E9 honeycomb: Difference between revisions
m →References: fix author's name, replaced: Chaim Goodman-Strass → Chaim Goodman-Strauss |
|||
(25 intermediate revisions by 6 users not shown) | |||
Line 1: | Line 1: | ||
{{DISPLAYTITLE:E<sub> |
{{DISPLAYTITLE:E<sub>9</sub> honeycomb}} |
||
In [[geometry]], an '''E<sub>9</sub> honeycomb''' is a tessellation of uniform polytopes in hyperbolic 9-dimensional space. <math>{\ |
In [[geometry]], an '''E<sub>9</sub> honeycomb''' is a tessellation of uniform polytopes in hyperbolic 9-dimensional space. <math>{\bar{T}}_9</math>, also (E<sub>10</sub>) is a paracompact hyperbolic group, so either [[facet]]s or [[vertex figure]]s will not be bounded. |
||
[[ |
[[En (Lie algebra)|E<sub>10</sub>]] is last of the series of [[Coxeter group]]s with a bifurcated [[Coxeter-Dynkin diagram]] of lengths 6,2,1. There are 1023 unique E<sub>10</sub> honeycombs by all combinations of its [[Coxeter-Dynkin diagram]]. There are no regular honeycombs in the family since its Coxeter diagram is a nonlinear graph, but there are three simplest ones, with a single ring at the end of its 3 branches: 6<sub>21</sub>, 2<sub>61</sub>, 1<sub>62</sub>. |
||
==6<sub>21</sub> honeycomb== |
==6<sub>21</sub> honeycomb== |
||
Line 12: | Line 12: | ||
|bgcolor=#e7dcc3|[[Schläfli symbol]]|| {3,3,3,3,3,3,3<sup>2,1</sup>} |
|bgcolor=#e7dcc3|[[Schläfli symbol]]|| {3,3,3,3,3,3,3<sup>2,1</sup>} |
||
|- |
|- |
||
|bgcolor=#e7dcc3|Coxeter symbol|| 6<sub>21</sub> |
|bgcolor=#e7dcc3|[[Coxeter symbol]]|| 6<sub>21</sub> |
||
|- |
|- |
||
|bgcolor=#e7dcc3|[[Coxeter-Dynkin diagram]]||{{CDD|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea_1}} |
|bgcolor=#e7dcc3|[[Coxeter-Dynkin diagram]]||{{CDD|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea_1}} |
||
|- |
|- |
||
|bgcolor=#e7dcc3|9-faces||[[enneacross|6<sub>11</sub>]] [[Image:Cross graph 9 Nodes highlighted.svg|25px]]<BR>[[9-simplex|{3<sup>8</sup>}]] [[Image:9- |
|bgcolor=#e7dcc3|9-faces||[[enneacross|6<sub>11</sub>]] [[Image:Cross graph 9 Nodes highlighted.svg|25px]]<BR>[[9-simplex|{3<sup>8</sup>}]] [[Image:9-simplex t0.svg|25px]] |
||
|- |
|- |
||
|bgcolor=#e7dcc3|8-faces||[[8-simplex|{3<sup>7</sup>}]] [[Image:8- |
|bgcolor=#e7dcc3|8-faces||[[8-simplex|{3<sup>7</sup>}]] [[Image:8-simplex t0.svg|25px]] |
||
|- |
|- |
||
|bgcolor=#e7dcc3|7-faces||[[7-simplex|{3<sup>6</sup>}]] [[Image:7- |
|bgcolor=#e7dcc3|7-faces||[[7-simplex|{3<sup>6</sup>}]] [[Image:7-simplex t0.svg|25px]] |
||
|- |
|- |
||
|bgcolor=#e7dcc3|6-faces||[[6-simplex|{3<sup>5</sup>}]] [[Image:6- |
|bgcolor=#e7dcc3|6-faces||[[6-simplex|{3<sup>5</sup>}]] [[Image:6-simplex t0.svg|25px]] |
||
|- |
|- |
||
|bgcolor=#e7dcc3|5-faces||[[5-simplex|{3<sup>4</sup>}]] [[Image:5- |
|bgcolor=#e7dcc3|5-faces||[[5-simplex|{3<sup>4</sup>}]] [[Image:5-simplex t0.svg|25px]] |
||
|- |
|- |
||
