stee |url-access=registration |year=1960 |publisher=McGraw-Hill |page=[https://archive.org/details/principlesproce00stee/page/288 288]}}</ref>
Another method to calculate the mean square of error when analyzing the variance of linear regression using a technique like that used in [[ANOVA]] (they are the same because ANOVA is a type of regression), the sum of squares of the residuals (aka sum of squares of the error) is divided by the degrees of freedom (where the degrees of freedom equal ''n''&nbsp;−&nbsp;''p''&nbsp;−&nbsp;1, where ''p'' is the number of parameters estimated in the model (one for each variable in the regression equation, not including the intercept)). One can then also calculate the mean square of the model by dividing the sum of squares of the model minus the degrees of freedom, which is just the number of parameters. Then the F value can be calculated by dividing the mean square of the model by the mean square of the error, and we can then determine significance (which is why you want the mean squares to begin with.).<ref>{{cite book|last1=Zelterman|first1=Daniel|title=Applied linear models with SAS|date=2010|publisher=Cambridge University Press|location=Cambridge|isbn=9780521761598|edition=Online-Ausg.}}</ref>

Another method to calculate the mean square of error when analyzing the variance of linear regression using a technique like that used in [[ANOVA]] (they are the same because ANOVA is a type of regression), the sum of squares of the residuals (aka sum of squares of the error) is divided by the degrees of freedom (where the degrees of freedom equal ''n''&nbsp;−&nbsp;''p''&nbsp;−&nbsp;1, where ''p'' is the number of parameters estimated in the model (one for each variable in the regression equation, not including the intercept)). One can then also calculate the mean square of the model by dividing the sum of squares of the model minus the degrees of freedom, which is just the number of parameters. Then the F value can be calculated by dividing the mean square of the model by the mean square of the error, and we can then determine significance (which is why you want the mean squares to begin with.).<ref>{{cite book|last1=Zelterman|first1=Daniel|title=Applied linear models with SAS|date=2010|publisher=Cambridge University Press|location=Cambridge|isbn=9780521761598|edition=[Online-Ausg.].}}</ref>


However, because of the behavior of the process of regression, the ''distributions'' of residuals at different data points (of the input variable) may vary ''even if'' the errors themselves are identically distributed. Concretely, in a [[linear regression]] where the errors are identically distributed, the variability of residuals of inputs in the middle of the domain will be ''higher'' than the variability of residuals at the ends of the domain:<ref>{{Cite web|url=https://stats.libretexts.org/Bookshelves/Introductory_Statistics/Book%3A_OpenIntro_Statistics_(Diez_et_al)./7%3A_Introduction_to_Linear_Regression/7.3%3A_Types_of_Outliers_in_Linear_Regression|title=7.3: Types of Outliers in Linear Regression|date=2013-11-21|website=Statistics LibreTexts|language=en|access-date=2019-11-22}}</ref> linear regressions fit endpoints better than the middle. This is also reflected in the [[Influence function (statistics)|influence functions]] of various data points on the [[regression coefficient]]s: endpoints have more influence.
However, because of the behavior of the process of regression, the ''distributions'' of residuals at different data points (of the input variable) may vary ''even if'' the errors themselves are identically distributed. Concretely, in a [[linear regression]] where the errors are identically distributed, the variability of residuals of inputs in the middle of the domain will be ''higher'' than the variability of residuals at the ends of the domain:<ref>{{Cite web|url=https://stats.libretexts.org/Bookshelves/Introductory_Statistics/Book%3A_OpenIntro_Statistics_(Diez_et_al)./7%3A_Introduction_to_Linear_Regression/7.3%3A_Types_of_Outliers_in_Linear_Regression|title=7.3: Types of Outliers in Linear Regression|date=2013-11-21|website=Statistics LibreTexts|language=en|access-date=2019-11-22}}</ref> linear regressions fit endpoints better than the middle. This is also reflected in the [[Influence function (statistics)|influence functions]] of various data points on the [[regression coefficient]]s: endpoints have more influence.
Line 77: Line 74:
==Other uses of the word "error" in statistics==
==Other uses of the word "error" in statistics==
{{see also|Bias (statistics)}}
{{see also|Bias (statistics)}}
The use of the term "error" as discussed in the sections above is in the sense of a deviation of a value from a hypothetical unobserved value. At least two other uses also occur in statistics, both referring to observable [[prediction error]]s:
The use of the term "error" as discussed in the sections above is in the sense of a deviation of a value from a hypothetical unobserved value. At least two other uses also occur in statistics, both referring to observable [[prediction error]]s:


The ''[[Mean square error|''mean squared error]]'' (MSE) refers to the amount by which the values predicted by an estimator differ from the quantities being estimated (typically outside the sample from which the model was estimated).
The ''[[Mean square error|''mean squared error]]'' (MSE) refers to the amount by which the values predicted by an estimator differ from the quantities being estimated (typically outside the sample from which the model was estimated).
Line 87: Line 84:
Likewise, the ''[[sum of absolute errors]]'' (SAE) is the sum of the absolute values of the residuals, which is minimized in the [[least absolute deviations]] approach to regression.
Likewise, the ''[[sum of absolute errors]]'' (SAE) is the sum of the absolute values of the residuals, which is minimized in the [[least absolute deviations]] approach to regression.


The '''mean error''' (ME) is the [[bias (statistics)|bias]].
The '''mean error''' (ME) is the bias.
The ''mean residual'' (MR) is always zero for least-squares estimators.
The ''mean residual'' (MR) is always zero for least-squares estimators.


Line 116: Line 113:
==References==
==References==
{{reflist}}
{{reflist}}

*{{cite book |last1=Cook |first1=R. Dennis |last2=Weisberg |first2=Sanford |title=Residuals and Influence in Regression. |year=1982 |publisher=[[Chapman and Hall]] |location=New York |isbn=041224280X |url=http://www.stat.umn.edu/rir/ |edition=Repr. |access-date=23 February 2013}}
==Further reading==
*{{cite journal
*{{cite book|last1=Cook|first1=R. Dennis|last2=Weisberg|first2=Sanford|title=Residuals and Influence in Regression.|year=1982|publisher=[[Chapman and Hall]]|location=New York|isbn=041224280X|url=http://www.stat.umn.edu/rir/|edition=Repr.|access-date=23 February 2013}}
| last1 = Cox | first1 = David R. | author-link1=David R. Cox
*{{cite journal|last1=Cox|first1=David R.|author-link1=David R. Cox|last2=Snell|first2=E. Joyce|author-link2=Joyce Snell|title=A general definition of residuals|year=1968|journal=[[Journal of the Royal Statistical Society, Series B]]|pages=248–275|jstor=2984505|volume=30|issue=2}}
| last2 = Snell | first2 = E. Joyce | author-link2 = Joyce Snell
*{{cite book|last=Weisberg|first=Sanford|title=Applied Linear Regression|year=1985|publisher=Wiley|location=New York|isbn=9780471879572|url=https://books.google.com/books?id=yRrvAAAAMAAJ&q=editions:UMM1U2yvYVUC|edition=2nd|access-date=23 February 2013}}
| title = A general definition of residuals
| year = 1968
| journal = [[Journal of the Royal Statistical Society, Series B]]
| pages = 248–275
| jstor = 2984505
| volume=30
| issue = 2 }}
*{{cite book |last=Weisberg |first=Sanford |title=Applied Linear Regression |year=1985 |publisher=Wiley |location=New York |isbn=9780471879572 |url=https://books.google.com/books?id=yRrvAAAAMAAJ&q=editions:UMM1U2yvYVUC |edition=2nd |access-date=23 February 2013}}
*{{springer|title=Errors, theory of|id=p/e036240}}
*{{springer|title=Errors, theory of|id=p/e036240}}


Line 137: Line 127:


{{DEFAULTSORT:Errors And Residuals In Statistics}}
{{DEFAULTSORT:Errors And Residuals In Statistics}}
[[Category:Errors and residuals| ]]
[[Category:Errors and residuals|Errors and residuals]]
[[Category:Statistical deviation and dispersion]]
[[Category:Statistical deviation and dispersion]]
[[Category:Regression analysis]]
[[Category:Regression analysis]]

Latest revision as of 18:00, 25 November 2023

In statistics and optimization, errors and residuals are two closely related and easily confused measures of the deviation of an observed value of an element of a statistical sample from its "true value" (not necessarily observable). The error of an observation is the deviation of the observed value from the true value of a quantity of interest (for example, a population mean). The residual is the difference between the observed value and the estimated value of the quantity of interest (for example, a sample mean). The distinction is most important in regression analysis, where the concepts are sometimes called the regression errors and regression residuals and where they lead to the concept of studentized residuals. In econometrics, "errors" are also called disturbances.[1][2][3]

Introduction

[edit]

Suppose there is a series of observations from a univariate distribution and we want to estimate the mean of that distribution (the so-called location model). In this case, the errors are the deviations of the observations from the population mean, while the residuals are the deviations of the observations from the sample mean.

