Jump to content

BET inhibitor: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m Added patent describing the application of RVX-208 with the rare disease called Friedreich Ataxia
Citation bot (talk | contribs)
Alter: journal, pages, volume. Add: issue, s2cid, date, doi-access. Formatted dashes. | Use this bot. Report bugs. | Suggested by Headbomb | #UCB_toolbar
 
(47 intermediate revisions by 22 users not shown)
Line 1: Line 1:
{{short description|Drug class}}
'''BET inhibitors''' are a class of drugs with anti-cancer, immunosuppressive, and other effects in [[clinical trials]] in the United States and Europe and widely used in research. These molecules reversibly bind the [[bromodomain]]s of [[BET protein|Bromodomain and Extra-Terminal motif (BET) proteins]] [[BRD2]], [[BRD3]], [[BRD4]], and [[BRDT]], and prevent protein-protein interaction between BET proteins and acetylated histones and transcription factors.<ref>{{cite journal | vauthors = Garnier JM, Sharp PP, Burns CJ | title = BET bromodomain inhibitors: a patent review | journal = Expert Opinion on Therapeutic Patents | volume = 24 | issue = 2 | pages = 185–99 | date = February 2014 | pmid = 24261714 | doi = 10.1517/13543776.2014.859244 }}</ref><ref>{{cite journal | vauthors = Shi J, Vakoc CR | title = The mechanisms behind the therapeutic activity of BET bromodomain inhibition | journal = Molecular Cell | volume = 54 | issue = 5 | pages = 728–36 | date = June 2014 | pmid = 24905006 | pmc = 4236231 | doi = 10.1016/j.molcel.2014.05.016 }}</ref>
'''BET inhibitors''' are a class of drugs that reversibly bind the [[bromodomain]]s of [[BET protein|Bromodomain and Extra-Terminal motif (BET) proteins]] [[BRD2]], [[BRD3]], [[BRD4]], and [[BRDT]], and prevent protein-protein interaction between BET proteins and acetylated histones and transcription factors.<ref>{{cite journal | vauthors = Garnier JM, Sharp PP, Burns CJ | title = BET bromodomain inhibitors: a patent review | journal = Expert Opinion on Therapeutic Patents | volume = 24 | issue = 2 | pages = 185–99 | date = February 2014 | pmid = 24261714 | doi = 10.1517/13543776.2014.859244 | s2cid = 24647727 }}</ref><ref>{{cite journal | vauthors = Shi J, Vakoc CR | title = The mechanisms behind the therapeutic activity of BET bromodomain inhibition | journal = Molecular Cell | volume = 54 | issue = 5 | pages = 728–36 | date = June 2014 | pmid = 24905006 | pmc = 4236231 | doi = 10.1016/j.molcel.2014.05.016 }}</ref>


== Discovery and development ==
== Discovery and development ==


[[Thienodiazepine]] BET inhibitors were discovered by scientists at Yoshitomi Pharmaceuticals (now [[Mitsubishi Tanabe Pharma]]) in the early 1990s, and their potential both as anti-inflammatories and anti-cancer agents noted.<ref>{{cite patent |country=JP |number=2008156311}}</ref><ref>{{cite patent |country=JP |number=H0228181}}</ref> However, these molecules remained largely unknown until 2010 when both the use of [[JQ1]] in [[NUT midline carcinoma]]<ref>{{cite journal | vauthors = Filippakopoulos P, Qi J, Picaud S, Shen Y, Smith WB, Fedorov O, Morse EM, Keates T, Hickman TT, Felletar I, Philpott M, Munro S, McKeown MR, Wang Y, Christie AL, West N, Cameron MJ, Schwartz B, Heightman TD, La Thangue N, French CA, Wiest O, Kung AL, Knapp S, Bradner JE | title = Selective inhibition of BET bromodomains | journal = Nature | volume = 468 | issue = 7327 | pages = 1067–73 | date = December 2010 | pmid = 20871596 | pmc = 3010259 | doi = 10.1038/nature09504 }}</ref> and of I-BET 762 in [[sepsis]] were published.<ref>{{cite journal | vauthors = Nicodeme E, Jeffrey KL, Schaefer U, Beinke S, Dewell S, Chung CW, Chandwani R, Marazzi I, Wilson P, Coste H, White J, Kirilovsky J, Rice CM, Lora JM, Prinjha RK, Lee K, Tarakhovsky A | title = Suppression of inflammation by a synthetic histone mimic | journal = Nature | volume = 468 | issue = 7327 | pages = 1119–23 | date = December 2010 | pmid = 21068722 | doi = 10.1038/nature09589 }}</ref> Since this time a number of molecules have been described that are capable of targeting BET bromodomains.<ref>{{cite journal | vauthors = Picaud S, Da Costa D, Thanasopoulou A, Filippakopoulos P, Fish PV, Philpott M, Fedorov O, Brennan P, Bunnage ME, Owen DR, Bradner JE, Taniere P, O'Sullivan B, Müller S, Schwaller J, Stankovic T, Knapp S | title = PFI-1, a highly selective protein interaction inhibitor, targeting BET Bromodomains | journal = Cancer Research | volume = 73 | issue = 11 | pages = 3336–46 | date = June 2013 | pmid = 23576556 | pmc = 3673830 | doi = 10.1158/0008-5472.CAN-12-3292 }}</ref>
[[Thienodiazepine]] BET inhibitors were discovered in a phenotypic drug screen by scientists at Yoshitomi Pharmaceuticals (now [[Mitsubishi Tanabe Pharma]]) in the early 1990s, and their potential both as anti-inflammatories and anti-cancer agents noted.<ref>{{cite patent|country=JP|number=2008156311|pubdate=2008-07-10|title=BRD2 bromodomain binder|assign1=[[Riken|RIKEN Institute of Physical and Chemical Research]]|inventor1-last=Umehara|inventor1-first=Takashi|inventor2-last=Tanaka|inventor2-first=Akiko|inventor3-last=Sato|inventor3-first=Kazuhito|inventor4-last=Yokoyama|inventor4-first=Shigeyuki|status=application}}, since withdrawn.</ref><ref>{{cite patent|country=JP|number=2623800|pubdate=1997-06-25|title=Thienodiazepine compounds|assign1=[[Mitsubishi_Tanabe_Pharma|Yoshitomi Pharmaceutical Co.]]|inventor1-last=Naka|inventor1-first=Yoichi|inventor2-last=Ichiyanagi|inventor2-first=Yukio|inventor3-last=Haga|inventor3-first=Keiichiro|inventor4-last=Hosoya|inventor4-first=Shinko}}</ref> OncoEthix (acquired by Merck in 2014) in-licensed OTX-015 from Mitsubishi and in 2012 initiated the first BET inhibitor clinical trial for oncology (ClinicalTrials.gov Identifier: NCT01713582). BET inhibitors were also independently discovered in phenotypic screens for small molecule inducers of Apolipoprotein A-I by both GSK and Resverlogix.<ref name="ReferenceA">{{cite journal | vauthors = Nicodeme E, Jeffrey KL, Schaefer U, Beinke S, Dewell S, Chung CW, Chandwani R, Marazzi I, Wilson P, Coste H, White J, Kirilovsky J, Rice CM, Lora JM, Prinjha RK, Lee K, Tarakhovsky A | title = Suppression of inflammation by a synthetic histone mimic | journal = Nature | volume = 468 | issue = 7327 | pages = 1119–23 | date = December 2010 | pmid = 21068722 | doi = 10.1038/nature09589 | pmc = 5415086 | bibcode = 2010Natur.468.1119N }}</ref><ref>{{cite journal | vauthors = McLure KG, Gesner EM, Tsujikawa L, Kharenko OA, Atwell S, Campeau E, Wasiak S, Stein A, White A, Fontano E, Suto RK, Wong NC, Wagner GS, Hansen HC, Young PR | title = RVX-208, an inducer of ApoA-I in humans, is a BET bromodomain antagonist | journal = PLOS ONE | volume = 8 | issue = 12 | pages = e83190 | date = December 2013 | pmid = 24391744 | doi = 10.1371/journal.pone.0083190 | pmc = 3877016 | doi-access = free }}</ref> In 2010 the use of [[JQ1]], a tert-butyl synthetic precursor of OTX-015, was published having activity in vitro in [[NUT midline carcinoma]].<ref>{{cite journal | vauthors = Filippakopoulos P, Qi J, Picaud S, Shen Y, Smith WB, Fedorov O, Morse EM, Keates T, Hickman TT, Felletar I, Philpott M, Munro S, McKeown MR, Wang Y, Christie AL, West N, Cameron MJ, Schwartz B, Heightman TD, La Thangue N, French CA, Wiest O, Kung AL, Knapp S, Bradner JE | title = Selective inhibition of BET bromodomains | journal = Nature | volume = 468 | issue = 7327 | pages = 1067–73 | date = December 2010 | pmid = 20871596 | pmc = 3010259 | doi = 10.1038/nature09504 | bibcode = 2010Natur.468.1067F }}</ref> Since this time a number of molecules have been described that are capable of targeting BET bromodomains.<ref>{{cite journal | vauthors = Picaud S, Da Costa D, Thanasopoulou A, Filippakopoulos P, Fish PV, Philpott M, Fedorov O, Brennan P, Bunnage ME, Owen DR, Bradner JE, Taniere P, O'Sullivan B, Müller S, Schwaller J, Stankovic T, Knapp S | title = PFI-1, a highly selective protein interaction inhibitor, targeting BET Bromodomains | journal = Cancer Research | volume = 73 | issue = 11 | pages = 3336–46 | date = June 2013 | pmid = 23576556 | pmc = 3673830 | doi = 10.1158/0008-5472.CAN-12-3292 }}</ref>