|bgcolor=#e7dcc3|4-faces||[[pentachoron|{3<sup>3</sup>}]] [[Image:4- |
|bgcolor=#e7dcc3|4-faces||[[pentachoron|{3<sup>3</sup>}]] [[Image:4-simplex t0.svg|25px]] |
||
|- |
|- |
||
|bgcolor=#e7dcc3|Cells||[[tetrahedron|{3<sup>2</sup>}]] [[Image:3- |
|bgcolor=#e7dcc3|Cells||[[tetrahedron|{3<sup>2</sup>}]] [[Image:3-simplex t0.svg|25px]] |
||
|- |
|- |
||
|bgcolor=#e7dcc3|Faces||[[triangle|{3}]] [[Image:2- |
|bgcolor=#e7dcc3|Faces||[[triangle|{3}]] [[Image:2-simplex t0.svg|25px]] |
||
|- |
|- |
||
|bgcolor=#e7dcc3|[[Vertex figure]]||[[5 21 honeycomb|5<sub>21</sub>]] |
|bgcolor=#e7dcc3|[[Vertex figure]]||[[5 21 honeycomb|5<sub>21</sub>]] |
||
|- |
|- |
||
|bgcolor=#e7dcc3|[[Coxeter group|Symmetry group]]|| |
|bgcolor=#e7dcc3|[[Coxeter group|Symmetry group]]||<math>{\bar{T}}_9</math>, [3<sup>6,2,1</sup>] |
||
|} |
|} |
||
The '''6<sub>21</sub> honeycomb''' is constructed from alternating [[9-simplex]] and [[9-orthoplex]] facets within the symmetry of the E<sub>10</sub> Coxeter group. |
The '''6<sub>21</sub> honeycomb''' is constructed from alternating [[9-simplex]] and [[9-orthoplex]] facets within the symmetry of the E<sub>10</sub> Coxeter group. |
||
The [[vertex figure]] of the honeycomb is the the infinite [[5_21 honeycomb|5<sub>21</sub> honeycomb]]. |
|||
This honeycomb is highly regular in the sense that its symmetry group (the affine E<sub>9</sub> Weyl group) acts transitively on the [[face (geometry)|''k''-faces]] for ''k'' ≤ 7. All of the ''k''-faces for ''k'' ≤ 8 are simplices. |
This honeycomb is highly regular in the sense that its symmetry group (the affine E<sub>9</sub> Weyl group) acts transitively on the [[face (geometry)|''k''-faces]] for ''k'' ≤ 7. All of the ''k''-faces for ''k'' ≤ 8 are simplices. |
||
This honeycomb is last in the series of [[Semiregular k 21 polytope|k<sub>21</sub> polytopes]], enumerated by [[Thorold Gosset]] in 1900, listing polytopes and honeycombs constructed entirely of regular facets, although his list ended with the 8-dimensional the Euclidean honeycomb, 5<sub>21</sub>.<ref>Conway, 2008, The Gosset series, p 413</ref> |
|||
===Construction=== |
===Construction=== |
||
Line 61: | Line 61: | ||
: {{CDD|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea|3a|nodea|3a|nodea_1}} |
: {{CDD|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea|3a|nodea|3a|nodea_1}} |
||
The ''face figure'' is determined from the edge figure by removing the ringed node and ringing the neighboring node. This makes the [[ |
The ''face figure'' is determined from the edge figure by removing the ringed node and ringing the neighboring node. This makes the [[3_21 polytope|3<sub>21</sub> polytope]]. |
||
: {{CDD|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea|3a|nodea_1}} |
: {{CDD|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea|3a|nodea_1}} |
||
