Jump to content

Thiamine transporter 2: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Citation bot (talk | contribs)
Add: doi-access. | Use this bot. Report bugs. | Suggested by Headbomb | Linked from Wikipedia:WikiProject_Academic_Journals/Journals_cited_by_Wikipedia/Sandbox | #UCB_webform_linked 935/1049
Citation bot (talk | contribs)
Add: doi-access. | Use this bot. Report bugs. | Suggested by Headbomb | #UCB_toolbar
 
(4 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Short description|Protein-coding gene in the species Homo sapiens}}
{{Infobox_gene}}
{{Infobox_gene}}
'''Thiamine transporter 2''' (ThTr-2), also known as '''solute carrier family 19 member 3''', is a [[protein]] that in humans is encoded by the ''SLC19A3'' [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: solute carrier family 19| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=80704}}</ref><ref name="pmid11136550">{{cite journal | vauthors = Eudy JD, Spiegelstein O, Barber RC, Wlodarczyk BJ, Talbot J, Finnell RH | title = Identification and characterization of the human and mouse SLC19A3 gene: a novel member of the reduced folate family of micronutrient transporter genes | journal = Mol. Genet. Metab. | volume = 71 | issue = 4 | pages = 581–90 |date=December 2000 | pmid = 11136550 | doi = 10.1006/mgme.2000.3112 }}</ref><ref name="pmid15871139">{{cite journal | vauthors = Zeng WQ, Al-Yamani E, Acierno JS, Slaugenhaupt S, Gillis T, MacDonald ME, Ozand PT, Gusella JF | title = Biotin-responsive basal ganglia disease maps to 2q36.3 and is due to mutations in SLC19A3 | journal = Am. J. Hum. Genet. | volume = 77 | issue = 1 | pages = 16–26 |date=July 2005 | pmid = 15871139 | pmc = 1226189 | doi = 10.1086/431216 }}</ref> SLC19A3 is a [[thiamine]] transporter.
'''Thiamine transporter 2''' (ThTr-2), also known as '''solute carrier family 19 member 3''', is a [[protein]] that in humans is encoded by the ''SLC19A3'' [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: solute carrier family 19| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=80704}}</ref><ref name="pmid11136550">{{cite journal | vauthors = Eudy JD, Spiegelstein O, Barber RC, Wlodarczyk BJ, Talbot J, Finnell RH | title = Identification and characterization of the human and mouse SLC19A3 gene: a novel member of the reduced folate family of micronutrient transporter genes | journal = Mol. Genet. Metab. | volume = 71 | issue = 4 | pages = 581–90 |date=December 2000 | pmid = 11136550 | doi = 10.1006/mgme.2000.3112 }}</ref><ref name="pmid15871139">{{cite journal | vauthors = Zeng WQ, Al-Yamani E, Acierno JS, Slaugenhaupt S, Gillis T, MacDonald ME, Ozand PT, Gusella JF | title = Biotin-responsive basal ganglia disease maps to 2q36.3 and is due to mutations in SLC19A3 | journal = Am. J. Hum. Genet. | volume = 77 | issue = 1 | pages = 16–26 |date=July 2005 | pmid = 15871139 | pmc = 1226189 | doi = 10.1086/431216 }}</ref> SLC19A3 is a [[thiamine]] transporter.
Line 6: Line 7:
ThTr-2 is a ubiquitously expressed transmembrane thiamine transporter that lacks folate transport activity.<ref name="entrez"/>
ThTr-2 is a ubiquitously expressed transmembrane thiamine transporter that lacks folate transport activity.<ref name="entrez"/>


It is specifically inhibited by [[chloroquine]].<ref name="pmid23209439">{{cite journal | vauthors = Huang Z, Srinivasan S, Zhang J, Chen K, Li Y, Li W, Quiocho FA, Pan X | title = Discovering thiamine transporters as targets of chloroquine using a novel functional genomics strategy | journal = PLOS Genet. | volume = 8 | issue = 11 | pages = e1003083 | year = 2012 | pmid = 23209439 | pmc = 3510038 | doi = 10.1371/journal.pgen.1003083 }} {{open access}}</ref>
It is specifically inhibited by [[chloroquine]].<ref name="pmid23209439">{{cite journal | vauthors = Huang Z, Srinivasan S, Zhang J, Chen K, Li Y, Li W, Quiocho FA, Pan X | title = Discovering thiamine transporters as targets of chloroquine using a novel functional genomics strategy | journal = PLOS Genet. | volume = 8 | issue = 11 | pages = e1003083 | year = 2012 | pmid = 23209439 | pmc = 3510038 | doi = 10.1371/journal.pgen.1003083 | doi-access = free }} {{open access}}</ref>