BET inhibitors have been described that are able to discriminate between the first and second bromodomains of BET proteins (BD1 vs BD2). However, no BET inhibitor has yet been described that can reliably distinguish between BET family members (BRD2 vs BRD3 vs BRD4 vs BRDT).<ref>{{cite journal | vauthors = Filippakopoulos P, Knapp S | title = Targeting bromodomains: epigenetic readers of lysine acetylation | journal = Nature Reviews. Drug Discovery | volume = 13 | issue = 5 | pages = 337–56 | date = May 2014 | pmid = 24751816 | doi = 10.1038/nrd4286 }}</ref> Only in the research context has targeting individual BET proteins been achieved by mutating them to be more sensitive to a derivative of JQ1 / I-BET 762.<ref>{{cite journal | vauthors = Baud MG, Lin-Shiao E, Cardote T, Tallant C, Pschibul A, Chan KH, Zengerle M, Garcia JR, Kwan TT, Ferguson FM, Ciulli A | title = Chemical biology. A bump-and-hole approach to engineer controlled selectivity of BET bromodomain chemical probes | journal = Science | volume = 346 | issue = 6209 | pages = 638–41 | date = October 2014 | pmid = 25323695 | pmc = 4458378 | doi = 10.1126/science.1249830 }}</ref>
BET inhibitors have been described that are able to discriminate between the first and second bromodomains of BET proteins (BD1 vs BD2). However, no BET inhibitor has yet been described that can reliably distinguish between BET family members (BRD2 vs BRD3 vs BRD4 vs BRDT).<ref>{{cite journal | vauthors = Filippakopoulos P, Knapp S | title = Targeting bromodomains: epigenetic readers of lysine acetylation | journal = Nature Reviews. Drug Discovery | volume = 13 | issue = 5 | pages = 337–56 | date = May 2014 | pmid = 24751816 | doi = 10.1038/nrd4286 | s2cid = 12172346 }}</ref> Only in the research context has targeting individual BET proteins been achieved by mutating them to be more sensitive to a derivative of JQ1 / I-BET 762.<ref>{{cite journal | vauthors = Baud MG, Lin-Shiao E, Cardote T, Tallant C, Pschibul A, Chan KH, Zengerle M, Garcia JR, Kwan TT, Ferguson FM, Ciulli A | title = Chemical biology. A bump-and-hole approach to engineer controlled selectivity of BET bromodomain chemical probes | journal = Science | volume = 346 | issue = 6209 | pages = 638–41 | date = October 2014 | pmid = 25323695 | pmc = 4458378 | doi = 10.1126/science.1249830 }}</ref>