The ''cell figure'' is determined from the face figure by removing the ringed node and ringing the neighboring node. This makes the [[E6 polytope|2<sub>21</sub> polytope]]. |
The ''cell figure'' is determined from the face figure by removing the ringed node and ringing the neighboring node. This makes the [[E6 polytope|2<sub>21</sub> polytope]]. |
||
: {{CDD|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea_1}} |
: {{CDD|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea_1}} |
||
=== Related polytopes and honeycombs === |
|||
The 6<sub>21</sub> is last in a dimensional series of [[semiregular polytope]]s and honeycombs, identified in 1900 by [[Thorold Gosset]]. Each [[Uniform k21 polytope|member of the sequence]] has the previous member as its [[vertex figure]]. All facets of these polytopes are [[regular polytope]]s, namely [[simplex]]es and [[orthoplex]]es. |
|||
{{k 21 polytopes}} |
|||
== 2<sub>61</sub> honeycomb== |
== 2<sub>61</sub> honeycomb== |
||
Line 75: | Line 80: | ||
|bgcolor=#e7dcc3|[[Schläfli symbol]]|| {3,3,3<sup>6,1</sup>} |
|bgcolor=#e7dcc3|[[Schläfli symbol]]|| {3,3,3<sup>6,1</sup>} |
||
|- |
|- |
||
|bgcolor=#e7dcc3|Coxeter symbol|| 2<sub>61</sub> |
|bgcolor=#e7dcc3|[[Coxeter symbol]]|| 2<sub>61</sub> |
||
|- |
|- |
||
|bgcolor=#e7dcc3|[[Coxeter-Dynkin diagram]]||{{CDD|nodea_1|3a|nodea|3a|branch|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea}} |
|bgcolor=#e7dcc3|[[Coxeter-Dynkin diagram]]||{{CDD|nodea_1|3a|nodea|3a|branch|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea}} |
||
|- |
|- |
||
|bgcolor=#e7dcc3|9-face types| |
|bgcolor=#e7dcc3|9-face types||'''[[2 51 honeycomb|2<sub>51</sub>]]'''<BR>[[9-simplex|{3<sup>7</sup>}]][[Image:9-simplex t0.svg|25px]] |
||
|- |
|- |
||
|bgcolor=#e7dcc3|8-face types| |
|bgcolor=#e7dcc3|8-face types||'''[[2 41 polytope|2<sub>41</sub>]]'''[[File:Gosset 2 41 petrie.svg|25px]], [[8-simplex|{3<sup>7</sup>}]][[Image:8-simplex t0.svg|25px]] |
||
|- |
|- |
||
|bgcolor=#e7dcc3|7-face types| |
|bgcolor=#e7dcc3|7-face types||'''[[Gosset 2 31 polytope|2<sub>31</sub>]]'''[[Image:Gosset 2 31 polytope.svg|25px]], [[7-simplex|{3<sup>6</sup>}]][[Image:7-simplex t0.svg|25px]] |
||
|- |
|- |
||
|bgcolor=#e7dcc3|6-face types||[[E6 polytope| |
|bgcolor=#e7dcc3|6-face types||'''[[E6 polytope|2<sub>21</sub>]]'''[[Image:E6 graph.svg|25px]], [[6-simplex|{3<sup>5</sup>}]][[Image:6-simplex t0.svg|25px]] |
||
|- |
|- |
||
|bgcolor=#e7dcc3|5-face types||[[pentacross| |
|bgcolor=#e7dcc3|5-face types||'''[[pentacross|2<sub>11</sub>]]'''[[Image:Cross graph 5.svg|25px]], [[5-simplex|{3<sup>4</sup>}]][[Image:5-simplex t0.svg|25px]] |
||
|- |
|- |
||
|bgcolor=#e7dcc3|4-face type||[[pentachoron|{3<sup>3</sup>}]][[Image:4- |
|bgcolor=#e7dcc3|4-face type||[[pentachoron|{3<sup>3</sup>}]][[Image:4-simplex t0.svg|25px]] |
||
|- |
|- |
||
|bgcolor=#e7dcc3|Cells||[[tetrahedron|{3<sup>2</sup>}]][[Image:3- |