== Clinical significance ==
== Clinical significance ==
Line 17: Line 18:
==Further reading==
==Further reading==
{{refbegin | 2}}
{{refbegin | 2}}
*{{cite journal |vauthors=Subramanian VS, Marchant JS, Said HM |title=Biotin-responsive basal ganglia disease-linked mutations inhibit thiamine transport via hTHTR2: biotin is not a substrate for hTHTR2. |journal=Am. J. Physiol., Cell Physiol. |volume=291 |issue= 5 |pages= C851-9 |year= 2006 |pmid= 16790503 |doi= 10.1152/ajpcell.00105.2006 }}
*{{cite journal |vauthors=Subramanian VS, Marchant JS, Said HM |title=Biotin-responsive basal ganglia disease-linked mutations inhibit thiamine transport via hTHTR2: biotin is not a substrate for hTHTR2. |journal=Am. J. Physiol., Cell Physiol. |volume=291 |issue= 5 |pages= C851-9 |year= 2006 |pmid= 16790503 |doi= 10.1152/ajpcell.00105.2006 |s2cid=44058 }}
*{{cite journal |vauthors=Subramanian VS, Mohammed ZM, Molina A, etal |title=Vitamin B1 (thiamine) uptake by human retinal pigment epithelial (ARPE-19) cells: mechanism and regulation. |journal=J. Physiol. |volume=582 |issue= Pt 1 |pages= 73–85 |year= 2007 |pmid= 17463047 |doi= 10.1113/jphysiol.2007.128843 |pmc=2075275}}
*{{cite journal |vauthors=Subramanian VS, Mohammed ZM, Molina A, etal |title=Vitamin B1 (thiamine) uptake by human retinal pigment epithelial (ARPE-19) cells: mechanism and regulation. |journal=J. Physiol. |volume=582 |issue= Pt 1 |pages= 73–85 |year= 2007 |pmid= 17463047 |doi= 10.1113/jphysiol.2007.128843 |pmc=2075275}}
*{{cite journal |vauthors=Vlasova TI, Stratton SL, Wells AM, etal |title=Biotin deficiency reduces expression of SLC19A3, a potential biotin transporter, in leukocytes from human blood. |journal=J. Nutr. |volume=135 |issue= 1 |pages= 42–7 |year= 2005 |pmid= 15623830 |doi= 10.1093/jn/135.1.42|pmc=1307527}}
*{{cite journal |vauthors=Vlasova TI, Stratton SL, Wells AM, etal |title=Biotin deficiency reduces expression of SLC19A3, a potential biotin transporter, in leukocytes from human blood. |journal=J. Nutr. |volume=135 |issue= 1 |pages= 42–7 |year= 2005 |pmid= 15623830 |doi= 10.1093/jn/135.1.42|pmc=1307527}}
*{{cite journal |vauthors=Nabokina SM, Said HM |title=Characterization of the 5'-regulatory region of the human thiamin transporter SLC19A3: in vitro and in vivo studies. |journal=Am. J. Physiol. Gastrointest. Liver Physiol. |volume=287 |issue= 4 |pages= G822-9 |year= 2004 |pmid= 15217784 |doi= 10.1152/ajpgi.00234.2004 }}
*{{cite journal |vauthors=Nabokina SM, Said HM |title=Characterization of the 5'-regulatory region of the human thiamin transporter SLC19A3: in vitro and in vivo studies. |journal=Am. J. Physiol. Gastrointest. Liver Physiol. |volume=287 |issue= 4 |pages= G822-9 |year= 2004 |pmid= 15217784 |doi= 10.1152/ajpgi.00234.2004 |s2cid=22973189 }}
*{{cite journal |vauthors=Liu S, Stromberg A, Tai HH, Moscow JA |title=Thiamine transporter gene expression and exogenous thiamine modulate the expression of genes involved in drug and prostaglandin metabolism in breast cancer cells. |journal=Mol. Cancer Res. |volume=2 |issue= 8 |pages= 477–87 |year= 2004 |pmid= 15328374 }}
*{{cite journal |vauthors=Liu S, Stromberg A, Tai HH, Moscow JA |title=Thiamine transporter gene expression and exogenous thiamine modulate the expression of genes involved in drug and prostaglandin metabolism in breast cancer cells. |journal=Mol. Cancer Res. |volume=2 |issue= 8 |pages= 477–87 |year= 2004 |doi=10.1158/1541-7786.477.2.8 |pmid= 15328374 |s2cid=2963046 |doi-access=free }}
*{{cite journal |vauthors=Ganapathy V, Smith SB, Prasad PD |title=SLC19: the folate/thiamine transporter family. |journal=Pflügers Arch. |volume=447 |issue= 5 |pages= 641–6 |year= 2004 |pmid= 14770311 |doi= 10.1007/s00424-003-1068-1 |s2cid=7410075 }}
*{{cite journal |vauthors=Ganapathy V, Smith SB, Prasad PD |title=SLC19: the folate/thiamine transporter family. |journal=Pflügers Arch. |volume=447 |issue= 5 |pages= 641–6 |year= 2004 |pmid= 14770311 |doi= 10.1007/s00424-003-1068-1 |s2cid=7410075 }}
*{{cite journal |vauthors=Ashokkumar B, Vaziri ND, Said HM |title=Thiamin uptake by the human-derived renal epithelial (HEK-293) cells: cellular and molecular mechanisms. |journal=Am. J. Physiol. Renal Physiol. |volume=291 |issue= 4 |pages= F796-805 |year= 2006 |pmid= 16705148 |doi= 10.1152/ajprenal.00078.2006 }}
*{{cite journal |vauthors=Ashokkumar B, Vaziri ND, Said HM |title=Thiamin uptake by the human-derived renal epithelial (HEK-293) cells: cellular and molecular mechanisms. |journal=Am. J. Physiol. Renal Physiol. |volume=291 |issue= 4 |pages= F796-805 |year= 2006 |pmid= 16705148 |doi= 10.1152/ajprenal.00078.2006 }}

