Jump to content

E9 honeycomb: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m References: fix author's name, replaced: Chaim Goodman-Strass → Chaim Goodman-Strauss
 
(25 intermediate revisions by 6 users not shown)
Line 1: Line 1:
{{DISPLAYTITLE:E<sub>10</sub> honeycomb}}
{{DISPLAYTITLE:E<sub>9</sub> honeycomb}}
In [[geometry]], an '''E<sub>9</sub> honeycomb''' is a tessellation of uniform polytopes in hyperbolic 9-dimensional space. <math>{\tilde{E}}_9</math>, also (E<sub>10</sub>) is a noncompact hyperbolic group, so either [[facet]]s or [[vertex figure]]s will not be bounded.
In [[geometry]], an '''E<sub>9</sub> honeycomb''' is a tessellation of uniform polytopes in hyperbolic 9-dimensional space. <math>{\bar{T}}_9</math>, also (E<sub>10</sub>) is a paracompact hyperbolic group, so either [[facet]]s or [[vertex figure]]s will not be bounded.


[[En_(Lie_algebra)|E<sub>10</sub>]] is last of the series of [[Coxeter group]]s with a bifurcated [[Coxeter-Dynkin diagram]] of lengths 6,2,1. There are 1023 unique E<sub>10</sub> honeycombs by all combinations of its [[Coxeter-Dynkin diagram]]. There are no regular honeycombs in the family since its Coxeter diagram a nonlinear graph, but there are three simplest ones, with a single ring at the end of its 3 branches: 6<sub>21</sub>, 2<sub>61</sub>, 1<sub>62</sub>.
[[En (Lie algebra)|E<sub>10</sub>]] is last of the series of [[Coxeter group]]s with a bifurcated [[Coxeter-Dynkin diagram]] of lengths 6,2,1. There are 1023 unique E<sub>10</sub> honeycombs by all combinations of its [[Coxeter-Dynkin diagram]]. There are no regular honeycombs in the family since its Coxeter diagram is a nonlinear graph, but there are three simplest ones, with a single ring at the end of its 3 branches: 6<sub>21</sub>, 2<sub>61</sub>, 1<sub>62</sub>.