|bgcolor=#e7dcc3|Cells||[[tetrahedron|{3<sup>2</sup>}]][[Image:3-simplex t0.svg|25px]] |
||
|- |
|- |
||
|bgcolor=#e7dcc3|Faces||[[triangle|{3}]][[Image:2- |
|bgcolor=#e7dcc3|Faces||[[triangle|{3}]][[Image:2-simplex t0.svg|25px]] |
||
|- |
|- |
||
|bgcolor=#e7dcc3|[[Vertex figure]]||[[9-demicube|1<sub>61</sub>]] [[File:9-demicube.svg|30px]] |
|bgcolor=#e7dcc3|[[Vertex figure]]||[[9-demicube|1<sub>61</sub>]] [[File:9-demicube.svg|30px]] |
||
|- |
|- |
||
|bgcolor=#e7dcc3|[[Coxeter group]]||<math> |
|bgcolor=#e7dcc3|[[Coxeter group]]||<math>{\bar{T}}_9</math>, [3<sup>6,2,1</sup>] |
||
|} |
|} |
||
The '''2<sub>61</sub>''' honeycomb is composed of [[2 51 honeycomb|2<sub>51</sub> 9-honeycomb]] and [[9-simplex]] [[Facet (geometry)|facets |
The '''2<sub>61</sub>''' honeycomb is composed of [[2 51 honeycomb|2<sub>51</sub> 9-honeycomb]] and [[9-simplex]] [[Facet (geometry)|facets]]. It is the final figure in the [[uniform 2 k1 polytope|2<sub>k1</sub> family]]. |
||
===Construction=== |
===Construction=== |
||
Line 111: | Line 116: | ||
: {{CDD|nodea_1|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea}} |
: {{CDD|nodea_1|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea}} |
||
Removing the node on the end of the 6-length branch leaves the [[2 51 honeycomb|2<sub>51</sub> honeycomb]]. This is an infinite facet because E10 is a |
Removing the node on the end of the 6-length branch leaves the [[2 51 honeycomb|2<sub>51</sub> honeycomb]]. This is an infinite facet because E10 is a paracompact hyperbolic group. |
||
: {{CDD|nodea_1|3a|nodea|3a|branch|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea}} |
: {{CDD|nodea_1|3a|nodea|3a|branch|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea}} |
||
Line 122: | Line 127: | ||
The ''face figure'' is determined from the edge figure by removing the ringed node and ringing the neighboring node. This makes the [[5-simplex]] prism. |
The ''face figure'' is determined from the edge figure by removing the ringed node and ringing the neighboring node. This makes the [[5-simplex]] prism. |
||
: {{CDD|node_1|2|node_1|3|node|3|node|3|node|3|node}} |
: {{CDD|node_1|2|node_1|3|node|3|node|3|node|3|node}} |
||
{{-}} |
|||
=== Related polytopes and honeycombs === |
|||
The 2<sub>61</sub> is last in a [[Uniform 2 k1 polytope|dimensional series]] of [[uniform polytope]]s and honeycombs. |
|||
{{2 k1 polytopes}} |
|||
== 1<sub>62</sub> honeycomb == |
== 1<sub>62</sub> honeycomb == |
||
{{DISPLAYTITLE:1<sub>62</sub> honeycomb}} |
|||
{| class="wikitable" align="right" style="margin-left:10px" width="280" |
{| class="wikitable" align="right" style="margin-left:10px" width="280" |
||
!bgcolor=#e7dcc3 colspan=2|1<sub>62</sub> honeycomb |
!bgcolor=#e7dcc3 colspan=2|1<sub>62</sub> honeycomb |
||
Line 132: | Line 142: | ||
|bgcolor=#e7dcc3|[[Schläfli symbol]]|| {3,3<sup>6,2</sup>} |