== Mechanism of action in cancer ==
== Mechanism of action ==


Interest in using BET inhibitors in cancer began with the observation that chromosomal translocations involving BET genes [[BRD3]] and [[BRD4]] drove the pathogenesis the rare cancer [[NUT midline carcinoma]]. Subsequent research uncovered the dependence of some forms of [[acute myeloid leukemia]],<ref>{{cite journal | vauthors = Dawson MA, Prinjha RK, Dittmann A, Giotopoulos G, Bantscheff M, Chan WI, Robson SC, Chung CW, Hopf C, Savitski MM, Huthmacher C, Gudgin E, Lugo D, Beinke S, Chapman TD, Roberts EJ, Soden PE, Auger KR, Mirguet O, Doehner K, Delwel R, Burnett AK, Jeffrey P, Drewes G, Lee K, Huntly BJ, Kouzarides T | title = Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia | journal = Nature | volume = 478 | issue = 7370 | pages = 529–33 | date = October 2011 | pmid = 21964340 | pmc = 3679520 | doi = 10.1038/nature10509 }}</ref><ref>{{cite journal | vauthors = Zuber J, Shi J, Wang E, Rappaport AR, Herrmann H, Sison EA, Magoon D, Qi J, Blatt K, Wunderlich M, Taylor MJ, Johns C, Chicas A, Mulloy JC, Kogan SC, Brown P, Valent P, Bradner JE, Lowe SW, Vakoc CR | title = RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia | journal = Nature | volume = 478 | issue = 7370 | pages = 524–8 | date = August 2011 | pmid = 21814200 | pmc = 3328300 | doi = 10.1038/nature10334 }}</ref> [[multiple myeloma]] and [[acute lymphoblastic leukemia]]<ref>{{cite journal | vauthors = Da Costa D, Agathanggelou A, Perry T, Weston V, Petermann E, Zlatanou A, Oldreive C, Wei W, Stewart G, Longman J, Smith E, Kearns P, Knapp S, Stankovic T | title = BET inhibition as a single or combined therapeutic approach in primary paediatric B-precursor acute lymphoblastic leukaemia | language = en | journal = Blood Cancer Journal | volume = 3 | issue = 7 | pages = e126 | date = July 2013 | pmid = 23872705 | pmc = 3730202 | doi = 10.1038/bcj.2013.24 }}</ref> on the BET protein BRD4, and the sensitivity of these cancers to BET inhibitors. In many cases, expression of the growth promoting transcription factor [[Myc]] is blocked by BET inhibitors.<ref>{{cite web|url=http://www.ted.com/talks/jay_bradner_open_source_cancer_research?language=en |title=Jay Bradner: Open-source cancer research &#124; Talk Video |publisher=TED.com |date= |accessdate=2015-04-12}}</ref><ref>{{cite journal | vauthors = Mertz JA, Conery AR, Bryant BM, Sandy P, Balasubramanian S, Mele DA, Bergeron L, Sims RJ | title = Targeting MYC dependence in cancer by inhibiting BET bromodomains | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 108 | issue = 40 | pages = 16669–74 | date = October 2011 | pmid = 21949397 | pmc = 3189078 | doi = 10.1073/pnas.1108190108 }}</ref><ref>{{cite journal | vauthors = Alderton GK | title = Targeting MYC? You BET | journal = Nature Reviews. Drug Discovery | volume = 10 | issue = 10 | pages = 732–3 | date = September 2011 | pmid = 21959283 | doi = 10.1038/nrd3569 }}</ref> BRD2 and BRD3 are functionally redundant and may be more important as therapeutic targets than is appreciated in studies depleting each BET protein individually.<ref>{{cite journal | vauthors = Stonestrom AJ, Hsu SC, Jahn KS, Huang P, Keller CA, Giardine BM, Kadauke S, Campbell AE, Evans P, Hardison RC, Blobel GA | title = Functions of BET proteins in erythroid gene expression | journal = Blood | volume = 125 | issue = 18 | pages = 2825–34 | date = April 2015 | pmid = 25696920 | doi = 10.1182/blood-2014-10-607309 | pmc=4424630}}</ref>
Interest in using BET inhibitors in cancer began with the observation that chromosomal translocations involving BET genes [[BRD3]] and [[BRD4]] drove the pathogenesis of the rare cancer [[NUT midline carcinoma]]. Subsequent research uncovered the dependence of some forms of [[acute myeloid leukemia]],<ref>{{cite journal | vauthors = Dawson MA, Prinjha RK, Dittmann A, Giotopoulos G, Bantscheff M, Chan WI, Robson SC, Chung CW, Hopf C, Savitski MM, Huthmacher C, Gudgin E, Lugo D, Beinke S, Chapman TD, Roberts EJ, Soden PE, Auger KR, Mirguet O, Doehner K, Delwel R, Burnett AK, Jeffrey P, Drewes G, Lee K, Huntly BJ, Kouzarides T | title = Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia | journal = Nature | volume = 478 | issue = 7370 | pages = 529–33 | date = October 2011 | pmid = 21964340 | pmc = 3679520 | doi = 10.1038/nature10509 | bibcode = 2011Natur.478..529D }}</ref><ref>{{cite journal | vauthors = Zuber J, Shi J, Wang E, Rappaport AR, Herrmann H, Sison EA, Magoon D, Qi J, Blatt K, Wunderlich M, Taylor MJ, Johns C, Chicas A, Mulloy JC, Kogan SC, Brown P, Valent P, Bradner JE, Lowe SW, Vakoc CR | title = RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia | journal = Nature | volume = 478 | issue = 7370 | pages = 524–8 | date = August 2011 | pmid = 21814200 | pmc = 3328300 | doi = 10.1038/nature10334 | bibcode = 2011Natur.478..524Z }}</ref> [[multiple myeloma]] and [[acute lymphoblastic leukemia]]<ref>{{cite journal | vauthors = Da Costa D, Agathanggelou A, Perry T, Weston V, Petermann E, Zlatanou A, Oldreive C, Wei W, Stewart G, Longman J, Smith E, Kearns P, Knapp S, Stankovic T | title = BET inhibition as a single or combined therapeutic approach in primary paediatric B-precursor acute lymphoblastic leukaemia | language = en | journal = Blood Cancer Journal | volume = 3 | issue = 7 | pages = e126 | date = July 2013 | pmid = 23872705 | pmc = 3730202 | doi = 10.1038/bcj.2013.24 }}</ref> on the BET protein BRD4, and the sensitivity of these cancers to BET inhibitors. In many cases, expression of the growth promoting transcription factor [[Myc]] is blocked by BET inhibitors.<ref>{{cite web|url=http://www.ted.com/talks/jay_bradner_open_source_cancer_research?language=en |title=Jay Bradner: Open-source cancer research &#124; Talk Video |date=27 October 2011 |publisher=TED.com |access-date=2015-04-12}}</ref><ref>{{cite journal | vauthors = Mertz JA, Conery AR, Bryant BM, Sandy P, Balasubramanian S, Mele DA, Bergeron L, Sims RJ | title = Targeting MYC dependence in cancer by inhibiting BET bromodomains | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 108 | issue = 40 | pages = 16669–74 | date = October 2011 | pmid = 21949397 | pmc = 3189078 | doi = 10.1073/pnas.1108190108 | bibcode = 2011PNAS..10816669M | doi-access = free }}</ref><ref>{{cite journal | vauthors = Alderton GK | title = Targeting MYC? You BET | journal = Nature Reviews. Drug Discovery | volume = 10 | issue = 10 | pages = 732–3 | date = September 2011 | pmid = 21959283 | doi = 10.1038/nrd3569 | s2cid = 39567104 }}</ref> BRD2 and BRD3 are functionally redundant and may be more important as therapeutic targets than is appreciated in studies depleting each BET protein individually.<ref>{{cite journal | vauthors = Stonestrom AJ, Hsu SC, Jahn KS, Huang P, Keller CA, Giardine BM, Kadauke S, Campbell AE, Evans P, Hardison RC, Blobel GA | title = Functions of BET proteins in erythroid gene expression | journal = Blood | volume = 125 | issue = 18 | pages = 2825–34 | date = April 2015 | pmid = 25696920 | doi = 10.1182/blood-2014-10-607309 | pmc=4424630}}</ref>
Recent studies also showed that BET inhibitors can be instrumental in overcoming resistance to other targeted therapies when used in combination therapies. Examples include use of BET inhibitors in combination with [[γ-secretase inhibitor]]s for T cell acute lymphoblastic leukemia and [[RAF-inhibitor]] (vemurafenib) for RAF-inhibitor resistant melanomas carrying the BRAFV600E mutation.<ref name=Korkut2015>{{cite journal | vauthors = Korkut A, Wang W, Demir E, Aksoy BA, Jing X, Molinelli EJ, Babur Ö, Bemis DL, Onur Sumer S, Solit DB, Pratilas CA, Sander C | title = Perturbation biology nominates upstream-downstream drug combinations in RAF inhibitor resistant melanoma cells | journal = eLife | volume = 4 | date = August 2015 | pmid = 26284497 | pmc = 4539601 | doi = 10.7554/elife.04640 }}</ref><ref>{{cite journal | vauthors = Knoechel B, Roderick JE, Williamson KE, Zhu J, Lohr JG, Cotton MJ, Gillespie SM, Fernandez D, Ku M, Wang H, Piccioni F, Silver SJ, Jain M, Pearson D, Kluk MJ, Ott CJ, Shultz LD, Brehm MA, Greiner DL, Gutierrez A, Stegmaier K, Kung AL, Root DE, Bradner JE, Aster JC, Kelliher MA, Bernstein BE | title = An epigenetic mechanism of resistance to targeted therapy in T cell acute lymphoblastic leukemia | journal = Nature Genetics | volume = 46 | issue = 4 | pages = 364–70 | date = April 2014 | pmid = 24584072 | pmc = 4086945 | doi = 10.1038/ng.2913 }}</ref>
Recent studies also showed that BET inhibitors can be instrumental in overcoming resistance to other targeted therapies when used in combination therapies. Examples include use of BET inhibitors in combination with [[γ-secretase inhibitor]]s for T cell acute lymphoblastic leukemia and [[BRAF inhibitor|BRAF-inhibitor]] (vemurafenib) for BRAF-inhibitor resistant melanomas carrying the BRAFV600E mutation.<ref name=Korkut2015>{{cite journal | vauthors = Korkut A, Wang W, Demir E, Aksoy BA, Jing X, Molinelli EJ, Babur Ö, Bemis DL, Onur Sumer S, Solit DB, Pratilas CA, Sander C | title = Perturbation biology nominates upstream-downstream drug combinations in RAF inhibitor resistant melanoma cells | journal = eLife | volume = 4 | date = August 2015 | pmid = 26284497 | pmc = 4539601 | doi = 10.7554/elife.04640 | doi-access = free }}</ref><ref>{{cite journal | vauthors = Knoechel B, Roderick JE, Williamson KE, Zhu J, Lohr JG, Cotton MJ, Gillespie SM, Fernandez D, Ku M, Wang H, Piccioni F, Silver SJ, Jain M, Pearson D, Kluk MJ, Ott CJ, Shultz LD, Brehm MA, Greiner DL, Gutierrez A, Stegmaier K, Kung AL, Root DE, Bradner JE, Aster JC, Kelliher MA, Bernstein BE | title = An epigenetic mechanism of resistance to targeted therapy in T cell acute lymphoblastic leukemia | journal = Nature Genetics | volume = 46 | issue = 4 | pages = 364–70 | date = April 2014 | pmid = 24584072 | pmc = 4086945 | doi = 10.1038/ng.2913 }}</ref>

== Use in other applications ==

BET inhibition prevents death in mouse models of sepsis, attenuates autoimmunity, and lessens damage from overactive inflammatory responses in the lung.<ref>{{cite journal | vauthors = Bandukwala HS, Gagnon J, Togher S, Greenbaum JA, Lamperti ED, Parr NJ, Molesworth AM, Smithers N, Lee K, Witherington J, Tough DF, Prinjha RK, Peters B, Rao A | title = Selective inhibition of CD4+ T-cell cytokine production and autoimmunity by BET protein and c-Myc inhibitors | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 109 | issue = 36 | pages = 14532–7 | date = September 2012 | pmid = 22912406 | pmc = 3437860 | doi = 10.1073/pnas.1212264109 }}</ref><ref>{{cite journal | vauthors = Mele DA, Salmeron A, Ghosh S, Huang HR, Bryant BM, Lora JM | title = BET bromodomain inhibition suppresses TH17-mediated pathology | journal = The Journal of Experimental Medicine | volume = 210 | issue = 11 | pages = 2181–90 | date = October 2013 | pmid = 24101376 | pmc = 3804955 | doi = 10.1084/jem.20130376 }}</ref><ref>{{cite journal | vauthors = Nicodeme E, Jeffrey KL, Schaefer U, Beinke S, Dewell S, Chung CW, Chandwani R, Marazzi I, Wilson P, Coste H, White J, Kirilovsky J, Rice CM, Lora JM, Prinjha RK, Lee K, Tarakhovsky A | title = Suppression of inflammation by a synthetic histone mimic | journal = Nature | volume = 468 | issue = 7327 | pages = 1119–23 | date = December 2010 | pmid = 21068722 | doi = 10.1038/nature09589 }}</ref>

Pre-clinical studies have also demonstrated efficacy in applications that would require chronic administration (see below: heart failure and male contraception). As early studies in humans have already demonstrated significant toxicity in the form of thrombocytopenia, and these drugs are likely to have major immunomodulatory effects, it is unclear what the range of safe feasible applications for these molecules will be.

