Truncated order-6 square tiling: Difference between revisions
m →References: fix author's name, replaced: Chaim Goodman-Strass → Chaim Goodman-Strauss |
|||
(45 intermediate revisions by 7 users not shown) | |||
Line 1: | Line 1: | ||
{{Uniform hyperbolic tiles db|Uniform hyperbolic tiling stat table|U64_12}} |
{{Uniform hyperbolic tiles db|Uniform hyperbolic tiling stat table|U64_12}} |
||
In [[geometry]], the '''truncated order-6 square tiling''' is a uniform tiling of the [[Hyperbolic geometry|hyperbolic plane]]. It has [[Schläfli symbol]] of t |
In [[geometry]], the '''truncated order-6 square tiling''' is a uniform tiling of the [[Hyperbolic geometry|hyperbolic plane]]. It has [[Schläfli symbol]] of t{4,6}. |
||
== |
== Uniform colorings == |
||
{| class=wikitable width=240 |
|||
|- valign=top |
|||
|[[File:Uniform_tiling_443-t012.png|240px]]<BR>The half symmetry [1<sup>+</sup>,6,4] = [(4,4,3)] can be shown with alternating two colors of octagons, with as [[Coxeter diagram]] {{CDD|branch_11|split2-44|node_1}}. |
|||
|} |
|||
== Symmetry == |
|||
[[File:Truncated_order-6_square_tiling_with_mirrors.png|thumb|left|Truncated order-6 square tiling with *443 symmetry mirror lines]] |
|||
The dual tiling represents the fundamental domains of the *443 orbifold symmetry. There are two reflective subgroup kaleidoscopic constructed from [(4,4,3)] by removing one or two of three mirrors. In these images fundamental domains are alternately colored black and cyan, and mirrors exist on the boundaries between colors. |
|||
A larger subgroup is constructed [(4,4,3*)], index 6, as (3*22) with gyration points removed, becomes (*222222). |
|||
The symmetry can be doubled as [[642 symmetry]] by adding a mirror bisecting the fundamental domain. |
|||
{{-}} |
|||
{| class="wikitable collapsible collapsed" |
|||
!colspan=12| Small index subgroups of [(4,4,3)] (*443) |
|||
|- align=center |
|||
![[Subgroup index|Index]] |
|||
!1 |
|||
!colspan=2|2 |
|||
!6 |
|||
|- align=center |
|||
!Diagram |
|||
|[[File:443_symmetry_000.png|150px]] |
|||
|[[File:443_symmetry_0a0.png|150px]] |
|||
|[[File:443_symmetry_a0a.png|150px]] |
|||
|[[File:443_symmetry_z0z.png|150px]] |
|||
|- align=center |
|||
![[Coxeter notation|Coxeter]]<BR>([[Orbifold notation|orbifold]]) |
|||
|[(4,4,3)] = {{CDD|node_c1|split1-44|branch_c2}}<BR>(*443) |
|||
|[(4,1<sup>+</sup>,4,3)] = {{CDD|labelh|node|split1-44|branch_c2}} = {{CDD|branch_c2|2a2b-cross|branch_c2}}<BR>([[3232 symmetry|*3232]]) |
|||
|[(4,4,3<sup>+</sup>)] = {{CDD|node_c1|split1-44|branch_h2h2}}<BR>(3*22) |
|||
|[(4,4,3*)] = {{CDD|node_c1|split1-44|branch|labels}}<BR>([[222222 symmetry|*222222]]) |
|||
|- |
|||
!colspan=5|Direct subgroups |
|||
|- align=center |
|||
!Index |
|||
!2 |
|||
!colspan=2|4 |
|||
!12 |
|||
|- align=center |
|||
!Diagram |
|||
|[[File:443_symmetry_aaa.png|150px]] |
|||
|colspan=2|[[File:443_symmetry_abc.png|150px]] |
|||
|[[File:443_symmetry_zaz.png|150px]] |
|||
|- align=center |
|||
!Coxeter<BR>(orbifold) |
|||
|[(4,4,3)]<sup>+</sup> = {{CDD|node_h2|split1-44|branch_h2h2}}<BR>(443) |
|||
|colspan=2|[(4,4,3<sup>+</sup>)]<sup>+</sup> = {{CDD|labelh|node|split1-44|branch_h2h2}} = {{CDD|branch_h2h2|2xa2xb-cross|branch_h2h2}}<BR>(3232) |
|||
|[(4,4,3*)]<sup>+</sup> = {{CDD|node_h2|split1-44|branch|labels}}<BR>(222222) |
|||
|} |
|||
== Related polyhedra and tilings == |
|||