|bgcolor=#e7dcc3|[[Schläfli symbol]]|| {3,3<sup>6,2</sup>} |
||
|- |
|- |
||
|bgcolor=#e7dcc3|Coxeter symbol|| 1<sub>62</sub> |
|bgcolor=#e7dcc3|[[Coxeter symbol]]|| 1<sub>62</sub> |
||
|- |
|- |
||
|bgcolor=#e7dcc3|[[Coxeter-Dynkin diagram]]||{{CDD|nodea|3a|nodea|3a|branch_01lr|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea}} |
|bgcolor=#e7dcc3|[[Coxeter-Dynkin diagram]]||{{CDD|nodea|3a|nodea|3a|branch_01lr|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea}} |
||
|- |
|- |
||
|bgcolor=#e7dcc3|9-face types||[[1 52 honeycomb| |
|bgcolor=#e7dcc3|9-face types||'''[[1 52 honeycomb|1<sub>52</sub>]]''', '''[[demiocteract|1<sub>61</sub>]]'''[[Image:Demiocteract ortho petrie.svg|25px]] |
||
|- |
|- |
||
|bgcolor=#e7dcc3|8-face types||[[1 42 polytope| |
|bgcolor=#e7dcc3|8-face types||'''[[1 42 polytope|1<sub>42</sub>]]'''[[File:Gosset 1 42 polytope petrie.svg|25px]], '''[[demiocteract|1<sub>51</sub>]]'''[[Image:Demiocteract ortho petrie.svg|25px]] |
||
|- |
|- |
||
|bgcolor=#e7dcc3|7-face types||[[1 32 polytope| |
|bgcolor=#e7dcc3|7-face types||'''[[1 32 polytope|1<sub>32</sub>]]'''[[File:Gosset 1 32 petrie.svg|25px]], '''[[demihepteract|1<sub>41</sub>]]'''[[Image:Demihepteract ortho petrie.svg|25px]] |
||
|- |
|- |
||
|bgcolor=#e7dcc3|6-face types||[[1 22 polytope| |
|bgcolor=#e7dcc3|6-face types||'''[[1 22 polytope|1<sub>22</sub>]]'''[[Image:Gosset 1 22 polytope.svg|25px]], [[demihexeract|{3<sup>1,3,1</sup>}]][[Image:Demihexeract ortho petrie.svg|25px]]<BR>[[6-simplex|{3<sup>5</sup>}]][[Image:6-simplex t0.svg|25px]] |
||
|- |
|- |
||
|bgcolor=#e7dcc3|5-face types||[[demipenteract| |
|bgcolor=#e7dcc3|5-face types||'''[[demipenteract|1<sub>21</sub>]]'''[[Image:Demipenteract graph ortho.svg|25px]], [[5-simplex|{3<sup>4</sup>}]][[Image:5-simplex t0.svg|25px]] |
||
|- |
|- |
||
|bgcolor=#e7dcc3|4-face type||[[16-cell| |
|bgcolor=#e7dcc3|4-face type||'''[[16-cell|1<sub>11</sub>]]'''[[Image:Cross graph 4.svg|25px]], [[5-cell|{3<sup>3</sup>}]][[Image:4-simplex t0.svg|25px]] |
||
|- |
|- |
||
|bgcolor=#e7dcc3|Cells||[[tetrahedron|{3<sup>2</sup>}]][[Image:3- |
|bgcolor=#e7dcc3|Cells||[[tetrahedron|{3<sup>2</sup>}]][[Image:3-simplex t0.svg|25px]] |
||
|- |
|- |
||
|bgcolor=#e7dcc3|Faces||[[triangle|{3}]][[Image:2- |
|bgcolor=#e7dcc3|Faces||[[triangle|{3}]][[Image:2-simplex t0.svg|25px]] |
||
|- |
|- |
||
|bgcolor=#e7dcc3|[[Vertex figure]]||[[Birectified 9-simplex|t<sub>2</sub>{3<sup>8</sup>}]] [[File:Birectified 9-simplex.png|25px]] |
|bgcolor=#e7dcc3|[[Vertex figure]]||[[Birectified 9-simplex|t<sub>2</sub>{3<sup>8</sup>}]] [[File:Birectified 9-simplex.png|25px]] |
||
|- |
|- |
||
|bgcolor=#e7dcc3|[[Coxeter group]]||<math> |
|bgcolor=#e7dcc3|[[Coxeter group]]||<math>{\bar{T}}_9</math>, [3<sup>6,2,1</sup>] |
||
|} |
|} |
||
The '''1<sub>62</sub> honeycomb''' contains [[1 52 honeycomb| |
