Thiamine transporter 2: Difference between revisions
Updating to new gene infobox populated via wikidata |
Citation bot (talk | contribs) Add: doi-access. | Use this bot. Report bugs. | Suggested by Headbomb | #UCB_toolbar |
||
(16 intermediate revisions by 9 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Protein-coding gene in the species Homo sapiens}} |
|||
{{Infobox_gene}} |
{{Infobox_gene}} |
||
'''Thiamine transporter 2''' (ThTr-2), also known as '''solute carrier family 19 member 3''', is a [[protein]] that in humans is encoded by the ''SLC19A3'' [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: solute carrier family 19| url = |
'''Thiamine transporter 2''' (ThTr-2), also known as '''solute carrier family 19 member 3''', is a [[protein]] that in humans is encoded by the ''SLC19A3'' [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: solute carrier family 19| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=80704}}</ref><ref name="pmid11136550">{{cite journal | vauthors = Eudy JD, Spiegelstein O, Barber RC, Wlodarczyk BJ, Talbot J, Finnell RH | title = Identification and characterization of the human and mouse SLC19A3 gene: a novel member of the reduced folate family of micronutrient transporter genes | journal = Mol. Genet. Metab. | volume = 71 | issue = 4 | pages = 581–90 |date=December 2000 | pmid = 11136550 | doi = 10.1006/mgme.2000.3112 }}</ref><ref name="pmid15871139">{{cite journal | vauthors = Zeng WQ, Al-Yamani E, Acierno JS, Slaugenhaupt S, Gillis T, MacDonald ME, Ozand PT, Gusella JF | title = Biotin-responsive basal ganglia disease maps to 2q36.3 and is due to mutations in SLC19A3 | journal = Am. J. Hum. Genet. | volume = 77 | issue = 1 | pages = 16–26 |date=July 2005 | pmid = 15871139 | pmc = 1226189 | doi = 10.1086/431216 }}</ref> SLC19A3 is a [[thiamine]] transporter. |
||
== Function == |
== Function == |
||
Line 6: | Line 7: | ||
ThTr-2 is a ubiquitously expressed transmembrane thiamine transporter that lacks folate transport activity.<ref name="entrez"/> |
ThTr-2 is a ubiquitously expressed transmembrane thiamine transporter that lacks folate transport activity.<ref name="entrez"/> |
||
It is specifically inhibited by [[chloroquine]].<ref name="pmid23209439">{{cite journal | |
It is specifically inhibited by [[chloroquine]].<ref name="pmid23209439">{{cite journal | vauthors = Huang Z, Srinivasan S, Zhang J, Chen K, Li Y, Li W, Quiocho FA, Pan X | title = Discovering thiamine transporters as targets of chloroquine using a novel functional genomics strategy | journal = PLOS Genet. | volume = 8 | issue = 11 | pages = e1003083 | year = 2012 | pmid = 23209439 | pmc = 3510038 | doi = 10.1371/journal.pgen.1003083 | doi-access = free }} {{open access}}</ref> |
||
== Clinical significance == |
== Clinical significance == |
||
Mutations in this gene cause biotin-responsive basal ganglia disease (BBGD); a recessive disorder manifested in childhood that progresses to chronic [[encephalopathy]], [[dystonia]], [[quadriplegia|quadriparesis]], and death if untreated. Patients with BBGD have bilateral necrosis in the head of the caudate nucleus and in the putamen. Administration of high doses of biotin in the early progression of the disorder eliminates pathological symptoms while delayed treatment results in residual paraparesis, mild mental retardation, or dystonia. Administration of thiamine is ineffective in the treatment of this disorder. Experiments have failed to show that this protein can transport biotin. Mutations in this gene also cause a Wernicke's-like encephalopathy.<ref name="entrez"/> |