BET inhibitors have been shown to limit the development of heart failure in mouse models.<ref>{{cite web|author=|url=http://hms.harvard.edu/news/translational-research/new-target-heart-failure-8-1-13 |title=New Target in Heart Failure &#124; HMS |publisher=Hms.harvard.edu |date=2013-08-02 |accessdate=2015-04-12}}</ref><ref>{{cite web|url=http://casemed.case.edu/newscenter/news-release/newsrelease.cfm?news_id=168 |title=New Designer Compound Treats Heart Failure by Targeting Cell Nucleus &#124; Case Western Reserve University School of Medicine |publisher=Casemed.case.edu |date=2013-08-01 |accessdate=2015-04-12 |deadurl=yes |archiveurl=https://web.archive.org/web/20150417144510/http://casemed.case.edu/newscenter/news-release/newsrelease.cfm?news_id=168 |archivedate=2015-04-17 |df= }}</ref>

The use of BET inhibitors has been proposed as a method of male birth control due to their ability to inhibit the testis-specific BET protein [[BRDT]].<ref>{{cite journal | vauthors = Matzuk MM, McKeown MR, Filippakopoulos P, Li Q, Ma L, Agno JE, Lemieux ME, Picaud S, Yu RN, Qi J, Knapp S, Bradner JE | title = Small-molecule inhibition of BRDT for male contraception | journal = Cell | volume = 150 | issue = 4 | pages = 673–84 | date = August 2012 | pmid = 22901802 | pmc = 3420011 | doi = 10.1016/j.cell.2012.06.045 }}</ref><ref>{{cite web|url=http://www.huffingtonpost.com/2012/08/16/male-birth-control-jq1-sperm-count_n_1784361.html |title=Male Birth Control Possible? JQ1 Compound Decreases Mice's Sperm Count, Quality |publisher=Huffingtonpost.com |date=2012-08-16 |accessdate=2015-04-12}}</ref>


== Specific BET inhibitors ==
== Specific BET inhibitors ==
BET inhibitors have been developed by publicly funded research labs as well as pharmaceutical companies including [[GlaxoSmithKline]], Oncoethix (purchased by [[Merck & Co.]] in 2014<ref>{{cite web|url=http://www.mercknewsroom.com/news-release/corporate-news/merck-acquires-oncoethix-privately-held-oncology-company-developing-nove |title=Merck Acquires OncoEthix, a Privately Held Oncology Company Developing Novel BET Inhibitors for Hematological and Solid Cancers &#124; Merck Newsroom Home |publisher=Mercknewsroom.com |date=2014-12-18 |accessdate=2015-04-12}}</ref>), Oncoethix,<ref>{{cite web|url=http://www.oncoethix.com/ |title=Site |publisher=Oncoethix |date= |accessdate=2015-04-12}}</ref> Constellation pharmaceuticals,<ref>{{cite web|url=http://www.constellationpharma.com/ |title=Stellar Science, Breakthrough Medicine – Constellation Pharmaceuticals |publisher=Constellationpharma.com |date= |accessdate=2015-04-12}}</ref> Resverlogix Corp<ref>{{cite web|url=http://www.resverlogix.com/ |title=Home - Resverlogix Corp |publisher=Resverlogix.com |date= |accessdate=2015-05-05}}</ref> and Zenith epigenetics.<ref>{{cite web | url = http://www.zenithepigenetics.com/upload/media_element/16/01/zenith-epigenetics-presentation---epicongress-boston-july-2014.pdf | title = Developing Best in Class BET Inhibitors for Oncology & AI: from Discovery to the Clinic | publisher = | first = Kevin G. | last = McLure | name-list-format = vanc | work = EpiCongress | date = July 2014 }}</ref> Notable BET inhibitors include:
BET inhibitors have been developed by publicly funded research labs as well as pharmaceutical companies including [[GlaxoSmithKline]], Oncoethix (purchased by [[Merck & Co.]] in 2014<ref>{{cite web|url=http://www.mercknewsroom.com/news-release/corporate-news/merck-acquires-oncoethix-privately-held-oncology-company-developing-nove |title=Merck Acquires OncoEthix, a Privately Held Oncology Company Developing Novel BET Inhibitors for Hematological and Solid Cancers &#124; Merck Newsroom Home |publisher=Mercknewsroom.com |date=2014-12-18 |access-date=2015-04-12}}</ref>), Oncoethix,<ref>{{cite web|url=http://www.oncoethix.com/ |title=Site |publisher=Oncoethix |access-date=2015-04-12}}</ref> Constellation pharmaceuticals,<ref>{{cite web|url=http://www.constellationpharma.com/ |title=Stellar Science, Breakthrough Medicine – Constellation Pharmaceuticals |publisher=Constellationpharma.com |access-date=2015-04-12}}</ref> Resverlogix Corp<ref name=":0">{{cite web|url=http://www.resverlogix.com/ |title=Home - Resverlogix Corp |publisher=Resverlogix.com |access-date=2015-05-05}}</ref> and Zenith epigenetics.<ref>{{cite web | url = http://www.zenithepigenetics.com/upload/media_element/16/01/zenith-epigenetics-presentation---epicongress-boston-july-2014.pdf | title = Developing Best in Class BET Inhibitors for Oncology & AI: from Discovery to the Clinic | first = Kevin G. | last = McLure | name-list-style = vanc | work = EpiCongress | date = July 2014 }}</ref> Notable BET inhibitors include:


=== Targeting both BD1 and BD2 (bromodomains) ===
=== Targeting both BD1 and BD2 (bromodomains) ===


* I-BET 151 (GSK1210151A)<ref>{{cite journal | vauthors = Di Costanzo A, Del Gaudio N, Migliaccio A, Altucci L | title = Epigenetic drugs against cancer: an evolving landscape | journal = Archives of Toxicology | volume = 88 | issue = 9 | pages = 1651–68 | date = September 2014 | pmid = 25085708 | doi = 10.1007/s00204-014-1315-6 | s2cid = 16805972 }}</ref>
* [[JQ1]] – commonly used in research studies and distributed free of charge by the James Bradner laboratory at the Dana Farber Cancer Institute<ref>{{cite web|url=http://bradner.dfci.harvard.edu/probes.php |title=Bradner Lab – Probes |publisher=Bradner.dfci.harvard.edu |date= |accessdate=2015-04-12}}</ref>
* I-BET 762 ([[GSK525762]])<ref>[https://clinicaltrials.gov/ct2/results?term=GSK525762&Search=Search GSK525762 clinical studies]</ref>
* I-BET 151 (GSK1210151A) – widely used in research applications<ref>{{cite journal | vauthors = Di Costanzo A, Del Gaudio N, Migliaccio A, Altucci L | title = Epigenetic drugs against cancer: an evolving landscape | journal = Archives of Toxicology | volume = 88 | issue = 9 | pages = 1651–68 | date = September 2014 | pmid = 25085708 | doi = 10.1007/s00204-014-1315-6 }}</ref>
* [[OTX-015]]<ref>{{Cite journal | year = 2015 | last1 = Herait | first1 = P | title = O7.3BET-bromodomain (BRD) inhibitor OTX015: Final results of the dose-finding part of a phase I study in hematologic malignancies | journal = Annals of Oncology | volume = 26 | pages = ii10 | last2 = Dombret | first2 = H | last3 = Thieblemont | first3 = C | last4 = Facon | first4 = T | last5 = Stathis | first5 = A | last6 = Cunningham | first6 = D | last7 = Palumbo | first7 = A | last8 = Vey | first8 = N | last9 = Michallet | first9 = M | last10 = Recher | first10 = C | last11 = Rezai | first11 = K | last12 = Preudhomme | first12 = C | issue = Suppl 2 | name-list-style = vanc | doi = 10.1093/annonc/mdv085.3 | doi-access = free }}</ref>
* I-BET 762 ([[GSK525762]]) – in clinical trials evaluating safety and efficacy in patients with NUT midline carcinoma and [[hematologic malignancies]]<ref>[https://clinicaltrials.gov/ct2/results?term=GSK525762&Search=Search GSK525762 clinical studies]</ref>
* TEN-010<ref>{{cite web|url=http://www.tenshatherapeutics.com/ |title=Small molecule selective bromodomain inhibitors for treating cancer and other diseases |publisher=Tensha Therapeutics |access-date=2015-04-12}}</ref>
* [[OTX-015]] – phase I trials results in patients with hematologic malignancies are available.<ref>{{Cite journal | year = 2015 | author1 = Herait | first1 = P | title = O7.3BET-bromodomain (BRD) inhibitor OTX015: Final results of the dose-finding part of a phase I study in hematologic malignancies | journal = Annals of Oncology | volume = 26 Suppl 2 | pages = ii10 | last2 = Dombret | first2 = H | last3 = Thieblemont | first3 = C | last4 = Facon | first4 = T | last5 = Stathis | first5 = A | last6 = Cunningham | first6 = D | last7 = Palumbo | first7 = A | last8 = Vey | first8 = N | last9 = Michallet | first9 = M | last10 = Recher | first10 = C | last11 = Rezai | first11 = K | last12 = Preudhomme | first12 = C | name-list-format = vanc | doi = 10.1093/annonc/mdv085.3 }}</ref> Clinical trial testing conditions in patients with hematologic malignancies, solid tumors, [[glioblastoma multiforme]], and NUT midline carcinoma
* [[CPI-203]]<ref>{{cite journal | vauthors = Moros A, Rodríguez V, Saborit-Villarroya I, Montraveta A, Balsas P, Sandy P, Martínez A, Wiestner A, Normant E, Campo E, Pérez-Galán P, Colomer D, Roué G | title = Synergistic antitumor activity of lenalidomide with the BET bromodomain inhibitor CPI203 in bortezomib-resistant mantle cell lymphoma | journal = Leukemia | volume = 28 | issue = 10 | pages = 2049–59 | date = October 2014 | pmid = 24721791 | doi = 10.1038/leu.2014.106 | s2cid = 205195668 | url = http://www.constellationpharma.com/2014/12/synergistic-antitumor-activity-of-lenalidomide-with-the-bet-bromodomain-inhibitor-cpi203-in-bortezomib-resistant-mantle-cell-lymphoma/ | archive-url = https://web.archive.org/web/20150418203921/http://www.constellationpharma.com/2014/12/synergistic-antitumor-activity-of-lenalidomide-with-the-bet-bromodomain-inhibitor-cpi203-in-bortezomib-resistant-mantle-cell-lymphoma/ | archive-date = 18 April 2015 }}</ref>
* TEN-010 – created by Tensha therapeutics<ref>{{cite web|url=http://www.tenshatherapeutics.com/ |title=Small molecule selective bromodomain inhibitors for treating cancer and other diseases |publisher=Tensha Therapeutics |date= |accessdate=2015-04-12}}</ref>
* [[CPI-0610]]<ref>{{cite web|title=Search of: bet inhibitor - List Results - ClinicalTrials.gov|url=https://www.clinicaltrials.gov/ct2/results?term=bet+inhibitor&Search=Search|website=ClinicalTrials.gov|access-date=1 June 2015}}</ref>
* [[CPI-203]] – shown to be effective in multiple myeloma when given in combination with [[lenalidomide]].<ref>{{cite journal | vauthors = Moros A, Rodríguez V, Saborit-Villarroya I, Montraveta A, Balsas P, Sandy P, Martínez A, Wiestner A, Normant E, Campo E, Pérez-Galán P, Colomer D, Roué G | title = Synergistic antitumor activity of lenalidomide with the BET bromodomain inhibitor CPI203 in bortezomib-resistant mantle cell lymphoma | journal = Leukemia | volume = 28 | issue = 10 | pages = 2049–59 | date = October 2014 | pmid = 24721791 | doi = 10.1038/leu.2014.106 | url = http://www.constellationpharma.com/2014/12/synergistic-antitumor-activity-of-lenalidomide-with-the-bet-bromodomain-inhibitor-cpi203-in-bortezomib-resistant-mantle-cell-lymphoma/ | archiveurl = https://web.archive.org/web/20150418203921/http://www.constellationpharma.com/2014/12/synergistic-antitumor-activity-of-lenalidomide-with-the-bet-bromodomain-inhibitor-cpi203-in-bortezomib-resistant-mantle-cell-lymphoma/ | archivedate = 18 April 2015 }}</ref>
* [[CPI-0610]] – currently being evaluated in phase I clinical trials for lymphoma, multiple myeloma, and other hematologic cancers.<ref>{{cite web|title=Search of: bet inhibitor - List Results - ClinicalTrials.gov|url=https://www.clinicaltrials.gov/ct2/results?term=bet+inhibitor&Search=Search|website=ClinicalTrials.gov|accessdate=1 June 2015}}</ref>


