Jump to content

Affine q-Krawtchouk polynomials: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
names
m clean up spacing around commas and other punctuation fixes, replaced: ,N → , N, ,S → , S, ,q → , q (4)
 
(23 intermediate revisions by 11 users not shown)
Line 1: Line 1:
In mathematics, the '''affine ''q''-Krawtchouk polynomials''' are a family of basic hypergeometric [[orthogonal polynomials]] in the basic [[Askey scheme]], introduced by Carlitz and Hodges. {{harvs|txt | last1=Koekoek | first1=Roelof | last2=Lesky | first2=Peter A. | last3=Swarttouw | first3=René F. | title=Hypergeometric orthogonal polynomials and their q-analogues | publisher=[[Springer-Verlag]] | location=Berlin, New York | series=Springer Monographs in Mathematics | isbn=978-3-642-05013-8 | doi=10.1007/978-3-642-05014-5 | mr=2656096 | year=2010|loc=14}} give a detailed list of their properties.
{{underconstruction}}
In mathematics, the '''affine ''q''-Krawtchouk polynomials''' are a family of basic hypergeometric [[orthogonal polynomials]] in the basic [[Askey scheme]], introduced by Carlitz and Hodges. {{harvs|txt | last1=Koekoek | first1=Roelof | last2=Lesky | first2=Peter A. | last3=Swarttouw | first3=René F. | title=Hypergeometric orthogonal polynomials and their q-analogues | url=http://dx.doi.org/10.1007/978-3-642-05014-5 | publisher=[[Springer-Verlag]] | location=Berlin, New York | series=Springer Monographs in Mathematics | isbn=978-3-642-05013-8 | doi=10.1007/978-3-642-05014-5 | id={{MR|2656096}} | year=2010|loc=14}} give a detailed list of their properties.


==Definition==
==Definition==


The polynomials are given in terms of [[basic hypergeometric function]]s and the [[Pochhammer symbol]] by
The polynomials are given in terms of [[basic hypergeometric function]]s by <ref>Roelof Koekoek, Hypergeometric Orthogonal Polynomials and its q-Analogues, p. 501, Springer, 2010</ref>
:<math>\displaystyle </math>


: <math> K^{\text{aff}}_n (q^{-x};p;N;q) = {}_3\phi_2\left( \begin{matrix}
==Orthogonality==
q^{-n},0,q^{-x}\\
pq,q^{-N}\end{matrix};q,q\right), \qquad n=0,1,2,\ldots, N.</math>


==Relation to other polynomials==
==Recurrence and difference relations==


affine q-Krawtchouk polynomials → [[little q-Laguerre polynomials]]:
==Rodrigues formula==


: <math>\lim_{a \to 1}=K_n^\text{aff}(q^{x-N};p,N\mid q)=p_n(q^x;p,q)</math>.
==Generating function==

==Relation to other polynomials==


==References==
==References==
{{Reflist}}


*{{Citation | last1=Gasper | first1=George | last2=Rahman | first2=Mizan | title=Basic hypergeometric series | publisher=[[Cambridge University Press]] | edition=2nd | series=Encyclopedia of Mathematics and its Applications | isbn=978-0-521-83357-8 | doi=10.2277/0521833574 | id={{MathSciNet | id = 2128719}} | year=2004 | volume=96}}
*{{Citation | last1=Gasper | first1=George | last2=Rahman | first2=Mizan | title=Basic hypergeometric series | publisher=[[Cambridge University Press]] | edition=2nd | series=Encyclopedia of Mathematics and its Applications | isbn=978-0-521-83357-8 | mr=2128719 | year=2004 | volume=96}}
*{{Citation | last1=Koekoek | first1=Roelof | last2=Lesky | first2=Peter A. | last3=Swarttouw | first3=René F. | title=Hypergeometric orthogonal polynomials and their q-analogues | url=http://dx.doi.org/10.1007/978-3-642-05014-5 | publisher=[[Springer-Verlag]] | location=Berlin, New York | series=Springer Monographs in Mathematics | isbn=978-3-642-05013-8 | doi=10.1007/978-3-642-05014-5 | id={{MR|2656096}} | year=2010}}
*{{Citation | last1=Koekoek | first1=Roelof | last2=Lesky | first2=Peter A. | last3=Swarttouw | first3=René F. | title=Hypergeometric orthogonal polynomials and their q-analogues | publisher=[[Springer-Verlag]] | location=Berlin, New York | series=Springer Monographs in Mathematics | isbn=978-3-642-05013-8 | doi=10.1007/978-3-642-05014-5 | mr=2656096 | year=2010}}
*{{dlmf|id=18|title=|first=Tom H. |last=Koornwinder|first2=Roderick S. C.|last2= Wong|first3=Roelof |last3=Koekoek||first4=René F. |last4=Swarttouw}}
*{{dlmf|id=18|first=Tom H. |last=Koornwinder|first2=Roderick S. C.|last2= Wong|first3=Roelof |last3=Koekoek||first4=René F. |last4=Swarttouw}}
*{{Citation | last1=Stanton | first1=Dennis | title=Three addition theorems for some q-Krawtchouk polynomials | url=http://dx.doi.org/10.1007/BF01447435 | doi=10.1007/BF01447435 | id={{MR|608153}} | year=1981 | journal=Geometriae Dedicata | issn=0046-5755 | volume=10 | issue=1 | pages=403–425}}
*{{Citation | last1=Stanton | first1=Dennis | title=Three addition theorems for some q-Krawtchouk polynomials | doi=10.1007/BF01447435 | mr=608153 | year=1981 | journal=Geometriae Dedicata | issn=0046-5755 | volume=10 | issue=1 | pages=403–425| s2cid=119838893 }}


[[Category:Orthogonal polynomials]]
[[Category:Orthogonal polynomials]]
[[Category:q-analogs]]
[[Category:Q-analogs]]
[[Category:Special hypergeometric functions]]
[[Category:Special hypergeometric functions]]

Latest revision as of 19:14, 18 December 2023

In mathematics, the affine q-Krawtchouk polynomials are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme, introduced by Carlitz and Hodges. Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties.

Definition

[edit]

The polynomials are given in terms of basic hypergeometric functions by [1]

Relation to other polynomials

[edit]

affine q-Krawtchouk polynomials → little q-Laguerre polynomials

.

References

[edit]
  1. ^ Roelof Koekoek, Hypergeometric Orthogonal Polynomials and its q-Analogues, p. 501, Springer, 2010
  • Gasper, George; Rahman, Mizan (2004), Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, vol. 96 (2nd ed.), Cambridge University Press, ISBN 978-0-521-83357-8, MR 2128719
  • Koekoek, Roelof; Lesky, Peter A.; Swarttouw, René F. (2010), Hypergeometric orthogonal polynomials and their q-analogues, Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag, doi:10.1007/978-3-642-05014-5, ISBN 978-3-642-05013-8, MR 2656096
  • Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), "Affine q-Krawtchouk polynomials", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248.
  • Stanton, Dennis (1981), "Three addition theorems for some q-Krawtchouk polynomials", Geometriae Dedicata, 10 (1): 403–425, doi:10.1007/BF01447435, ISSN 0046-5755, MR 0608153, S2CID 119838893