Mutations in this gene cause [[biotin-responsive basal ganglia disease]] (BBGD); a recessive disorder manifested in childhood that progresses to chronic [[encephalopathy]], [[dystonia]], [[quadriplegia|quadriparesis]], and death if untreated. Patients with BBGD have bilateral necrosis in the head of the caudate nucleus and in the putamen. Administration of high doses of biotin in the early progression of the disorder eliminates pathological symptoms while delayed treatment results in residual paraparesis, mild mental retardation, or dystonia. Administration of thiamine is ineffective in the treatment of this disorder. Experiments have failed to show that this protein can transport biotin. Mutations in this gene also cause a Wernicke's-like encephalopathy.<ref name="entrez"/> |
||
==References== |
==References== |
||
Line 17: | Line 18: | ||
==Further reading== |
==Further reading== |
||
{{refbegin | 2}} |
{{refbegin | 2}} |
||
*{{cite journal | |
*{{cite journal |vauthors=Subramanian VS, Marchant JS, Said HM |title=Biotin-responsive basal ganglia disease-linked mutations inhibit thiamine transport via hTHTR2: biotin is not a substrate for hTHTR2. |journal=Am. J. Physiol., Cell Physiol. |volume=291 |issue= 5 |pages= C851-9 |year= 2006 |pmid= 16790503 |doi= 10.1152/ajpcell.00105.2006 |s2cid=44058 }} |
||
*{{cite journal |vauthors=Subramanian VS, Mohammed ZM, Molina A, etal |title=Vitamin B1 (thiamine) uptake by human retinal pigment epithelial (ARPE-19) cells: mechanism and regulation. |journal=J. Physiol. |
*{{cite journal |vauthors=Subramanian VS, Mohammed ZM, Molina A, etal |title=Vitamin B1 (thiamine) uptake by human retinal pigment epithelial (ARPE-19) cells: mechanism and regulation. |journal=J. Physiol. |volume=582 |issue= Pt 1 |pages= 73–85 |year= 2007 |pmid= 17463047 |doi= 10.1113/jphysiol.2007.128843 |pmc=2075275}} |
||
*{{cite journal |vauthors=Vlasova TI, Stratton SL, Wells AM, etal |title=Biotin deficiency reduces expression of SLC19A3, a potential biotin transporter, in leukocytes from human blood. |journal=J. Nutr. |volume=135 |issue= 1 |pages= 42–7 |year= 2005 |pmid= 15623830 |doi= |pmc=1307527}} |
*{{cite journal |vauthors=Vlasova TI, Stratton SL, Wells AM, etal |title=Biotin deficiency reduces expression of SLC19A3, a potential biotin transporter, in leukocytes from human blood. |journal=J. Nutr. |volume=135 |issue= 1 |pages= 42–7 |year= 2005 |pmid= 15623830 |doi= 10.1093/jn/135.1.42|pmc=1307527}} |
||
*{{cite journal | |
*{{cite journal |vauthors=Nabokina SM, Said HM |title=Characterization of the 5'-regulatory region of the human thiamin transporter SLC19A3: in vitro and in vivo studies. |journal=Am. J. Physiol. Gastrointest. Liver Physiol. |volume=287 |issue= 4 |pages= G822-9 |year= 2004 |pmid= 15217784 |doi= 10.1152/ajpgi.00234.2004 |s2cid=22973189 }} |
||
*{{cite journal | |
*{{cite journal |vauthors=Liu S, Stromberg A, Tai HH, Moscow JA |title=Thiamine transporter gene expression and exogenous thiamine modulate the expression of genes involved in drug and prostaglandin metabolism in breast cancer cells. |journal=Mol. Cancer Res. |volume=2 |issue= 8 |pages= 477–87 |year= 2004 |doi=10.1158/1541-7786.477.2.8 |pmid= 15328374 |s2cid=2963046 |doi-access=free }} |
||
*{{cite journal | |
*{{cite journal |vauthors=Ganapathy V, Smith SB, Prasad PD |title=SLC19: the folate/thiamine transporter family. |journal=Pflügers Arch. |volume=447 |issue= 5 |pages= 641–6 |year= 2004 |pmid= 14770311 |doi= 10.1007/s00424-003-1068-1 |s2cid=7410075 }} |
||
*{{cite journal | |
*{{cite journal |vauthors=Ashokkumar B, Vaziri ND, Said HM |title=Thiamin uptake by the human-derived renal epithelial (HEK-293) cells: cellular and molecular mechanisms. |journal=Am. J. Physiol. Renal Physiol. |volume=291 |issue= 4 |pages= F796-805 |year= 2006 |pmid= 16705148 |doi= 10.1152/ajprenal.00078.2006 }} |
||
*{{cite journal | |
*{{cite journal |vauthors=Nabokina SM, Reidling JC, Said HM |title=Differentiation-dependent up-regulation of intestinal thiamin uptake: cellular and molecular mechanisms. |journal=J. Biol. Chem. |volume=280 |issue= 38 |pages= 32676–82 |year= 2005 |pmid= 16055442 |doi= 10.1074/jbc.M505243200 |doi-access= free }} |