==6<sub>21</sub> honeycomb==
==6<sub>21</sub> honeycomb==
Line 12: Line 12:
|bgcolor=#e7dcc3|[[Schläfli symbol]]|| {3,3,3,3,3,3,3<sup>2,1</sup>}
|bgcolor=#e7dcc3|[[Schläfli symbol]]|| {3,3,3,3,3,3,3<sup>2,1</sup>}
|-
|-
|bgcolor=#e7dcc3|Coxeter symbol|| 6<sub>21</sub>
|bgcolor=#e7dcc3|[[Coxeter symbol]]|| 6<sub>21</sub>
|-
|-
|bgcolor=#e7dcc3|[[Coxeter-Dynkin diagram]]||{{CDD|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea_1}}
|bgcolor=#e7dcc3|[[Coxeter-Dynkin diagram]]||{{CDD|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea_1}}
|-
|-
|bgcolor=#e7dcc3|9-faces||[[enneacross|6<sub>11</sub>]] [[Image:Cross graph 9 Nodes highlighted.svg|25px]]<BR>[[9-simplex|{3<sup>8</sup>}]] [[Image:9-simplex_t0.svg|25px]]
|bgcolor=#e7dcc3|9-faces||[[enneacross|6<sub>11</sub>]] [[Image:Cross graph 9 Nodes highlighted.svg|25px]]<BR>[[9-simplex|{3<sup>8</sup>}]] [[Image:9-simplex t0.svg|25px]]
|-
|-
|bgcolor=#e7dcc3|8-faces||[[8-simplex|{3<sup>7</sup>}]] [[Image:8-simplex_t0.svg|25px]]
|bgcolor=#e7dcc3|8-faces||[[8-simplex|{3<sup>7</sup>}]] [[Image:8-simplex t0.svg|25px]]
|-
|-
|bgcolor=#e7dcc3|7-faces||[[7-simplex|{3<sup>6</sup>}]] [[Image:7-simplex_t0.svg|25px]]
|bgcolor=#e7dcc3|7-faces||[[7-simplex|{3<sup>6</sup>}]] [[Image:7-simplex t0.svg|25px]]
|-
|-
|bgcolor=#e7dcc3|6-faces||[[6-simplex|{3<sup>5</sup>}]] [[Image:6-simplex_t0.svg|25px]]
|bgcolor=#e7dcc3|6-faces||[[6-simplex|{3<sup>5</sup>}]] [[Image:6-simplex t0.svg|25px]]
|-
|-
|bgcolor=#e7dcc3|5-faces||[[5-simplex|{3<sup>4</sup>}]] [[Image:5-simplex_t0.svg|25px]]
|bgcolor=#e7dcc3|5-faces||[[5-simplex|{3<sup>4</sup>}]] [[Image:5-simplex t0.svg|25px]]
|-
|-
|bgcolor=#e7dcc3|4-faces||[[pentachoron|{3<sup>3</sup>}]] [[Image:4-simplex_t0.svg|25px]]
|bgcolor=#e7dcc3|4-faces||[[pentachoron|{3<sup>3</sup>}]] [[Image:4-simplex t0.svg|25px]]
|-
|-
|bgcolor=#e7dcc3|Cells||[[tetrahedron|{3<sup>2</sup>}]] [[Image:3-simplex_t0.svg|25px]]
|bgcolor=#e7dcc3|Cells||[[tetrahedron|{3<sup>2</sup>}]] [[Image:3-simplex t0.svg|25px]]
|-
|-
|bgcolor=#e7dcc3|Faces||[[triangle|{3}]] [[Image:2-simplex_t0.svg|25px]]
|bgcolor=#e7dcc3|Faces||[[triangle|{3}]] [[Image:2-simplex t0.svg|25px]]
|-
|-
|bgcolor=#e7dcc3|[[Vertex figure]]||[[5 21 honeycomb|5<sub>21</sub>]]
|bgcolor=#e7dcc3|[[Vertex figure]]||[[5 21 honeycomb|5<sub>21</sub>]]
|-
|-
|bgcolor=#e7dcc3|[[Coxeter group|Symmetry group]]||E<sub>10</sub>, [3<sup>6,2,1</sup>]
|bgcolor=#e7dcc3|[[Coxeter group|Symmetry group]]||<math>{\bar{T}}_9</math>, [3<sup>6,2,1</sup>]
|}
|}
The '''6<sub>21</sub> honeycomb''' is constructed from alternating [[9-simplex]] and [[9-orthoplex]] facets within the symmetry of the E<sub>10</sub> Coxeter group.
The '''6<sub>21</sub> honeycomb''' is constructed from alternating [[9-simplex]] and [[9-orthoplex]] facets within the symmetry of the E<sub>10</sub> Coxeter group.

The [[vertex figure]] of the honeycomb is the the infinite [[5_21 honeycomb|5<sub>21</sub> honeycomb]].


This honeycomb is highly regular in the sense that its symmetry group (the affine E<sub>9</sub> Weyl group) acts transitively on the [[face (geometry)|''k''-faces]] for ''k'' ≤ 7. All of the ''k''-faces for ''k'' ≤ 8 are simplices.
This honeycomb is highly regular in the sense that its symmetry group (the affine E<sub>9</sub> Weyl group) acts transitively on the [[face (geometry)|''k''-faces]] for ''k'' ≤ 7. All of the ''k''-faces for ''k'' ≤ 8 are simplices.

This honeycomb is last in the series of [[Semiregular k 21 polytope|k<sub>21</sub> polytopes]], enumerated by [[Thorold Gosset]] in 1900, listing polytopes and honeycombs constructed entirely of regular facets, although his list ended with the 8-dimensional the Euclidean honeycomb, 5<sub>21</sub>.<ref>Conway, 2008, The Gosset series, p 413</ref>


===Construction===
===Construction===
Line 61: Line 61:
: {{CDD|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea|3a|nodea|3a|nodea_1}}
: {{CDD|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea|3a|nodea|3a|nodea_1}}


The ''face figure'' is determined from the edge figure by removing the ringed node and ringing the neighboring node. This makes the [[E7 polytope|3<sub>21</sub> polytope]].
The ''face figure'' is determined from the edge figure by removing the ringed node and ringing the neighboring node. This makes the [[3_21 polytope|3<sub>21</sub> polytope]].
: {{CDD|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea|3a|nodea_1}}
: {{CDD|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea|3a|nodea_1}}