=== Selective targeting of BD1 ===
=== Selective targeting of BD1 ===
* [[olinone]], e.g. to affect the differentiation of [[oligodendrocyte progenitor cell]]s.<ref name="Ntranos">{{Cite journal|last=Ntranos|first=Achilles|last2=Casaccia|first2=Patrizia|title=Bromodomains: Translating the words of lysine acetylation into myelin injury and repair |url=https://www.researchgate.net/publication/282912027_Bromodomains_Translating_the_words_of_lysine_acetylation_into_myelin_injury_and_repair |journal=Neuroscience Letters|volume=625|pages=4–10|doi=10.1016/j.neulet.2015.10.015|pmid=26472704|pmc=4841751|year=2016}}</ref>{{rp|4.1}}<ref>[https://www.ncbi.nlm.nih.gov/pubmed/24954007 Selective chemical modulation of gene transcription favors oligodendrocyte lineage progression. 2014]</ref>
* [[olinone]], e.g. to affect the differentiation of [[oligodendrocyte progenitor cell]]s.<ref name="Ntranos">{{cite journal | vauthors = Ntranos A, Casaccia P | title = Bromodomains: Translating the words of lysine acetylation into myelin injury and repair | journal = Neuroscience Letters | volume = 625 | pages = 4–10 | date = June 2016 | pmid = 26472704 | pmc = 4841751 | doi = 10.1016/j.neulet.2015.10.015 }}</ref>{{rp|4.1}}<ref>{{cite journal | vauthors = Gacias M, Gerona-Navarro G, Plotnikov AN, Zhang G, Zeng L, Kaur J, Moy G, Rusinova E, Rodriguez Y, Matikainen B, Vincek A, Joshua J, Casaccia P, Zhou MM | title = Selective chemical modulation of gene transcription favors oligodendrocyte lineage progression | journal = Chemistry & Biology | volume = 21 | issue = 7 | pages = 841–854 | date = July 2014 | pmid = 24954007 | pmc = 4104156 | doi = 10.1016/j.chembiol.2014.05.009 }}</ref>


=== Selective targeting of BD2 ===
=== Selective targeting of BD2 ===


* RVX-208<ref>{{cite journal | vauthors = Picaud S, Wells C, Felletar I, Brotherton D, Martin S, Savitsky P, Diez-Dacal B, Philpott M, Bountra C, Lingard H, Fedorov O, Müller S, Brennan PE, Knapp S, Filippakopoulos P | title = RVX-208, an inhibitor of BET transcriptional regulators with selectivity for the second bromodomain | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 110 | issue = 49 | pages = 19754–9 | date = December 2013 | pmid = 24248379 | pmc = 3856850 | doi = 10.1073/pnas.1310658110 | bibcode = 2013PNAS..11019754P | doi-access = free }}</ref>
* [[RVX 208|RVX-208]] – created by Resverlogix Corp.<ref name=":0">{{cite web|url=http://www.resverlogix.com/ |title=Home - Resverlogix Corp |publisher=Resverlogix.com |date= |accessdate=2015-05-05}}</ref> and being evaluated in clinical trials for treatment of [[atherosclerosis]] and associated [[cardiovascular disease]].<ref>J. Johansson, A. Gordon, C. Halliday, N.C. Wong, Effects of RVX-208 on major adverse cardiac events (MACE), apolipoprotein A-I and High-Density-Lipoproteins; A post-hoc analysis from the pooled SUSTAIN and ASSURE clinical trials, Eur Heart J Suppl, 35 (2014) 732-724.</ref>

* ABBV-744<ref>{{cite journal | vauthors = Faivre EJ, McDaniel KF, Albert DH, Mantena SR, Plotnik JP, Wilcox D, Zhang L, Bui MH, Sheppard GS, Wang L, Sehgal V, Lin X, Huang X, Lu X, Uziel T, Hessler P, Lam LT, Bellin RJ, Mehta G, Fidanze S, Pratt JK, Liu D, Hasvold LA, Sun C, Panchal SC, Nicolette JJ, Fossey SL, Park CH, Longenecker K, Bigelow L, Torrent M, Rosenberg SH, Kati WM, Shen Y | title = Selective inhibition of the BD2 bromodomain of BET proteins in prostate cancer. | journal = Nature | volume = 578 | issue = 7794 | pages = 306–310 | date = February 2020 | pmid = 31969702 | doi = 10.1038/s41586-020-1930-8 | bibcode = 2020Natur.578..306F | s2cid = 210866404 }}</ref>