||
*{{cite journal | |
*{{cite journal |vauthors=Rajgopal A, Edmondnson A, Goldman ID, Zhao R |title=SLC19A3 encodes a second thiamine transporter ThTr2. |journal=Biochim. Biophys. Acta |volume=1537 |issue= 3 |pages= 175–8 |year= 2001 |pmid= 11731220 |doi= 10.1016/s0925-4439(01)00073-4|doi-access=free }} |
||
*{{cite journal |vauthors=Liu X, Lam EK, Wang X, etal |title=Promoter hypermethylation mediates downregulation of thiamine receptor SLC19A3 in gastric cancer. |journal=Tumour Biol. |volume=30 |issue= |
*{{cite journal |vauthors=Liu X, Lam EK, Wang X, etal |title=Promoter hypermethylation mediates downregulation of thiamine receptor SLC19A3 in gastric cancer. |journal=Tumour Biol. |volume=30 |issue= 5–6 |pages= 242–8 |year= 2009 |pmid= 19816091 |doi= 10.1159/000243767 |s2cid=33408137 }} |
||
*{{cite journal |author=Haas RH |title=Thiamin and the brain. |journal=Annu. Rev. Nutr. |volume=8 |
*{{cite journal |author=Haas RH |title=Thiamin and the brain. |journal=Annu. Rev. Nutr. |volume=8 |pages= 483–515 |year= 1988 |pmid= 3060175 |doi= 10.1146/annurev.nu.08.070188.002411 }} |
||
*{{cite journal |vauthors=Hillier LW, Graves TA, Fulton RS, etal |title=Generation and annotation of the DNA sequences of human chromosomes 2 and 4. |journal=Nature |volume=434 |issue= 7034 |pages= 724–31 |year= 2005 |pmid= 15815621 |doi= 10.1038/nature03466 }} |
*{{cite journal |vauthors=Hillier LW, Graves TA, Fulton RS, etal |title=Generation and annotation of the DNA sequences of human chromosomes 2 and 4. |journal=Nature |volume=434 |issue= 7034 |pages= 724–31 |year= 2005 |pmid= 15815621 |doi= 10.1038/nature03466 |bibcode=2005Natur.434..724H |doi-access= free }} |
||
*{{cite journal |vauthors=Gerhard DS, Wagner L, Feingold EA, etal |title=The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121–7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 |pmc=528928}} |
*{{cite journal |vauthors=Gerhard DS, Wagner L, Feingold EA, etal |title=The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121–7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 |pmc=528928}} |
||
*{{cite journal | |
*{{cite journal |vauthors=Subramanian VS, Marchant JS, Said HM |title=Targeting and trafficking of the human thiamine transporter-2 in epithelial cells. |journal=J. Biol. Chem. |volume=281 |issue= 8 |pages= 5233–45 |year= 2006 |pmid= 16371350 |doi= 10.1074/jbc.M512765200 |doi-access= free }} |
||
*{{cite journal |vauthors=Strausberg RL, Feingold EA, Grouse LH, etal |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2002 |pmid= 12477932 |doi= 10.1073/pnas.242603899 |pmc=139241}} |
*{{cite journal |vauthors=Strausberg RL, Feingold EA, Grouse LH, etal |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2002 |pmid= 12477932 |doi= 10.1073/pnas.242603899 |pmc=139241|bibcode=2002PNAS...9916899M |doi-access=free }} |
||
*{{cite journal |vauthors=Mee L, Nabokina SM, Sekar VT, etal |title=Pancreatic beta cells and islets take up thiamin by a regulated carrier-mediated process: studies using mice and human pancreatic preparations. |journal=Am. J. Physiol. Gastrointest. Liver Physiol. |volume=297 |issue= 1 |pages= G197-206 |year= 2009 |pmid= 19423748 |doi= 10.1152/ajpgi.00092.2009 |pmc=2711754}} |
*{{cite journal |vauthors=Mee L, Nabokina SM, Sekar VT, etal |title=Pancreatic beta cells and islets take up thiamin by a regulated carrier-mediated process: studies using mice and human pancreatic preparations. |journal=Am. J. Physiol. Gastrointest. Liver Physiol. |volume=297 |issue= 1 |pages= G197-206 |year= 2009 |pmid= 19423748 |doi= 10.1152/ajpgi.00092.2009 |pmc=2711754}} |
||
*{{cite journal |vauthors=Liu S, Huang H, Lu X, etal |title=Down-regulation of thiamine transporter THTR2 gene expression in breast cancer and its association with resistance to apoptosis. |journal=Mol. Cancer Res. |volume=1 |issue= 9 |pages= 665–73 |year= 2003 |pmid= 12861052 |