The ''cell figure'' is determined from the face figure by removing the ringed node and ringing the neighboring node. This makes the [[E6 polytope|2<sub>21</sub> polytope]].
The ''cell figure'' is determined from the face figure by removing the ringed node and ringing the neighboring node. This makes the [[E6 polytope|2<sub>21</sub> polytope]].
: {{CDD|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea_1}}
: {{CDD|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea_1}}

=== Related polytopes and honeycombs ===

The 6<sub>21</sub> is last in a dimensional series of [[semiregular polytope]]s and honeycombs, identified in 1900 by [[Thorold Gosset]]. Each [[Uniform k21 polytope|member of the sequence]] has the previous member as its [[vertex figure]]. All facets of these polytopes are [[regular polytope]]s, namely [[simplex]]es and [[orthoplex]]es.
{{k 21 polytopes}}


== 2<sub>61</sub> honeycomb==
== 2<sub>61</sub> honeycomb==
Line 75: Line 80:
|bgcolor=#e7dcc3|[[Schläfli symbol]]|| {3,3,3<sup>6,1</sup>}
|bgcolor=#e7dcc3|[[Schläfli symbol]]|| {3,3,3<sup>6,1</sup>}
|-
|-
|bgcolor=#e7dcc3|Coxeter symbol|| 2<sub>61</sub>
|bgcolor=#e7dcc3|[[Coxeter symbol]]|| 2<sub>61</sub>
|-
|-
|bgcolor=#e7dcc3|[[Coxeter-Dynkin diagram]]||{{CDD|nodea_1|3a|nodea|3a|branch|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea}}
|bgcolor=#e7dcc3|[[Coxeter-Dynkin diagram]]||{{CDD|nodea_1|3a|nodea|3a|branch|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea}}
|-
|-
|bgcolor=#e7dcc3|9-face types||[[2_51_honeycomb|'''2<sub>51</sub>''']]<BR>[[9-simplex|{3<sup>7</sup>}]][[Image:9-simplex_t0.svg|25px]]
|bgcolor=#e7dcc3|9-face types||'''[[2 51 honeycomb|2<sub>51</sub>]]'''<BR>[[9-simplex|{3<sup>7</sup>}]][[Image:9-simplex t0.svg|25px]]
|-
|-
|bgcolor=#e7dcc3|8-face types||[[2_41_polytope|'''2<sub>41</sub>''']][[File:Gosset 2 41 petrie.svg|25px]], [[8-simplex|{3<sup>7</sup>}]][[Image:8-simplex_t0.svg|25px]]
|bgcolor=#e7dcc3|8-face types||'''[[2 41 polytope|2<sub>41</sub>]]'''[[File:Gosset 2 41 petrie.svg|25px]], [[8-simplex|{3<sup>7</sup>}]][[Image:8-simplex t0.svg|25px]]
|-
|-
|bgcolor=#e7dcc3|7-face types||[[Gosset_2_31_polytope|'''2<sub>31</sub>''']][[Image:Gosset 2 31 polytope.svg|25px]], [[7-simplex|{3<sup>6</sup>}]][[Image:7-simplex_t0.svg|25px]]
|bgcolor=#e7dcc3|7-face types||'''[[Gosset 2 31 polytope|2<sub>31</sub>]]'''[[Image:Gosset 2 31 polytope.svg|25px]], [[7-simplex|{3<sup>6</sup>}]][[Image:7-simplex t0.svg|25px]]
|-
|-
|bgcolor=#e7dcc3|6-face types||[[E6 polytope|'''2<sub>21</sub>''']][[Image:E6 graph.svg|25px]], [[6-simplex|{3<sup>5</sup>}]][[Image:6-simplex_t0.svg|25px]]
|bgcolor=#e7dcc3|6-face types||'''[[E6 polytope|2<sub>21</sub>]]'''[[Image:E6 graph.svg|25px]], [[6-simplex|{3<sup>5</sup>}]][[Image:6-simplex t0.svg|25px]]
|-
|-
|bgcolor=#e7dcc3|5-face types||[[pentacross|'''2<sub>11</sub>''']][[Image:Cross graph 5.svg|25px]], [[5-simplex|{3<sup>4</sup>}]][[Image:5-simplex_t0.svg|25px]]
|bgcolor=#e7dcc3|5-face types||'''[[pentacross|2<sub>11</sub>]]'''[[Image:Cross graph 5.svg|25px]], [[5-simplex|{3<sup>4</sup>}]][[Image:5-simplex t0.svg|25px]]
|-
|-
|bgcolor=#e7dcc3|4-face type||[[pentachoron|{3<sup>3</sup>}]][[Image:4-simplex_t0.svg|25px]]
|bgcolor=#e7dcc3|4-face type||[[pentachoron|{3<sup>3</sup>}]][[Image:4-simplex t0.svg|25px]]
|-
|-
|bgcolor=#e7dcc3|Cells||[[tetrahedron|{3<sup>2</sup>}]][[Image:3-simplex_t0.svg|25px]]
|bgcolor=#e7dcc3|Cells||[[tetrahedron|{3<sup>2</sup>}]][[Image:3-simplex t0.svg|25px]]
|-
|-
|bgcolor=#e7dcc3|Faces||[[triangle|{3}]][[Image:2-simplex_t0.svg|25px]]
|bgcolor=#e7dcc3|Faces||[[triangle|{3}]][[Image:2-simplex t0.svg|25px]]
|-
|-
|bgcolor=#e7dcc3|[[Vertex figure]]||[[9-demicube|1<sub>61</sub>]] [[File:9-demicube.svg|30px]]
|bgcolor=#e7dcc3|[[Vertex figure]]||[[9-demicube|1<sub>61</sub>]] [[File:9-demicube.svg|30px]]
|-
|-
|bgcolor=#e7dcc3|[[Coxeter group]]||<math>E_{10}</math>, [3<sup>6,2,1</sup>]
|bgcolor=#e7dcc3|[[Coxeter group]]||<math>{\bar{T}}_9</math>, [3<sup>6,2,1</sup>]
|}
|}
The '''2<sub>61</sub>''' honeycomb is composed of [[2 51 honeycomb|2<sub>51</sub> 9-honeycomb]] and [[9-simplex]] [[Facet (geometry)|facets]] arranged in a [[9-demicube]] [[vertex figure]]. It is the final figure in the [[uniform 2_k1 polytope|2<sub>k1</sub> family]].
The '''2<sub>61</sub>''' honeycomb is composed of [[2 51 honeycomb|2<sub>51</sub> 9-honeycomb]] and [[9-simplex]] [[Facet (geometry)|facets]]. It is the final figure in the [[uniform 2 k1 polytope|2<sub>k1</sub> family]].