A statistical error (or disturbance) is the amount by which an observation differs from its expected value, the latter being based on the whole population from which the statistical unit was chosen randomly. For example, if the mean height in a population of 21-year-old men is 1.75 meters, and one randomly chosen man is 1.80 meters tall, then the "error" is 0.05 meters; if the randomly chosen man is 1.70 meters tall, then the "error" is −0.05 meters. The expected value, being the mean of the entire population, is typically unobservable, and hence the statistical error cannot be observed either.

A residual (or fitting deviation), on the other hand, is an observable estimate of the unobservable statistical error. Consider the previous example with men's heights and suppose we have a random sample of n people. The sample mean could serve as a good estimator of the population mean. Then we have:

  • The difference between the height of each man in the sample and the unobservable population mean is a statistical error, whereas
  • The difference between the height of each man in the sample and the observable sample mean is a residual.

Note that, because of the definition of the sample mean, the sum of the residuals within a random sample is necessarily zero, and thus the residuals are necessarily not independent. The statistical errors, on the other hand, are independent, and their sum within the random sample is almost surely not zero.

One can standardize statistical errors (especially of a normal distribution) in a z-score (or "standard score"), and standardize residuals in a t-statistic, or more generally studentized residuals.

In univariate distributions

[edit]

If we assume a normally distributed population with mean μ and standard deviation σ, and choose individuals independently, then we have

and the sample mean

is a random variable distributed such that:

The statistical errors are then

with expected values of zero,[4] whereas the residuals are

The sum of squares of the statistical errors, divided by σ2, has a chi-squared distribution with n degrees of freedom:

However, this quantity is not observable as the population mean is unknown. The sum of squares of the residuals, on the other hand, is observable. The quotient of that sum by σ2 has a chi-squared distribution with only n − 1 degrees of freedom:

This difference between n and n − 1 degrees of freedom results in Bessel's correction for the estimation of sample variance of a population with unknown mean and unknown variance. No correction is necessary if the population mean is known.

Remark

[edit]

It is remarkable that the sum of squares of the residuals and the sample mean can be shown to be independent of each other, using, e.g. Basu's theorem. That fact, and the normal and chi-squared distributions given above form the basis of calculations involving the t-statistic:

where represents the errors, represents the sample standard deviation for a sample of size n, and unknown σ, and the denominator term accounts for the standard deviation of the errors according to:[5]

The probability distributions of the numerator and the denominator separately depend on the value of the unobservable population standard deviation σ, but σ appears in both the numerator and the denominator and cancels. That is fortunate because it means that even though we do not know σ, we know the probability distribution of this quotient: it has a Student's t-distribution with n − 1 degrees of freedom. We can therefore use this quotient to find a confidence interval for μ. This t-statistic can be interpreted as "the number of standard errors away from the regression line."[6]

Regressions

[edit]

In regression analysis, the distinction between errors and residuals is subtle and important, and leads to the concept of studentized residuals. Given an unobservable function that relates the independent variable to the dependent variable – say, a line – the deviations of the dependent variable observations from this function are the unobservable errors. If one runs a regression on some data, then the deviations of the dependent variable observations from the fitted function are the residuals. If the linear model is applicable, a scatterplot of residuals plotted against the independent variable should be random about zero with no trend to the residuals.[5] If the data exhibit a trend, the regression model is likely incorrect; for example, the true function may be a quadratic or higher order polynomial. If they are random, or have no trend, but "fan out" - they exhibit a phenomenon called heteroscedasticity. If all of the residuals are equal, or do not fan out, they exhibit homoscedasticity.