*{{cite journal |vauthors=Liu S, Huang H, Lu X, etal |title=Down-regulation of thiamine transporter THTR2 gene expression in breast cancer and its association with resistance to apoptosis. |journal=Mol. Cancer Res. |volume=1 |issue= 9 |pages= 665–73 |year= 2003 |pmid= 12861052 }} |
||
{{refend}} |
{{refend}} |
||
Latest revision as of 02:46, 29 November 2023
SLC19A3 | |||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||||||||||||||||||||||||||||||||||||||||||||
Aliases | SLC19A3, BBGD, THMD2, THTR2, solute carrier family 19 member 3, thTr-2 | ||||||||||||||||||||||||||||||||||||||||||||||||||
External IDs | OMIM: 606152; MGI: 1931307; HomoloGene: 23530; GeneCards: SLC19A3; OMA:SLC19A3 - orthologs | ||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
Wikidata | |||||||||||||||||||||||||||||||||||||||||||||||||||
|
Thiamine transporter 2 (ThTr-2), also known as solute carrier family 19 member 3, is a protein that in humans is encoded by the SLC19A3 gene.[5][6][7] SLC19A3 is a thiamine transporter.
Function
[edit]ThTr-2 is a ubiquitously expressed transmembrane thiamine transporter that lacks folate transport activity.[5]
It is specifically inhibited by chloroquine.[8]
Clinical significance
[edit]Mutations in this gene cause biotin-responsive basal ganglia disease (BBGD); a recessive disorder manifested in childhood that progresses to chronic encephalopathy, dystonia, quadriparesis, and death if untreated. Patients with BBGD have bilateral necrosis in the head of the caudate nucleus and in the putamen. Administration of high doses of biotin in the early progression of the disorder eliminates pathological symptoms while delayed treatment results in residual paraparesis, mild mental retardation, or dystonia. Administration of thiamine is ineffective in the treatment of this disorder. Experiments have failed to show that this protein can transport biotin. Mutations in this gene also cause a Wernicke's-like encephalopathy.[5]
References
[edit]- ^ a b c GRCh38: Ensembl release 89: ENSG00000135917 – Ensembl, May 2017
- ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000038496 – Ensembl, May 2017
- ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
- ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
- ^ a b c "Entrez Gene: solute carrier family 19".
- ^ Eudy JD, Spiegelstein O, Barber RC, Wlodarczyk BJ, Talbot J, Finnell RH (December 2000). "Identification and characterization of the human and mouse SLC19A3 gene: a novel member of the reduced folate family of micronutrient transporter genes". Mol. Genet. Metab. 71 (4): 581–90. doi:10.1006/mgme.2000.3112. PMID 11136550.
- ^ Zeng WQ, Al-Yamani E, Acierno JS, Slaugenhaupt S, Gillis T, MacDonald ME, Ozand PT, Gusella JF (July 2005). "Biotin-responsive basal ganglia disease maps to 2q36.3 and is due to mutations in SLC19A3". Am. J. Hum. Genet. 77 (1): 16–26. doi:10.1086/431216. PMC 1226189. PMID 15871139.
- ^ Huang Z, Srinivasan S, Zhang J, Chen K, Li Y, Li W, Quiocho FA, Pan X (2012). "Discovering thiamine transporters as targets of chloroquine using a novel functional genomics strategy". PLOS Genet. 8 (11): e1003083. doi:10.1371/journal.pgen.1003083. PMC 3510038. PMID 23209439.
Further reading
[edit]- Subramanian VS, Marchant JS, Said HM (2006). "Biotin-responsive basal ganglia disease-linked mutations inhibit thiamine transport via hTHTR2: biotin is not a substrate for hTHTR2". Am. J. Physiol., Cell Physiol. 291 (5): C851-9. doi:10.1152/ajpcell.00105.2006. PMID 16790503. S2CID 44058.
- Subramanian VS, Mohammed ZM, Molina A, et al. (2007). "Vitamin B1 (thiamine) uptake by human retinal pigment epithelial (ARPE-19) cells: mechanism and regulation". J. Physiol. 582 (Pt 1): 73–85. doi:10.1113/jphysiol.2007.128843. PMC 2075275. PMID 17463047.