The '''1<sub>62</sub> honeycomb''' contains '''[[1 52 honeycomb|1<sub>52</sub>]]''' (9-honeycomb) and '''1<sub>61</sub>''' [[9-demicube]] [[Facet (geometry)|facets]]. It is the final figure in the [[uniform 1 k2 polytope|1<sub>k2</sub> polytope]] family. |
||
===Construction=== |
===Construction=== |
||
Line 173: | Line 183: | ||
The [[vertex figure]] is determined by removing the ringed node and ringing the neighboring node. This makes the [[birectified 9-simplex]], 0<sub>62</sub>. |
The [[vertex figure]] is determined by removing the ringed node and ringing the neighboring node. This makes the [[birectified 9-simplex]], 0<sub>62</sub>. |
||
: {{CDD|nodea|3a|nodea|3a|nodea_1|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea}} |
: {{CDD|nodea|3a|nodea|3a|nodea_1|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea}} |
||
=== Related polytopes and honeycombs === |
|||
The 1<sub>62</sub> is last in a [[Uniform 1 k2 polytope|dimensional series]] of [[uniform polytope]]s and honeycombs. |
|||
{{1 k2 polytopes}} |
|||
==Notes== |
==Notes== |
||
{{reflist}} |
{{reflist}} |
||
==References== |
==References== |
||
* ''The Symmetries of Things'' 2008, John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, {{ISBN|978-1-56881-220-5}} [https://web.archive.org/web/20100919143320/https://akpeters.com/product.asp?ProdCode=2205] |
|||
* [[Harold Scott MacDonald Coxeter|Coxeter]] ''The Beauty of Geometry: Twelve Essays'', Dover Publications, 1999, ISBN 978-0-486-40919-1 (Chapter 3: Wythoff's Construction for Uniform Polytopes) |
|||
* [[Harold Scott MacDonald Coxeter|Coxeter]] '' |
* [[Harold Scott MacDonald Coxeter|Coxeter]] ''The Beauty of Geometry: Twelve Essays'', Dover Publications, 1999, {{ISBN|978-0-486-40919-1}} (Chapter 3: Wythoff's Construction for Uniform Polytopes) |
||
* [[Harold Scott MacDonald Coxeter|Coxeter]] ''Regular Polytopes'' (1963), Macmillan Company |
|||
** ''Regular Polytopes'', Third edition, (1973), Dover edition, ISBN |
** ''Regular Polytopes'', Third edition, (1973), Dover edition, {{ISBN|0-486-61480-8}} (Chapter 5: The Kaleidoscope) |
||
* '''Kaleidoscopes: Selected Writings of H.S.M. Coxeter''', edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN |
* '''Kaleidoscopes: Selected Writings of H.S.M. Coxeter''', edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, {{ISBN|978-0-471-01003-6}} [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html] |
||
** (Paper 24) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes III'', [Math. Zeit. 200 (1988) 3-45] |
** (Paper 24) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes III'', [Math. Zeit. 200 (1988) 3-45] |
||
Latest revision as of 21:57, 12 December 2023
In geometry, an E9 honeycomb is a tessellation of uniform polytopes in hyperbolic 9-dimensional space. , also (E10) is a paracompact hyperbolic group, so either facets or vertex figures will not be bounded.