=== Dual kinase-bromodomain inhibitors ===
=== Dual kinase-bromodomain inhibitors ===
Line 46: Line 38:
* [[LY294002]] (some PI3K and BRD2, BRD3, and BRD4)<ref>{{cite journal | vauthors = Dittmann A, Werner T, Chung CW, Savitski MM, Fälth Savitski M, Grandi P, Hopf C, Lindon M, Neubauer G, Prinjha RK, Bantscheff M, Drewes G | title = The commonly used PI3-kinase probe LY294002 is an inhibitor of BET bromodomains | journal = ACS Chemical Biology | volume = 9 | issue = 2 | pages = 495–502 | date = February 2014 | pmid = 24533473 | doi = 10.1021/cb400789e }}</ref><ref>{{cite journal | vauthors = Ciceri P, Müller S, O'Mahony A, Fedorov O, Filippakopoulos P, Hunt JP, Lasater EA, Pallares G, Picaud S, Wells C, Martin S, Wodicka LM, Shah NP, Treiber DK, Knapp S | title = Dual kinase-bromodomain inhibitors for rationally designed polypharmacology | journal = Nature Chemical Biology | volume = 10 | issue = 4 | pages = 305–12 | date = April 2014 | pmid = 24584101 | pmc = 3998711 | doi = 10.1038/nchembio.1471 }}</ref>
* [[LY294002]] (some PI3K and BRD2, BRD3, and BRD4)<ref>{{cite journal | vauthors = Dittmann A, Werner T, Chung CW, Savitski MM, Fälth Savitski M, Grandi P, Hopf C, Lindon M, Neubauer G, Prinjha RK, Bantscheff M, Drewes G | title = The commonly used PI3-kinase probe LY294002 is an inhibitor of BET bromodomains | journal = ACS Chemical Biology | volume = 9 | issue = 2 | pages = 495–502 | date = February 2014 | pmid = 24533473 | doi = 10.1021/cb400789e }}</ref><ref>{{cite journal | vauthors = Ciceri P, Müller S, O'Mahony A, Fedorov O, Filippakopoulos P, Hunt JP, Lasater EA, Pallares G, Picaud S, Wells C, Martin S, Wodicka LM, Shah NP, Treiber DK, Knapp S | title = Dual kinase-bromodomain inhibitors for rationally designed polypharmacology | journal = Nature Chemical Biology | volume = 10 | issue = 4 | pages = 305–12 | date = April 2014 | pmid = 24584101 | pmc = 3998711 | doi = 10.1038/nchembio.1471 }}</ref>


=== Bivalent BET inhibitors ===
=== BET-family (BRD2, BRD3, BRD4 and BRDT) ===

* [[RVX 208|RVX-208]] – created by Resverlogix Corp.<ref name=":0" /> . A patent<ref>{{Cite journal|date=2016-08-22|title=Patente WO2017037567A1 - Regulators of frataxin|url=https://encrypted.google.com/patents/WO2017037567A1?cl=en&hl=es|journal=Google Books}}</ref> by [[Pfizer]] describes the application with [[Friedreich's ataxia|Friedreich Ataxia]].
* AZD5153<ref>{{cite journal | vauthors = Bradbury RH, Callis R, Carr GR, Chen H, Clark E, Feron L, Glossop S, Graham MA, Hattersley M, Jones C, Lamont SG, Ouvry G, Patel A, Patel J, Rabow AA, Roberts CA, Stokes S, Stratton N, Walker GE, Ward L, Whalley D, Whittaker D, Wrigley G, Waring MJ | title = Optimization of a Series of Bivalent Triazolopyridazine Based Bromodomain and Extraterminal Inhibitors: The Discovery of (3R)-4-[2-[4-[1-(3-Methoxy-[1,2,4]triazolo[4,3-b]pyridazin-6-yl)-4-piperidyl]phenoxy]ethyl]-1,3-dimethyl-piperazin-2-one (AZD5153) | journal = Journal of Medicinal Chemistry | volume = 59 | issue = 17 | pages = 7801–17 | date = September 2016 | pmid = 27528113 | doi = 10.1021/acs.jmedchem.6b00070 }}</ref><ref>{{cite journal | vauthors = Rhyasen GW, Hattersley MM, Yao Y, Dulak A, Wang W, Petteruti P, Dale IL, Boiko S, Cheung T, Zhang J, Wen S, Castriotta L, Lawson D, Collins M, Bao L, Ahdesmaki MJ, Walker G, O'Connor G, Yeh TC, Rabow AA, Dry JR, Reimer C, Lyne P, Mills GB, Fawell SE, Waring MJ, Zinda M, Clark E, Chen H | title = AZD5153: A Novel Bivalent BET Bromodomain Inhibitor Highly Active against Hematologic Malignancies | journal = Molecular Cancer Therapeutics | volume = 15 | issue = 11 | pages = 2563–2574 | date = November 2016 | pmid = 27573426 | doi = 10.1158/1535-7163.MCT-16-0141 | doi-access = free }}</ref><ref>{{cite journal | vauthors = Waring MJ, Chen H, Rabow AA, Walker G, Bobby R, Boiko S, Bradbury RH, Callis R, Clark E, Dale I, Daniels DL, Dulak A, Flavell L, Holdgate G, Jowitt TA, Kikhney A, McAlister M, Méndez J, Ogg D, Patel J, Petteruti P, Robb GR, Robers MB, Saif S, Stratton N, Svergun DI, Wang W, Whittaker D, Wilson DM, Yao Y | title = Potent and selective bivalent inhibitors of BET bromodomains | journal = Nature Chemical Biology | volume = 12 | issue = 12 | pages = 1097–1104 | date = December 2016 | pmid = 27775716 | doi = 10.1038/nchembio.2210 | url = https://eprint.ncl.ac.uk/fulltext.aspx?url=225502/F6DFE66B-A17A-4A34-BE25-0D3918EBA658.pdf&pub_id=225502 | doi-access = free }}</ref>
*MT-1<ref>{{cite journal | vauthors = Tanaka M, Roberts JM, Seo HS, Souza A, Paulk J, Scott TG, DeAngelo SL, Dhe-Paganon S, Bradner JE | title = Design and characterization of bivalent BET inhibitors | journal = Nature Chemical Biology | volume = 12 | issue = 12 | pages = 1089–1096 | date = December 2016 | pmid = 27775715 | pmc = 5117811 | doi = 10.1038/nchembio.2209 }}</ref>
*MS645<ref>{{cite journal | vauthors = Ren C, Zhang G, Han F, Fu S, Cao Y, Zhang F, Zhang Q, Meslamani J, Xu Y, Ji D, Cao L, Zhou Q, Cheung KL, Sharma R, Babault N, Yi Z, Zhang W, Walsh MJ, Zeng L, Zhou MM | title = Spatially constrained tandem bromodomain inhibition bolsters sustained repression of BRD4 transcriptional activity for TNBC cell growth | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 115 | issue = 31 | pages = 7949–7954 | date = July 2018 | pmid = 30012592 | pmc = 6077712 | doi = 10.1073/pnas.1720000115 | doi-access = free }}</ref>


== See also ==
== See also ==
{{div col|colwidth=22em}}
{{colbegin|3}}
* [[Bromodomain]]
* [[Bromodomain]]
* [[Bromodomain-containing protein]]
* [[Bromodomain-containing protein]]
Line 58: Line 53:
* [[BRD4]]
* [[BRD4]]
* [[BRDT]]
* [[BRDT]]
{{colend}}
{{div col end}}


== References ==
== References ==

Latest revision as of 21:48, 2 December 2023

BET inhibitors are a class of drugs that reversibly bind the bromodomains of Bromodomain and Extra-Terminal motif (BET) proteins BRD2, BRD3, BRD4, and BRDT, and prevent protein-protein interaction between BET proteins and acetylated histones and transcription factors.[1][2]

Discovery and development

[edit]

Thienodiazepine BET inhibitors were discovered in a phenotypic drug screen by scientists at Yoshitomi Pharmaceuticals (now Mitsubishi Tanabe Pharma) in the early 1990s, and their potential both as anti-inflammatories and anti-cancer agents noted.[3][4] OncoEthix (acquired by Merck in 2014) in-licensed OTX-015 from Mitsubishi and in 2012 initiated the first BET inhibitor clinical trial for oncology (ClinicalTrials.gov Identifier: NCT01713582). BET inhibitors were also independently discovered in phenotypic screens for small molecule inducers of Apolipoprotein A-I by both GSK and Resverlogix.[5][6] In 2010 the use of JQ1, a tert-butyl synthetic precursor of OTX-015, was published having activity in vitro in NUT midline carcinoma.[7] Since this time a number of molecules have been described that are capable of targeting BET bromodomains.[8]

BET inhibitors have been described that are able to discriminate between the first and second bromodomains of BET proteins (BD1 vs BD2). However, no BET inhibitor has yet been described that can reliably distinguish between BET family members (BRD2 vs BRD3 vs BRD4 vs BRDT).[9] Only in the research context has targeting individual BET proteins been achieved by mutating them to be more sensitive to a derivative of JQ1 / I-BET 762.[10]

Mechanism of action

[edit]

Interest in using BET inhibitors in cancer began with the observation that chromosomal translocations involving BET genes BRD3 and BRD4 drove the pathogenesis of the rare cancer NUT midline carcinoma. Subsequent research uncovered the dependence of some forms of acute myeloid leukemia,[11][12] multiple myeloma and acute lymphoblastic leukemia[13] on the BET protein BRD4, and the sensitivity of these cancers to BET inhibitors. In many cases, expression of the growth promoting transcription factor Myc is blocked by BET inhibitors.[14][15][16] BRD2 and BRD3 are functionally redundant and may be more important as therapeutic targets than is appreciated in studies depleting each BET protein individually.[17] Recent studies also showed that BET inhibitors can be instrumental in overcoming resistance to other targeted therapies when used in combination therapies. Examples include use of BET inhibitors in combination with γ-secretase inhibitors for T cell acute lymphoblastic leukemia and BRAF-inhibitor (vemurafenib) for BRAF-inhibitor resistant melanomas carrying the BRAFV600E mutation.[18][19]