Latest revision as of 02:46, 29 November 2023

SLC19A3
Identifiers
AliasesSLC19A3, BBGD, THMD2, THTR2, solute carrier family 19 member 3, thTr-2
External IDsOMIM: 606152; MGI: 1931307; HomoloGene: 23530; GeneCards: SLC19A3; OMA:SLC19A3 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_025243
NM_001371411
NM_001371412
NM_001371413
NM_001371414

NM_030556

RefSeq (protein)

NP_079519
NP_001358340
NP_001358341
NP_001358342
NP_001358343

NP_085033

Location (UCSC)Chr 2: 227.68 – 227.72 MbChr 1: 82.99 – 83.02 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Thiamine transporter 2 (ThTr-2), also known as solute carrier family 19 member 3, is a protein that in humans is encoded by the SLC19A3 gene.[5][6][7] SLC19A3 is a thiamine transporter.

Function

[edit]

ThTr-2 is a ubiquitously expressed transmembrane thiamine transporter that lacks folate transport activity.[5]

It is specifically inhibited by chloroquine.[8]

Clinical significance

[edit]

Mutations in this gene cause biotin-responsive basal ganglia disease (BBGD); a recessive disorder manifested in childhood that progresses to chronic encephalopathy, dystonia, quadriparesis, and death if untreated. Patients with BBGD have bilateral necrosis in the head of the caudate nucleus and in the putamen. Administration of high doses of biotin in the early progression of the disorder eliminates pathological symptoms while delayed treatment results in residual paraparesis, mild mental retardation, or dystonia. Administration of thiamine is ineffective in the treatment of this disorder. Experiments have failed to show that this protein can transport biotin. Mutations in this gene also cause a Wernicke's-like encephalopathy.[5]

References

[edit]
  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000135917Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000038496Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ a b c "Entrez Gene: solute carrier family 19".
  6. ^ Eudy JD, Spiegelstein O, Barber RC, Wlodarczyk BJ, Talbot J, Finnell RH (December 2000). "Identification and characterization of the human and mouse SLC19A3 gene: a novel member of the reduced folate family of micronutrient transporter genes". Mol. Genet. Metab. 71 (4): 581–90. doi:10.1006/mgme.2000.3112. PMID 11136550.
  7. ^ Zeng WQ, Al-Yamani E, Acierno JS, Slaugenhaupt S, Gillis T, MacDonald ME, Ozand PT, Gusella JF (July 2005). "Biotin-responsive basal ganglia disease maps to 2q36.3 and is due to mutations in SLC19A3". Am. J. Hum. Genet. 77 (1): 16–26. doi:10.1086/431216. PMC 1226189. PMID 15871139.
  8. ^ Huang Z, Srinivasan S, Zhang J, Chen K, Li Y, Li W, Quiocho FA, Pan X (2012). "Discovering thiamine transporters as targets of chloroquine using a novel functional genomics strategy". PLOS Genet. 8 (11): e1003083. doi:10.1371/journal.pgen.1003083. PMC 3510038. PMID 23209439. Open access icon

Further reading

[edit]
[edit]

This article incorporates text from the United States National Library of Medicine, which is in the public domain.