E10 is last of the series of Coxeter groups with a bifurcated Coxeter-Dynkin diagram of lengths 6,2,1. There are 1023 unique E10 honeycombs by all combinations of its Coxeter-Dynkin diagram. There are no regular honeycombs in the family since its Coxeter diagram is a nonlinear graph, but there are three simplest ones, with a single ring at the end of its 3 branches: 621, 261, 162.
621 honeycomb
[edit]621 honeycomb | |
---|---|
Family | k21 polytope |
Schläfli symbol | {3,3,3,3,3,3,32,1} |
Coxeter symbol | 621 |
Coxeter-Dynkin diagram | |
9-faces | 611 {38} |
8-faces | {37} |
7-faces | {36} |
6-faces | {35} |
5-faces | {34} |
4-faces | {33} |
Cells | {32} |
Faces | {3} |
Vertex figure | 521 |
Symmetry group | , [36,2,1] |
The 621 honeycomb is constructed from alternating 9-simplex and 9-orthoplex facets within the symmetry of the E10 Coxeter group.
This honeycomb is highly regular in the sense that its symmetry group (the affine E9 Weyl group) acts transitively on the k-faces for k ≤ 7. All of the k-faces for k ≤ 8 are simplices.
This honeycomb is last in the series of k21 polytopes, enumerated by Thorold Gosset in 1900, listing polytopes and honeycombs constructed entirely of regular facets, although his list ended with the 8-dimensional the Euclidean honeycomb, 521.[1]
Construction
[edit]It is created by a Wythoff construction upon a set of 10 hyperplane mirrors in 9-dimensional hyperbolic space.
The facet information can be extracted from its Coxeter-Dynkin diagram.
Removing the node on the end of the 2-length branch leaves the 9-orthoplex, 711.
Removing the node on the end of the 1-length branch leaves the 9-simplex.
The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes the 521 honeycomb.
The edge figure is determined from the vertex figure by removing the ringed node and ringing the neighboring node. This makes the 421 polytope.
The face figure is determined from the edge figure by removing the ringed node and ringing the neighboring node. This makes the 321 polytope.
The cell figure is determined from the face figure by removing the ringed node and ringing the neighboring node. This makes the 221 polytope.
Related polytopes and honeycombs
[edit]The 621 is last in a dimensional series of semiregular polytopes and honeycombs, identified in 1900 by Thorold Gosset. Each member of the sequence has the previous member as its vertex figure. All facets of these polytopes are regular polytopes, namely simplexes and orthoplexes.
k21 figures in n dimensions | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Space | Finite | Euclidean | Hyperbolic | ||||||||
En | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |||
Coxeter group |
E3=A2A1 | E4=A4 | E5=D5 | E6 | E7 | E8 | E9 = = E8+ | E10 = = E8++ | |||
Coxeter diagram |
|||||||||||
Symmetry | [3−1,2,1] | [30,2,1] | [31,2,1] | [32,2,1] | [33,2,1] | [34,2,1] | [35,2,1] | [36,2,1] | |||
Order | 12 | 120 | 1,920 | 51,840 | 2,903,040 | 696,729,600 | ∞ | ||||
Graph | - | - | |||||||||
Name | −121 | 021 | 121 | 221 | 321 | 421 | 521 | 621 |
261 honeycomb
[edit]261 honeycomb | |
---|---|
Family | 2k1 polytope |
Schläfli symbol | {3,3,36,1} |
Coxeter symbol | 261 |
Coxeter-Dynkin diagram | |
9-face types | 251 {37} |
8-face types | 241, {37} |
7-face types | 231, {36} |
6-face types | 221, {35} |
5-face types | 211, {34} |
4-face type | {33} |
Cells | {32} |
Faces | {3} |
Vertex figure | 161 |
Coxeter group | , [36,2,1] |
The 261 honeycomb is composed of 251 9-honeycomb and 9-simplex facets. It is the final figure in the 2k1 family.
Construction
[edit]It is created by a Wythoff construction upon a set of 10 hyperplane mirrors in 9-dimensional hyperbolic space.