From a [[Wythoff construction]] there are eight hyperbolic [[Uniform tilings in hyperbolic plane|uniform tilings]] that can be based from the regular order-4 hexagonal tiling. |
|||
Drawing the tiles colored as red on the original faces, yellow at the original vertices, and blue along the original edges, there are 8 forms. |
|||
{{Order 6-4 tiling table}} |
{{Order 6-4 tiling table}} |
||
It can also be generated from the (4 4 3) hyperbolic tilings: |
|||
⚫ | |||
{{Order 4-4-3 tiling table}} |
|||
⚫ | |||
⚫ | |||
{{Omnitruncated34 table}} |
|||
⚫ | |||
⚫ | |||
==See also== |
==See also== |
||
{{Commonscat|Uniform tiling 6-8-8}} |
|||
*[[Square tiling]] |
*[[Square tiling]] |
||
*[[Tilings of regular polygons]] |
*[[Tilings of regular polygons]] |
||
*[[List of uniform planar tilings]] |
*[[List of uniform planar tilings]] |
||
*[[List of regular polytopes]] |
*[[List of regular polytopes]] |
||
⚫ | |||
⚫ | |||
⚫ | |||
== External links == |
== External links == |
||
Line 24: | Line 84: | ||
* [http://geometrygames.org/KaleidoTile/index.html KaleidoTile 3: Educational software to create spherical, planar and hyperbolic tilings] |
* [http://geometrygames.org/KaleidoTile/index.html KaleidoTile 3: Educational software to create spherical, planar and hyperbolic tilings] |
||
* [http://www.plunk.org/~hatch/HyperbolicTesselations Hyperbolic Planar Tessellations, Don Hatch] |
* [http://www.plunk.org/~hatch/HyperbolicTesselations Hyperbolic Planar Tessellations, Don Hatch] |
||
⚫ | |||
{{Tessellation}} |
|||
[[Category:Hyperbolic tilings]] |
|||
[[Category:Isogonal tilings]] |
|||
[[Category:Order-6 tilings]] |
|||
⚫ | |||
[[Category:Truncated tilings]] |
|||
[[Category:Uniform tilings]] |
Latest revision as of 21:58, 12 December 2023
Truncated order-6 square tiling | |
---|---|
Poincaré disk model of the hyperbolic plane | |
Type | Hyperbolic uniform tiling |
Vertex configuration | 8.8.6 |
Schläfli symbol | t{4,6} |
Wythoff symbol | 2 6 | 4 |
Coxeter diagram | |
Symmetry group | [6,4], (*642) [(3,3,4)], (*334) |
Dual | Order-4 hexakis hexagonal tiling |
Properties | Vertex-transitive |
In geometry, the truncated order-6 square tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t{4,6}.
Uniform colorings
[edit]The half symmetry [1+,6,4] = [(4,4,3)] can be shown with alternating two colors of octagons, with as Coxeter diagram . |
Symmetry
[edit]The dual tiling represents the fundamental domains of the *443 orbifold symmetry. There are two reflective subgroup kaleidoscopic constructed from [(4,4,3)] by removing one or two of three mirrors. In these images fundamental domains are alternately colored black and cyan, and mirrors exist on the boundaries between colors.
A larger subgroup is constructed [(4,4,3*)], index 6, as (3*22) with gyration points removed, becomes (*222222).
The symmetry can be doubled as 642 symmetry by adding a mirror bisecting the fundamental domain.
Small index subgroups of [(4,4,3)] (*443) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Index | 1 | 2 | 6 | ||||||||
Diagram | |||||||||||
Coxeter (orbifold) |
[(4,4,3)] = (*443) |
[(4,1+,4,3)] = = (*3232) |
[(4,4,3+)] = (3*22) |
[(4,4,3*)] = (*222222) | |||||||
Direct subgroups | |||||||||||
Index | 2 | 4 | 12 | ||||||||
Diagram | |||||||||||
Coxeter (orbifold) |
[(4,4,3)]+ = (443) |
[(4,4,3+)]+ = = (3232) |
[(4,4,3*)]+ = (222222) |
Related polyhedra and tilings
[edit]From a Wythoff construction there are eight hyperbolic uniform tilings that can be based from the regular order-4 hexagonal tiling.