===Construction===
===Construction===
Line 111: Line 116:
: {{CDD|nodea_1|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea}}
: {{CDD|nodea_1|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea}}


Removing the node on the end of the 6-length branch leaves the [[2 51 honeycomb|2<sub>51</sub> honeycomb]]. This is an infinite facet because E10 is a noncompact hyperbolic group.
Removing the node on the end of the 6-length branch leaves the [[2 51 honeycomb|2<sub>51</sub> honeycomb]]. This is an infinite facet because E10 is a paracompact hyperbolic group.
: {{CDD|nodea_1|3a|nodea|3a|branch|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea}}
: {{CDD|nodea_1|3a|nodea|3a|branch|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea}}


Line 122: Line 127:
The ''face figure'' is determined from the edge figure by removing the ringed node and ringing the neighboring node. This makes the [[5-simplex]] prism.
The ''face figure'' is determined from the edge figure by removing the ringed node and ringing the neighboring node. This makes the [[5-simplex]] prism.
: {{CDD|node_1|2|node_1|3|node|3|node|3|node|3|node}}
: {{CDD|node_1|2|node_1|3|node|3|node|3|node|3|node}}
{{-}}

=== Related polytopes and honeycombs ===

The 2<sub>61</sub> is last in a [[Uniform 2 k1 polytope|dimensional series]] of [[uniform polytope]]s and honeycombs.
{{2 k1 polytopes}}