The facet information can be extracted from its Coxeter-Dynkin diagram.
Removing the node on the short branch leaves the 9-simplex.
Removing the node on the end of the 6-length branch leaves the 251 honeycomb. This is an infinite facet because E10 is a paracompact hyperbolic group.
The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes the 9-demicube, 161.
The edge figure is the vertex figure of the edge figure. This makes the rectified 8-simplex, 051.
The face figure is determined from the edge figure by removing the ringed node and ringing the neighboring node. This makes the 5-simplex prism.
Related polytopes and honeycombs
[edit]The 261 is last in a dimensional series of uniform polytopes and honeycombs.
2k1 figures in n dimensions | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Space | Finite | Euclidean | Hyperbolic | ||||||||
n | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |||
Coxeter group |
E3=A2A1 | E4=A4 | E5=D5 | E6 | E7 | E8 | E9 = = E8+ | E10 = = E8++ | |||
Coxeter diagram |
|||||||||||
Symmetry | [3−1,2,1] | [30,2,1] | [[31,2,1]] | [32,2,1] | [33,2,1] | [34,2,1] | [35,2,1] | [36,2,1] | |||
Order | 12 | 120 | 384 | 51,840 | 2,903,040 | 696,729,600 | ∞ | ||||
Graph | - | - | |||||||||
Name | 2−1,1 | 201 | 211 | 221 | 231 | 241 | 251 | 261 |
162 honeycomb
[edit]162 honeycomb | |
---|---|
Family | 1k2 polytope |
Schläfli symbol | {3,36,2} |
Coxeter symbol | 162 |
Coxeter-Dynkin diagram | |
9-face types | 152, 161 |
8-face types | 142, 151 |
7-face types | 132, 141 |
6-face types | 122, {31,3,1} {35} |
5-face types | 121, {34} |
4-face type | 111, {33} |
Cells | {32} |
Faces | {3} |
Vertex figure | t2{38} |
Coxeter group | , [36,2,1] |
The 162 honeycomb contains 152 (9-honeycomb) and 161 9-demicube facets. It is the final figure in the 1k2 polytope family.
Construction
[edit]It is created by a Wythoff construction upon a set of 10 hyperplane mirrors in 9-dimensional space.
The facet information can be extracted from its Coxeter-Dynkin diagram.
Removing the node on the end of the 2-length branch leaves the 9-demicube, 161.
Removing the node on the end of the 6-length branch leaves the 152 honeycomb.
The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes the birectified 9-simplex, 062.
Related polytopes and honeycombs
[edit]The 162 is last in a dimensional series of uniform polytopes and honeycombs.
1k2 figures in n dimensions | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Space | Finite | Euclidean | Hyperbolic | ||||||||
n | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |||
Coxeter group |
E3=A2A1 | E4=A4 | E5=D5 | E6 | E7 | E8 | E9 = = E8+ | E10 = = E8++ | |||
Coxeter diagram |
|||||||||||
Symmetry (order) |
[3−1,2,1] | [30,2,1] | [31,2,1] | [[32,2,1]] | [33,2,1] | [34,2,1] | [35,2,1] | [36,2,1] | |||
Order | 12 | 120 | 1,920 | 103,680 | 2,903,040 | 696,729,600 | ∞ | ||||
Graph | - | - | |||||||||
Name | 1−1,2 | 102 | 112 | 122 | 132 | 142 | 152 | 162 |
Notes
[edit]- ^ Conway, 2008, The Gosset series, p 413
References
[edit]- The Symmetries of Things 2008, John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, ISBN 978-1-56881-220-5 [1]
- Coxeter The Beauty of Geometry: Twelve Essays, Dover Publications, 1999, ISBN 978-0-486-40919-1 (Chapter 3: Wythoff's Construction for Uniform Polytopes)
- Coxeter Regular Polytopes (1963), Macmillan Company
- Regular Polytopes, Third edition, (1973), Dover edition, ISBN 0-486-61480-8 (Chapter 5: The Kaleidoscope)
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [2]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]