Specific BET inhibitors

[edit]

BET inhibitors have been developed by publicly funded research labs as well as pharmaceutical companies including GlaxoSmithKline, Oncoethix (purchased by Merck & Co. in 2014[20]), Oncoethix,[21] Constellation pharmaceuticals,[22] Resverlogix Corp[23] and Zenith epigenetics.[24] Notable BET inhibitors include:

Targeting both BD1 and BD2 (bromodomains)

[edit]

Selective targeting of BD1

[edit]

Selective targeting of BD2

[edit]

Dual kinase-bromodomain inhibitors

[edit]

Bivalent BET inhibitors

[edit]

See also

[edit]

References

[edit]
  1. ^ Garnier JM, Sharp PP, Burns CJ (February 2014). "BET bromodomain inhibitors: a patent review". Expert Opinion on Therapeutic Patents. 24 (2): 185–99. doi:10.1517/13543776.2014.859244. PMID 24261714. S2CID 24647727.
  2. ^ Shi J, Vakoc CR (June 2014). "The mechanisms behind the therapeutic activity of BET bromodomain inhibition". Molecular Cell. 54 (5): 728–36. doi:10.1016/j.molcel.2014.05.016. PMC 4236231. PMID 24905006.
  3. ^ JP application 2008156311, Umehara, Takashi; Tanaka, Akiko & Sato, Kazuhito et al., "BRD2 bromodomain binder", published 2008-07-10, assigned to RIKEN Institute of Physical and Chemical Research , since withdrawn.
  4. ^ JP 2623800, Naka, Yoichi; Ichiyanagi, Yukio & Haga, Keiichiro et al., "Thienodiazepine compounds", published 1997-06-25, assigned to Yoshitomi Pharmaceutical Co. 
  5. ^ Nicodeme E, Jeffrey KL, Schaefer U, Beinke S, Dewell S, Chung CW, Chandwani R, Marazzi I, Wilson P, Coste H, White J, Kirilovsky J, Rice CM, Lora JM, Prinjha RK, Lee K, Tarakhovsky A (December 2010). "Suppression of inflammation by a synthetic histone mimic". Nature. 468 (7327): 1119–23. Bibcode:2010Natur.468.1119N. doi:10.1038/nature09589. PMC 5415086. PMID 21068722.
  6. ^ McLure KG, Gesner EM, Tsujikawa L, Kharenko OA, Atwell S, Campeau E, Wasiak S, Stein A, White A, Fontano E, Suto RK, Wong NC, Wagner GS, Hansen HC, Young PR (December 2013). "RVX-208, an inducer of ApoA-I in humans, is a BET bromodomain antagonist". PLOS ONE. 8 (12): e83190. doi:10.1371/journal.pone.0083190. PMC 3877016. PMID 24391744.
  7. ^ Filippakopoulos P, Qi J, Picaud S, Shen Y, Smith WB, Fedorov O, Morse EM, Keates T, Hickman TT, Felletar I, Philpott M, Munro S, McKeown MR, Wang Y, Christie AL, West N, Cameron MJ, Schwartz B, Heightman TD, La Thangue N, French CA, Wiest O, Kung AL, Knapp S, Bradner JE (December 2010). "Selective inhibition of BET bromodomains". Nature. 468 (7327): 1067–73. Bibcode:2010Natur.468.1067F. doi:10.1038/nature09504. PMC 3010259. PMID 20871596.
  8. ^ Picaud S, Da Costa D, Thanasopoulou A, Filippakopoulos P, Fish PV, Philpott M, Fedorov O, Brennan P, Bunnage ME, Owen DR, Bradner JE, Taniere P, O'Sullivan B, Müller S, Schwaller J, Stankovic T, Knapp S (June 2013). "PFI-1, a highly selective protein interaction inhibitor, targeting BET Bromodomains". Cancer Research. 73 (11): 3336–46. doi:10.1158/0008-5472.CAN-12-3292. PMC 3673830. PMID 23576556.
  9. ^ Filippakopoulos P, Knapp S (May 2014). "Targeting bromodomains: epigenetic readers of lysine acetylation". Nature Reviews. Drug Discovery. 13 (5): 337–56. doi:10.1038/nrd4286. PMID 24751816. S2CID 12172346.
  10. ^ Baud MG, Lin-Shiao E, Cardote T, Tallant C, Pschibul A, Chan KH, Zengerle M, Garcia JR, Kwan TT, Ferguson FM, Ciulli A (October 2014). "Chemical biology. A bump-and-hole approach to engineer controlled selectivity of BET bromodomain chemical probes". Science. 346 (6209): 638–41. doi:10.1126/science.1249830. PMC 4458378. PMID 25323695.
  11. ^ Dawson MA, Prinjha RK, Dittmann A, Giotopoulos G, Bantscheff M, Chan WI, Robson SC, Chung CW, Hopf C, Savitski MM, Huthmacher C, Gudgin E, Lugo D, Beinke S, Chapman TD, Roberts EJ, Soden PE, Auger KR, Mirguet O, Doehner K, Delwel R, Burnett AK, Jeffrey P, Drewes G, Lee K, Huntly BJ, Kouzarides T (October 2011). "Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia". Nature. 478 (7370): 529–33. Bibcode:2011Natur.478..529D. doi:10.1038/nature10509. PMC 3679520. PMID 21964340.
  12. ^ Zuber J, Shi J, Wang E, Rappaport AR, Herrmann H, Sison EA, Magoon D, Qi J, Blatt K, Wunderlich M, Taylor MJ, Johns C, Chicas A, Mulloy JC, Kogan SC, Brown P, Valent P, Bradner JE, Lowe SW, Vakoc CR (August 2011). "RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia". Nature. 478 (7370): 524–8. Bibcode:2011Natur.478..524Z. doi:10.1038/nature10334. PMC 3328300. PMID 21814200.
  13. ^ Da Costa D, Agathanggelou A, Perry T, Weston V, Petermann E, Zlatanou A, Oldreive C, Wei W, Stewart G, Longman J, Smith E, Kearns P, Knapp S, Stankovic T (July 2013). "BET inhibition as a single or combined therapeutic approach in primary paediatric B-precursor acute lymphoblastic leukaemia". Blood Cancer Journal. 3 (7): e126. doi:10.1038/bcj.2013.24. PMC 3730202. PMID 23872705.
  14. ^ "Jay Bradner: Open-source cancer research | Talk Video". TED.com. 27 October 2011. Retrieved 2015-04-12.
  15. ^ Mertz JA, Conery AR, Bryant BM, Sandy P, Balasubramanian S, Mele DA, Bergeron L, Sims RJ (October 2011). "Targeting MYC dependence in cancer by inhibiting BET bromodomains". Proceedings of the National Academy of Sciences of the United States of America. 108 (40): 16669–74. Bibcode:2011PNAS..10816669M. doi:10.1073/pnas.1108190108. PMC 3189078. PMID 21949397.
  16. ^ Alderton GK (September 2011). "Targeting MYC? You BET". Nature Reviews. Drug Discovery. 10 (10): 732–3. doi:10.1038/nrd3569. PMID 21959283. S2CID 39567104.
  17. ^ Stonestrom AJ, Hsu SC, Jahn KS, Huang P, Keller CA, Giardine BM, Kadauke S, Campbell AE, Evans P, Hardison RC, Blobel GA (April 2015). "Functions of BET proteins in erythroid gene expression". Blood. 125 (18): 2825–34. doi:10.1182/blood-2014-10-607309. PMC 4424630. PMID 25696920.
  18. ^ Korkut A, Wang W, Demir E, Aksoy BA, Jing X, Molinelli EJ, Babur Ö, Bemis DL, Onur Sumer S, Solit DB, Pratilas CA, Sander C (August 2015). "Perturbation biology nominates upstream-downstream drug combinations in RAF inhibitor resistant melanoma cells". eLife. 4. doi:10.7554/elife.04640. PMC 4539601. PMID 26284497.
  19. ^ Knoechel B, Roderick JE, Williamson KE, Zhu J, Lohr JG, Cotton MJ, Gillespie SM, Fernandez D, Ku M, Wang H, Piccioni F, Silver SJ, Jain M, Pearson D, Kluk MJ, Ott CJ, Shultz LD, Brehm MA, Greiner DL, Gutierrez A, Stegmaier K, Kung AL, Root DE, Bradner JE, Aster JC, Kelliher MA, Bernstein BE (April 2014). "An epigenetic mechanism of resistance to targeted therapy in T cell acute lymphoblastic leukemia". Nature Genetics. 46 (4): 364–70. doi:10.1038/ng.2913. PMC 4086945. PMID 24584072.