== 1<sub>62</sub> honeycomb ==
== 1<sub>62</sub> honeycomb ==
{{DISPLAYTITLE:1<sub>62</sub> honeycomb}}
{| class="wikitable" align="right" style="margin-left:10px" width="280"
{| class="wikitable" align="right" style="margin-left:10px" width="280"
!bgcolor=#e7dcc3 colspan=2|1<sub>62</sub> honeycomb
!bgcolor=#e7dcc3 colspan=2|1<sub>62</sub> honeycomb
Line 132: Line 142:
|bgcolor=#e7dcc3|[[Schläfli symbol]]|| {3,3<sup>6,2</sup>}
|bgcolor=#e7dcc3|[[Schläfli symbol]]|| {3,3<sup>6,2</sup>}
|-
|-
|bgcolor=#e7dcc3|Coxeter symbol|| 1<sub>62</sub>
|bgcolor=#e7dcc3|[[Coxeter symbol]]|| 1<sub>62</sub>
|-
|-
|bgcolor=#e7dcc3|[[Coxeter-Dynkin diagram]]||{{CDD|nodea|3a|nodea|3a|branch_01lr|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea}}
|bgcolor=#e7dcc3|[[Coxeter-Dynkin diagram]]||{{CDD|nodea|3a|nodea|3a|branch_01lr|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea}}
|-
|-
|bgcolor=#e7dcc3|9-face types||[[1 52 honeycomb|'''1<sub>52</sub>''']]<BR>[[demiocteract|'''1<sub>61</sub>''']][[Image:Demiocteract ortho petrie.svg|25px]]
|bgcolor=#e7dcc3|9-face types||'''[[1 52 honeycomb|1<sub>52</sub>]]''', '''[[demiocteract|1<sub>61</sub>]]'''[[Image:Demiocteract ortho petrie.svg|25px]]
|-
|-
|bgcolor=#e7dcc3|8-face types||[[1 42 polytope|'''1<sub>42</sub>''']][[File:Gosset 1 42 polytope petrie.svg|25px]]<BR>[[demiocteract|'''1<sub>51</sub>''']][[Image:Demiocteract ortho petrie.svg|25px]]
|bgcolor=#e7dcc3|8-face types||'''[[1 42 polytope|1<sub>42</sub>]]'''[[File:Gosset 1 42 polytope petrie.svg|25px]], '''[[demiocteract|1<sub>51</sub>]]'''[[Image:Demiocteract ortho petrie.svg|25px]]
|-
|-
|bgcolor=#e7dcc3|7-face types||[[1 32 polytope|'''1<sub>32</sub>''']][[File:Gosset 1 32 petrie.svg|25px]]<BR>[[demihepteract|'''1<sub>41</sub>''']][[Image:Demihepteract ortho petrie.svg|25px]]
|bgcolor=#e7dcc3|7-face types||'''[[1 32 polytope|1<sub>32</sub>]]'''[[File:Gosset 1 32 petrie.svg|25px]], '''[[demihepteract|1<sub>41</sub>]]'''[[Image:Demihepteract ortho petrie.svg|25px]]
|-
|-
|bgcolor=#e7dcc3|6-face types||[[1 22 polytope|'''1<sub>22</sub>''']][[Image:Gosset 1 22 polytope.svg|25px]]<BR>[[demihexeract|{3<sup>1,3,1</sup>}]][[Image:Demihexeract ortho petrie.svg|25px]]<BR>[[6-simplex|{3<sup>5</sup>}]][[Image:6-simplex_t0.svg|25px]]