However, a terminological difference arises in the expression mean squared error (MSE). The mean squared error of a regression is a number computed from the sum of squares of the computed residuals, and not of the unobservable errors. If that sum of squares is divided by n, the number of observations, the result is the mean of the squared residuals. Since this is a biased estimate of the variance of the unobserved errors, the bias is removed by dividing the sum of the squared residuals by df = n − p − 1, instead of n, where df is the number of degrees of freedom (n minus the number of parameters (excluding the intercept) p being estimated - 1). This forms an unbiased estimate of the variance of the unobserved errors, and is called the mean squared error.[7]

Another method to calculate the mean square of error when analyzing the variance of linear regression using a technique like that used in ANOVA (they are the same because ANOVA is a type of regression), the sum of squares of the residuals (aka sum of squares of the error) is divided by the degrees of freedom (where the degrees of freedom equal n − p − 1, where p is the number of parameters estimated in the model (one for each variable in the regression equation, not including the intercept)). One can then also calculate the mean square of the model by dividing the sum of squares of the model minus the degrees of freedom, which is just the number of parameters. Then the F value can be calculated by dividing the mean square of the model by the mean square of the error, and we can then determine significance (which is why you want the mean squares to begin with.).[8]

However, because of the behavior of the process of regression, the distributions of residuals at different data points (of the input variable) may vary even if the errors themselves are identically distributed. Concretely, in a linear regression where the errors are identically distributed, the variability of residuals of inputs in the middle of the domain will be higher than the variability of residuals at the ends of the domain:[9] linear regressions fit endpoints better than the middle. This is also reflected in the influence functions of various data points on the regression coefficients: endpoints have more influence.

Thus to compare residuals at different inputs, one needs to adjust the residuals by the expected variability of residuals, which is called studentizing. This is particularly important in the case of detecting outliers, where the case in question is somehow different from the others in a dataset. For example, a large residual may be expected in the middle of the domain, but considered an outlier at the end of the domain.

Other uses of the word "error" in statistics

[edit]

The use of the term "error" as discussed in the sections above is in the sense of a deviation of a value from a hypothetical unobserved value. At least two other uses also occur in statistics, both referring to observable prediction errors:

The mean squared error (MSE) refers to the amount by which the values predicted by an estimator differ from the quantities being estimated (typically outside the sample from which the model was estimated). The root mean square error (RMSE) is the square-root of MSE. The sum of squares of errors (SSE) is the MSE multiplied by the sample size.

Sum of squares of residuals (SSR) is the sum of the squares of the deviations of the actual values from the predicted values, within the sample used for estimation. This is the basis for the least squares estimate, where the regression coefficients are chosen such that the SSR is minimal (i.e. its derivative is zero).

Likewise, the sum of absolute errors (SAE) is the sum of the absolute values of the residuals, which is minimized in the least absolute deviations approach to regression.

The mean error (ME) is the bias. The mean residual (MR) is always zero for least-squares estimators.

See also

[edit]

References

[edit]
  1. ^ Kennedy, P. (2008). A Guide to Econometrics. Wiley. p. 576. ISBN 978-1-4051-8257-7. Retrieved 2022-05-13.
  2. ^ Wooldridge, J.M. (2019). Introductory Econometrics: A Modern Approach. Cengage Learning. p. 57. ISBN 978-1-337-67133-0. Retrieved 2022-05-13.
  3. ^ Das, P. (2019). Econometrics in Theory and Practice: Analysis of Cross Section, Time Series and Panel Data with Stata 15.1. Springer Singapore. p. 7. ISBN 978-981-329-019-8. Retrieved 2022-05-13.
  4. ^ Wetherill, G. Barrie. (1981). Intermediate statistical methods. London: Chapman and Hall. ISBN 0-412-16440-X. OCLC 7779780.
  5. ^ a b Frederik Michel Dekking; Cornelis Kraaikamp; Hendrik Paul Lopuhaä; Ludolf Erwin Meester (2005-06-15). A modern introduction to probability and statistics : understanding why and how. London: Springer London. ISBN 978-1-85233-896-1. OCLC 262680588.
  6. ^ Peter Bruce; Andrew Bruce (2017-05-10). Practical statistics for data scientists : 50 essential concepts (First ed.). Sebastopol, CA: O'Reilly Media Inc. ISBN 978-1-4919-5296-2. OCLC 987251007.
  7. ^ Steel, Robert G. D.; Torrie, James H. (1960). Principles and Procedures of Statistics, with Special Reference to Biological Sciences. McGraw-Hill. p. 288.
  8. ^ Zelterman, Daniel (2010). Applied linear models with SAS (Online-Ausg. ed.). Cambridge: Cambridge University Press. ISBN 9780521761598.
  9. ^ "7.3: Types of Outliers in Linear Regression". Statistics LibreTexts. 2013-11-21. Retrieved 2019-11-22.

Further reading

[edit]
[edit]