- Vlasova TI, Stratton SL, Wells AM, et al. (2005). "Biotin deficiency reduces expression of SLC19A3, a potential biotin transporter, in leukocytes from human blood". J. Nutr. 135 (1): 42–7. doi:10.1093/jn/135.1.42. PMC 1307527. PMID 15623830.
- Nabokina SM, Said HM (2004). "Characterization of the 5'-regulatory region of the human thiamin transporter SLC19A3: in vitro and in vivo studies". Am. J. Physiol. Gastrointest. Liver Physiol. 287 (4): G822-9. doi:10.1152/ajpgi.00234.2004. PMID 15217784. S2CID 22973189.
- Liu S, Stromberg A, Tai HH, Moscow JA (2004). "Thiamine transporter gene expression and exogenous thiamine modulate the expression of genes involved in drug and prostaglandin metabolism in breast cancer cells". Mol. Cancer Res. 2 (8): 477–87. doi:10.1158/1541-7786.477.2.8. PMID 15328374. S2CID 2963046.
- Ganapathy V, Smith SB, Prasad PD (2004). "SLC19: the folate/thiamine transporter family". Pflügers Arch. 447 (5): 641–6. doi:10.1007/s00424-003-1068-1. PMID 14770311. S2CID 7410075.
- Ashokkumar B, Vaziri ND, Said HM (2006). "Thiamin uptake by the human-derived renal epithelial (HEK-293) cells: cellular and molecular mechanisms". Am. J. Physiol. Renal Physiol. 291 (4): F796-805. doi:10.1152/ajprenal.00078.2006. PMID 16705148.
- Nabokina SM, Reidling JC, Said HM (2005). "Differentiation-dependent up-regulation of intestinal thiamin uptake: cellular and molecular mechanisms". J. Biol. Chem. 280 (38): 32676–82. doi:10.1074/jbc.M505243200. PMID 16055442.
- Rajgopal A, Edmondnson A, Goldman ID, Zhao R (2001). "SLC19A3 encodes a second thiamine transporter ThTr2". Biochim. Biophys. Acta. 1537 (3): 175–8. doi:10.1016/s0925-4439(01)00073-4. PMID 11731220.
- Liu X, Lam EK, Wang X, et al. (2009). "Promoter hypermethylation mediates downregulation of thiamine receptor SLC19A3 in gastric cancer". Tumour Biol. 30 (5–6): 242–8. doi:10.1159/000243767. PMID 19816091. S2CID 33408137.
- Haas RH (1988). "Thiamin and the brain". Annu. Rev. Nutr. 8: 483–515. doi:10.1146/annurev.nu.08.070188.002411. PMID 3060175.
- Hillier LW, Graves TA, Fulton RS, et al. (2005). "Generation and annotation of the DNA sequences of human chromosomes 2 and 4". Nature. 434 (7034): 724–31. Bibcode:2005Natur.434..724H. doi:10.1038/nature03466. PMID 15815621.
- Gerhard DS, Wagner L, Feingold EA, et al. (2004). "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC)". Genome Res. 14 (10B): 2121–7. doi:10.1101/gr.2596504. PMC 528928. PMID 15489334.
- Subramanian VS, Marchant JS, Said HM (2006). "Targeting and trafficking of the human thiamine transporter-2 in epithelial cells". J. Biol. Chem. 281 (8): 5233–45. doi:10.1074/jbc.M512765200. PMID 16371350.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2002). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. Bibcode:2002PNAS...9916899M. doi:10.1073/pnas.242603899. PMC 139241. PMID 12477932.
- Mee L, Nabokina SM, Sekar VT, et al. (2009). "Pancreatic beta cells and islets take up thiamin by a regulated carrier-mediated process: studies using mice and human pancreatic preparations". Am. J. Physiol. Gastrointest. Liver Physiol. 297 (1): G197-206. doi:10.1152/ajpgi.00092.2009. PMC 2711754. PMID 19423748.
- Liu S, Huang H, Lu X, et al. (2003). "Down-regulation of thiamine transporter THTR2 gene expression in breast cancer and its association with resistance to apoptosis". Mol. Cancer Res. 1 (9): 665–73. PMID 12861052.
External links
[edit]- SLC19A3+protein,+human at the U.S. National Library of Medicine Medical Subject Headings (MeSH)
This article incorporates text from the United States National Library of Medicine, which is in the public domain.