|bgcolor=#e7dcc3|6-face types||'''[[1 22 polytope|1<sub>22</sub>]]'''[[Image:Gosset 1 22 polytope.svg|25px]], [[demihexeract|{3<sup>1,3,1</sup>}]][[Image:Demihexeract ortho petrie.svg|25px]]<BR>[[6-simplex|{3<sup>5</sup>}]][[Image:6-simplex t0.svg|25px]]
|-
|-
|bgcolor=#e7dcc3|5-face types||[[demipenteract|'''1<sub>21</sub>''']][[Image:Demipenteract graph ortho.svg|25px]]<BR>[[5-simplex|{3<sup>4</sup>}]][[Image:5-simplex_t0.svg|25px]]
|bgcolor=#e7dcc3|5-face types||'''[[demipenteract|1<sub>21</sub>]]'''[[Image:Demipenteract graph ortho.svg|25px]], [[5-simplex|{3<sup>4</sup>}]][[Image:5-simplex t0.svg|25px]]
|-
|-
|bgcolor=#e7dcc3|4-face type||[[16-cell|'''1<sub>11</sub>''']][[Image:Cross graph 4.svg|25px]]<BR>[[5-cell|{3<sup>3</sup>}]][[Image:4-simplex_t0.svg|25px]]
|bgcolor=#e7dcc3|4-face type||'''[[16-cell|1<sub>11</sub>]]'''[[Image:Cross graph 4.svg|25px]], [[5-cell|{3<sup>3</sup>}]][[Image:4-simplex t0.svg|25px]]
|-
|-
|bgcolor=#e7dcc3|Cells||[[tetrahedron|{3<sup>2</sup>}]][[Image:3-simplex_t0.svg|25px]]
|bgcolor=#e7dcc3|Cells||[[tetrahedron|{3<sup>2</sup>}]][[Image:3-simplex t0.svg|25px]]
|-
|-
|bgcolor=#e7dcc3|Faces||[[triangle|{3}]][[Image:2-simplex_t0.svg|25px]]
|bgcolor=#e7dcc3|Faces||[[triangle|{3}]][[Image:2-simplex t0.svg|25px]]
|-
|-
|bgcolor=#e7dcc3|[[Vertex figure]]||[[Birectified 9-simplex|t<sub>2</sub>{3<sup>8</sup>}]] [[File:Birectified 9-simplex.png|25px]]
|bgcolor=#e7dcc3|[[Vertex figure]]||[[Birectified 9-simplex|t<sub>2</sub>{3<sup>8</sup>}]] [[File:Birectified 9-simplex.png|25px]]
|-
|-
|bgcolor=#e7dcc3|[[Coxeter group]]||<math>E_{10}</math>, [3<sup>6,2,1</sup>]
|bgcolor=#e7dcc3|[[Coxeter group]]||<math>{\bar{T}}_9</math>, [3<sup>6,2,1</sup>]
|}
|}
The '''1<sub>62</sub> honeycomb''' contains [[1 52 honeycomb|'''1<sub>52</sub>''']] (9-honeycomb) and '''1<sub>61</sub>''' [[9-demicube]] [[Facet (geometry)|facets]], in a [[birectified 9-simplex]] [[vertex figure]]. It is the final figure in the [[uniform 1 k2 polytope|1<sub>k2</sub> polytope]] family.
The '''1<sub>62</sub> honeycomb''' contains '''[[1 52 honeycomb|1<sub>52</sub>]]''' (9-honeycomb) and '''1<sub>61</sub>''' [[9-demicube]] [[Facet (geometry)|facets]]. It is the final figure in the [[uniform 1 k2 polytope|1<sub>k2</sub> polytope]] family.