  20. ^ "Merck Acquires OncoEthix, a Privately Held Oncology Company Developing Novel BET Inhibitors for Hematological and Solid Cancers | Merck Newsroom Home". Mercknewsroom.com. 2014-12-18. Retrieved 2015-04-12.
  21. ^ "Site". Oncoethix. Retrieved 2015-04-12.
  22. ^ "Stellar Science, Breakthrough Medicine – Constellation Pharmaceuticals". Constellationpharma.com. Retrieved 2015-04-12.
  23. ^ "Home - Resverlogix Corp". Resverlogix.com. Retrieved 2015-05-05.
  24. ^ McLure KG (July 2014). "Developing Best in Class BET Inhibitors for Oncology & AI: from Discovery to the Clinic" (PDF). EpiCongress.
  25. ^ Di Costanzo A, Del Gaudio N, Migliaccio A, Altucci L (September 2014). "Epigenetic drugs against cancer: an evolving landscape". Archives of Toxicology. 88 (9): 1651–68. doi:10.1007/s00204-014-1315-6. PMID 25085708. S2CID 16805972.
  26. ^ GSK525762 clinical studies
  27. ^ Herait P, Dombret H, Thieblemont C, Facon T, Stathis A, Cunningham D, Palumbo A, Vey N, Michallet M, Recher C, Rezai K, Preudhomme C (2015). "O7.3BET-bromodomain (BRD) inhibitor OTX015: Final results of the dose-finding part of a phase I study in hematologic malignancies". Annals of Oncology. 26 (Suppl 2): ii10. doi:10.1093/annonc/mdv085.3.
  28. ^ "Small molecule selective bromodomain inhibitors for treating cancer and other diseases". Tensha Therapeutics. Retrieved 2015-04-12.
  29. ^ Moros A, Rodríguez V, Saborit-Villarroya I, Montraveta A, Balsas P, Sandy P, Martínez A, Wiestner A, Normant E, Campo E, Pérez-Galán P, Colomer D, Roué G (October 2014). "Synergistic antitumor activity of lenalidomide with the BET bromodomain inhibitor CPI203 in bortezomib-resistant mantle cell lymphoma". Leukemia. 28 (10): 2049–59. doi:10.1038/leu.2014.106. PMID 24721791. S2CID 205195668. Archived from the original on 18 April 2015.
  30. ^ "Search of: bet inhibitor - List Results - ClinicalTrials.gov". ClinicalTrials.gov. Retrieved 1 June 2015.
  31. ^ Ntranos A, Casaccia P (June 2016). "Bromodomains: Translating the words of lysine acetylation into myelin injury and repair". Neuroscience Letters. 625: 4–10. doi:10.1016/j.neulet.2015.10.015. PMC 4841751. PMID 26472704.
  32. ^ Gacias M, Gerona-Navarro G, Plotnikov AN, Zhang G, Zeng L, Kaur J, Moy G, Rusinova E, Rodriguez Y, Matikainen B, Vincek A, Joshua J, Casaccia P, Zhou MM (July 2014). "Selective chemical modulation of gene transcription favors oligodendrocyte lineage progression". Chemistry & Biology. 21 (7): 841–854. doi:10.1016/j.chembiol.2014.05.009. PMC 4104156. PMID 24954007.
  33. ^ Picaud S, Wells C, Felletar I, Brotherton D, Martin S, Savitsky P, Diez-Dacal B, Philpott M, Bountra C, Lingard H, Fedorov O, Müller S, Brennan PE, Knapp S, Filippakopoulos P (December 2013). "RVX-208, an inhibitor of BET transcriptional regulators with selectivity for the second bromodomain". Proceedings of the National Academy of Sciences of the United States of America. 110 (49): 19754–9. Bibcode:2013PNAS..11019754P. doi:10.1073/pnas.1310658110. PMC 3856850. PMID 24248379.
  34. ^ Faivre EJ, McDaniel KF, Albert DH, Mantena SR, Plotnik JP, Wilcox D, Zhang L, Bui MH, Sheppard GS, Wang L, Sehgal V, Lin X, Huang X, Lu X, Uziel T, Hessler P, Lam LT, Bellin RJ, Mehta G, Fidanze S, Pratt JK, Liu D, Hasvold LA, Sun C, Panchal SC, Nicolette JJ, Fossey SL, Park CH, Longenecker K, Bigelow L, Torrent M, Rosenberg SH, Kati WM, Shen Y (February 2020). "Selective inhibition of the BD2 bromodomain of BET proteins in prostate cancer". Nature. 578 (7794): 306–310. Bibcode:2020Natur.578..306F. doi:10.1038/s41586-020-1930-8. PMID 31969702. S2CID 210866404.
  35. ^ Dittmann A, Werner T, Chung CW, Savitski MM, Fälth Savitski M, Grandi P, Hopf C, Lindon M, Neubauer G, Prinjha RK, Bantscheff M, Drewes G (February 2014). "The commonly used PI3-kinase probe LY294002 is an inhibitor of BET bromodomains". ACS Chemical Biology. 9 (2): 495–502. doi:10.1021/cb400789e. PMID 24533473.
  36. ^ Ciceri P, Müller S, O'Mahony A, Fedorov O, Filippakopoulos P, Hunt JP, Lasater EA, Pallares G, Picaud S, Wells C, Martin S, Wodicka LM, Shah NP, Treiber DK, Knapp S (April 2014). "Dual kinase-bromodomain inhibitors for rationally designed polypharmacology". Nature Chemical Biology. 10 (4): 305–12. doi:10.1038/nchembio.1471. PMC 3998711. PMID 24584101.
  37. ^ Bradbury RH, Callis R, Carr GR, Chen H, Clark E, Feron L, Glossop S, Graham MA, Hattersley M, Jones C, Lamont SG, Ouvry G, Patel A, Patel J, Rabow AA, Roberts CA, Stokes S, Stratton N, Walker GE, Ward L, Whalley D, Whittaker D, Wrigley G, Waring MJ (September 2016). "Optimization of a Series of Bivalent Triazolopyridazine Based Bromodomain and Extraterminal Inhibitors: The Discovery of (3R)-4-[2-[4-[1-(3-Methoxy-[1,2,4]triazolo[4,3-b]pyridazin-6-yl)-4-piperidyl]phenoxy]ethyl]-1,3-dimethyl-piperazin-2-one (AZD5153)". Journal of Medicinal Chemistry. 59 (17): 7801–17. doi:10.1021/acs.jmedchem.6b00070. PMID 27528113.
  38. ^ Rhyasen GW, Hattersley MM, Yao Y, Dulak A, Wang W, Petteruti P, Dale IL, Boiko S, Cheung T, Zhang J, Wen S, Castriotta L, Lawson D, Collins M, Bao L, Ahdesmaki MJ, Walker G, O'Connor G, Yeh TC, Rabow AA, Dry JR, Reimer C, Lyne P, Mills GB, Fawell SE, Waring MJ, Zinda M, Clark E, Chen H (November 2016). "AZD5153: A Novel Bivalent BET Bromodomain Inhibitor Highly Active against Hematologic Malignancies". Molecular Cancer Therapeutics. 15 (11): 2563–2574. doi:10.1158/1535-7163.MCT-16-0141. PMID 27573426.
  39. ^ Waring MJ, Chen H, Rabow AA, Walker G, Bobby R, Boiko S, Bradbury RH, Callis R, Clark E, Dale I, Daniels DL, Dulak A, Flavell L, Holdgate G, Jowitt TA, Kikhney A, McAlister M, Méndez J, Ogg D, Patel J, Petteruti P, Robb GR, Robers MB, Saif S, Stratton N, Svergun DI, Wang W, Whittaker D, Wilson DM, Yao Y (December 2016). "Potent and selective bivalent inhibitors of BET bromodomains". Nature Chemical Biology. 12 (12): 1097–1104. doi:10.1038/nchembio.2210. PMID 27775716.
  40. ^ Tanaka M, Roberts JM, Seo HS, Souza A, Paulk J, Scott TG, DeAngelo SL, Dhe-Paganon S, Bradner JE (December 2016). "Design and characterization of bivalent BET inhibitors". Nature Chemical Biology. 12 (12): 1089–1096. doi:10.1038/nchembio.2209. PMC 5117811. PMID 27775715.
  41. ^ Ren C, Zhang G, Han F, Fu S, Cao Y, Zhang F, Zhang Q, Meslamani J, Xu Y, Ji D, Cao L, Zhou Q, Cheung KL, Sharma R, Babault N, Yi Z, Zhang W, Walsh MJ, Zeng L, Zhou MM (July 2018). "Spatially constrained tandem bromodomain inhibition bolsters sustained repression of BRD4 transcriptional activity for TNBC cell growth". Proceedings of the National Academy of Sciences of the United States of America. 115 (31): 7949–7954. doi:10.1073/pnas.1720000115. PMC 6077712. PMID 30012592.