Drawing the tiles colored as red on the original faces, yellow at the original vertices, and blue along the original edges, there are 8 forms.
Uniform tetrahexagonal tilings | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Symmetry: [6,4], (*642) (with [6,6] (*662), [(4,3,3)] (*443) , [∞,3,∞] (*3222) index 2 subsymmetries) (And [(∞,3,∞,3)] (*3232) index 4 subsymmetry) | |||||||||||
= = = |
= |
= = = |
= |
= = = |
= |
||||||
{6,4} | t{6,4} | r{6,4} | t{4,6} | {4,6} | rr{6,4} | tr{6,4} | |||||
Uniform duals | |||||||||||
V64 | V4.12.12 | V(4.6)2 | V6.8.8 | V46 | V4.4.4.6 | V4.8.12 | |||||
Alternations | |||||||||||
[1+,6,4] (*443) |
[6+,4] (6*2) |
[6,1+,4] (*3222) |
[6,4+] (4*3) |
[6,4,1+] (*662) |
[(6,4,2+)] (2*32) |
[6,4]+ (642) | |||||
= |
= |
= |
= |
= |
= |
||||||
h{6,4} | s{6,4} | hr{6,4} | s{4,6} | h{4,6} | hrr{6,4} | sr{6,4} |
It can also be generated from the (4 4 3) hyperbolic tilings:
Uniform (4,4,3) tilings | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Symmetry: [(4,4,3)] (*443) | [(4,4,3)]+ (443) |
[(4,4,3+)] (3*22) |
[(4,1+,4,3)] (*3232) | |||||||
h{6,4} t0(4,4,3) |
h2{6,4} t0,1(4,4,3) |
{4,6}1/2 t1(4,4,3) |
h2{6,4} t1,2(4,4,3) |
h{6,4} t2(4,4,3) |
r{6,4}1/2 t0,2(4,4,3) |
t{4,6}1/2 t0,1,2(4,4,3) |
s{4,6}1/2 s(4,4,3) |
hr{4,6}1/2 hr(4,3,4) |
h{4,6}1/2 h(4,3,4) |
q{4,6} h1(4,3,4) |
Uniform duals | ||||||||||
V(3.4)4 | V3.8.4.8 | V(4.4)3 | V3.8.4.8 | V(3.4)4 | V4.6.4.6 | V6.8.8 | V3.3.3.4.3.4 | V(4.4.3)2 | V66 | V4.3.4.6.6 |
*n42 symmetry mutation of truncated tilings: n.8.8 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Symmetry *n42 [n,4] |
Spherical | Euclidean | Compact hyperbolic | Paracompact | |||||||
*242 [2,4] |
*342 [3,4] |
*442 [4,4] |
*542 [5,4] |
*642 [6,4] |
*742 [7,4] |
*842 [8,4]... |
*∞42 [∞,4] | ||||
Truncated figures |
|||||||||||
Config. | 2.8.8 | 3.8.8 | 4.8.8 | 5.8.8 | 6.8.8 | 7.8.8 | 8.8.8 | ∞.8.8 | |||
n-kis figures |
|||||||||||
Config. | V2.8.8 | V3.8.8 | V4.8.8 | V5.8.8 | V6.8.8 | V7.8.8 | V8.8.8 | V∞.8.8 |
*n32 symmetry mutation of omnitruncated tilings: 6.8.2n | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sym. *n43 [(n,4,3)] |
Spherical | Compact hyperbolic | Paraco. | |||||||||
*243 [4,3] |
*343 [(3,4,3)] |
*443 [(4,4,3)] |
*543 [(5,4,3)] |
*643 [(6,4,3)] |
*743 [(7,4,3)] |
*843 [(8,4,3)] |
*∞43 [(∞,4,3)] | |||||
Figures | ||||||||||||
Config. | 4.8.6 | 6.8.6 | 8.8.6 | 10.8.6 | 12.8.6 | 14.8.6 | 16.8.6 | ∞.8.6 | ||||
Duals | ||||||||||||
Config. | V4.8.6 | V6.8.6 | V8.8.6 | V10.8.6 | V12.8.6 | V14.8.6 | V16.8.6 | V6.8.∞ |
See also
[edit]References
[edit]- John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.