===Construction===
===Construction===
Line 173: Line 183:
The [[vertex figure]] is determined by removing the ringed node and ringing the neighboring node. This makes the [[birectified 9-simplex]], 0<sub>62</sub>.
The [[vertex figure]] is determined by removing the ringed node and ringing the neighboring node. This makes the [[birectified 9-simplex]], 0<sub>62</sub>.
: {{CDD|nodea|3a|nodea|3a|nodea_1|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea}}
: {{CDD|nodea|3a|nodea|3a|nodea_1|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea}}

=== Related polytopes and honeycombs ===

The 1<sub>62</sub> is last in a [[Uniform 1 k2 polytope|dimensional series]] of [[uniform polytope]]s and honeycombs.
{{1 k2 polytopes}}


==Notes==
==Notes==
{{reflist}}
{{reflist}}

==References==
==References==
* ''The Symmetries of Things'' 2008, John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, {{ISBN|978-1-56881-220-5}} [https://web.archive.org/web/20100919143320/https://akpeters.com/product.asp?ProdCode=2205]
* [[Harold Scott MacDonald Coxeter|Coxeter]] ''The Beauty of Geometry: Twelve Essays'', Dover Publications, 1999, ISBN 978-0-486-40919-1 (Chapter 3: Wythoff's Construction for Uniform Polytopes)
* [[Harold Scott MacDonald Coxeter|Coxeter]] ''Regular Polytopes'' (1963), Macmillian Company
* [[Harold Scott MacDonald Coxeter|Coxeter]] ''The Beauty of Geometry: Twelve Essays'', Dover Publications, 1999, {{ISBN|978-0-486-40919-1}} (Chapter 3: Wythoff's Construction for Uniform Polytopes)
* [[Harold Scott MacDonald Coxeter|Coxeter]] ''Regular Polytopes'' (1963), Macmillan Company
** ''Regular Polytopes'', Third edition, (1973), Dover edition, ISBN 0-486-61480-8 (Chapter 5: The Kaleidoscope)
** ''Regular Polytopes'', Third edition, (1973), Dover edition, {{ISBN|0-486-61480-8}} (Chapter 5: The Kaleidoscope)
* '''Kaleidoscopes: Selected Writings of H.S.M. Coxeter''', edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html]
* '''Kaleidoscopes: Selected Writings of H.S.M. Coxeter''', edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, {{ISBN|978-0-471-01003-6}} [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html]
** (Paper 24) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes III'', [Math. Zeit. 200 (1988) 3-45]
** (Paper 24) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes III'', [Math. Zeit. 200 (1988) 3-45]



Latest revision as of 21:57, 12 December 2023

In geometry, an E9 honeycomb is a tessellation of uniform polytopes in hyperbolic 9-dimensional space. , also (E10) is a paracompact hyperbolic group, so either facets or vertex figures will not be bounded.

E10 is last of the series of Coxeter groups with a bifurcated Coxeter-Dynkin diagram of lengths 6,2,1. There are 1023 unique E10 honeycombs by all combinations of its Coxeter-Dynkin diagram. There are no regular honeycombs in the family since its Coxeter diagram is a nonlinear graph, but there are three simplest ones, with a single ring at the end of its 3 branches: 621, 261, 162.

621 honeycomb

[edit]
621 honeycomb
Family k21 polytope
Schläfli symbol {3,3,3,3,3,3,32,1}
Coxeter symbol 621
Coxeter-Dynkin diagram
9-faces 611
{38}
8-faces {37}
7-faces {36}
6-faces {35}
5-faces {34}
4-faces {33}
Cells {32}
Faces {3}
Vertex figure 521
Symmetry group , [36,2,1]

The 621 honeycomb is constructed from alternating 9-simplex and 9-orthoplex facets within the symmetry of the E10 Coxeter group.

This honeycomb is highly regular in the sense that its symmetry group (the affine E9 Weyl group) acts transitively on the k-faces for k ≤ 7. All of the k-faces for k ≤ 8 are simplices.

This honeycomb is last in the series of k21 polytopes, enumerated by Thorold Gosset in 1900, listing polytopes and honeycombs constructed entirely of regular facets, although his list ended with the 8-dimensional the Euclidean honeycomb, 521.[1]

Construction

[edit]

It is created by a Wythoff construction upon a set of 10 hyperplane mirrors in 9-dimensional hyperbolic space.

The facet information can be extracted from its Coxeter-Dynkin diagram.

Removing the node on the end of the 2-length branch leaves the 9-orthoplex, 711.

Removing the node on the end of the 1-length branch leaves the 9-simplex.

The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes the 521 honeycomb.

The edge figure is determined from the vertex figure by removing the ringed node and ringing the neighboring node. This makes the 421 polytope.

The face figure is determined from the edge figure by removing the ringed node and ringing the neighboring node. This makes the 321 polytope.

The cell figure is determined from the face figure by removing the ringed node and ringing the neighboring node. This makes the 221 polytope.

[edit]

The 621 is last in a dimensional series of semiregular polytopes and honeycombs, identified in 1900 by Thorold Gosset. Each member of the sequence has the previous member as its vertex figure. All facets of these polytopes are regular polytopes, namely simplexes and orthoplexes.

k21 figures in n dimensions
Space Finite Euclidean Hyperbolic
En 3 4 5 6 7 8 9 10
Coxeter
group
E3=A2A1 E4=A4 E5=D5 E6 E7 E8 E9 = = E8+ E10 = = E8++
Coxeter
diagram
Symmetry [3−1,2,1] [30,2,1] [31,2,1] [32,2,1] [33,2,1] [34,2,1] [35,2,1] [36,2,1]
Order 12 120 1,920 51,840 2,903,040 696,729,600
Graph - -
Name −121 021 121 221 321 421 521 621

261 honeycomb

[edit]
261 honeycomb
Family 2k1 polytope
Schläfli symbol {3,3,36,1}
Coxeter symbol 261
Coxeter-Dynkin diagram
9-face types 251
{37}
8-face types 241, {37}
7-face types 231, {36}
6-face types 221, {35}
5-face types 211, {34}
4-face type {33}
Cells {32}
Faces {3}
Vertex figure 161
Coxeter group , [36,2,1]

The 261 honeycomb is composed of 251 9-honeycomb and 9-simplex facets. It is the final figure in the 2k1 family.

Construction

[edit]

It is created by a Wythoff construction upon a set of 10 hyperplane mirrors in 9-dimensional hyperbolic space.

The facet information can be extracted from its Coxeter-Dynkin diagram.

Removing the node on the short branch leaves the 9-simplex.

Removing the node on the end of the 6-length branch leaves the 251 honeycomb. This is an infinite facet because E10 is a paracompact hyperbolic group.

The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes the 9-demicube, 161.

The edge figure is the vertex figure of the edge figure. This makes the rectified 8-simplex, 051.

The face figure is determined from the edge figure by removing the ringed node and ringing the neighboring node. This makes the 5-simplex prism.

[edit]

The 261 is last in a dimensional series of uniform polytopes and honeycombs.

2k1 figures in n dimensions
Space Finite Euclidean Hyperbolic
n 3 4 5 6 7 8 9 10
Coxeter
group
E3=A2A1 E4=A4 E5=D5 E6 E7 E8 E9 = = E8+ E10 = = E8++
Coxeter
diagram
Symmetry [3−1,2,1] [30,2,1] [[31,2,1]] [32,2,1] [33,2,1] [34,2,1] [35,2,1] [36,2,1]
Order 12 120 384 51,840 2,903,040 696,729,600
Graph - -
Name 2−1,1 201 211 221 231 241 251 261

162 honeycomb

[edit]
162 honeycomb
Family 1k2 polytope
Schläfli symbol {3,36,2}
Coxeter symbol 162
Coxeter-Dynkin diagram
9-face types 152, 161
8-face types 142, 151
7-face types 132, 141
6-face types 122, {31,3,1}
{35}
5-face types 121, {34}
4-face type 111, {33}
Cells {32}
Faces {3}
Vertex figure t2{38}
Coxeter group , [36,2,1]

The 162 honeycomb contains 152 (9-honeycomb) and 161 9-demicube facets. It is the final figure in the 1k2 polytope family.

Construction

[edit]

It is created by a Wythoff construction upon a set of 10 hyperplane mirrors in 9-dimensional space.

The facet information can be extracted from its Coxeter-Dynkin diagram.

Removing the node on the end of the 2-length branch leaves the 9-demicube, 161.

Removing the node on the end of the 6-length branch leaves the 152 honeycomb.

The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes the birectified 9-simplex, 062.

[edit]

The 162 is last in a dimensional series of uniform polytopes and honeycombs.

1k2 figures in n dimensions
Space Finite Euclidean Hyperbolic
n 3 4 5 6 7 8 9 10
Coxeter
group
E3=A2A1 E4=A4 E5=D5 E6 E7 E8 E9 = = E8+ E10 = = E8++
Coxeter
diagram
Symmetry
(order)
[3−1,2,1] [30,2,1] [31,2,1] [[32,2,1]] [33,2,1] [34,2,1] [35,2,1] [36,2,1]
Order 12 120 1,920 103,680 2,903,040 696,729,600
Graph - -
Name 1−1,2 102 112 122 132 142 152 162

Notes

[edit]
  1. ^ Conway, 2008, The Gosset series, p 413

References

[edit]
  • The Symmetries of Things 2008, John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, ISBN 978-1-56881-220-5 [1]
  • Coxeter The Beauty of Geometry: Twelve Essays, Dover Publications, 1999, ISBN 978-0-486-40919-1 (Chapter 3: Wythoff's Construction for Uniform Polytopes)
  • Coxeter Regular Polytopes (1963), Macmillan Company
    • Regular Polytopes, Third edition, (1973), Dover edition, ISBN 0-486-61480-8 (Chapter 5: The Kaleidoscope)
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [2]
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform polychoron Pentachoron 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds