Affine q-Krawtchouk polynomials: Difference between revisions
Appearance
Content deleted Content added
names |
m clean up spacing around commas and other punctuation fixes, replaced: ,N → , N, ,S → , S, ,q → , q (4) |
||
(23 intermediate revisions by 11 users not shown) | |||
Line 1: | Line 1: | ||
⚫ | In mathematics, the '''affine ''q''-Krawtchouk polynomials''' are a family of basic hypergeometric [[orthogonal polynomials]] in the basic [[Askey scheme]], introduced by Carlitz and Hodges. {{harvs|txt | last1=Koekoek | first1=Roelof | last2=Lesky | first2=Peter A. | last3=Swarttouw | first3=René F. | title=Hypergeometric orthogonal polynomials and their q-analogues | publisher=[[Springer-Verlag]] | location=Berlin, New York | series=Springer Monographs in Mathematics | isbn=978-3-642-05013-8 | doi=10.1007/978-3-642-05014-5 | mr=2656096 | year=2010|loc=14}} give a detailed list of their properties. |
||
{{underconstruction}} |
|||
⚫ | In mathematics, the '''affine ''q''-Krawtchouk polynomials''' are a family of basic hypergeometric [[orthogonal polynomials]] in the basic [[Askey scheme]], introduced by Carlitz and Hodges. {{harvs|txt | last1=Koekoek | first1=Roelof | last2=Lesky | first2=Peter A. | last3=Swarttouw | first3=René F. | title=Hypergeometric orthogonal polynomials and their q-analogues |
||
==Definition== |
==Definition== |
||
The polynomials are given in terms of [[basic hypergeometric function]]s and |
The polynomials are given in terms of [[basic hypergeometric function]]s by <ref>Roelof Koekoek, Hypergeometric Orthogonal Polynomials and its q-Analogues, p. 501, Springer, 2010</ref> |
||
:<math>\displaystyle </math> |
|||
: <math> K^{\text{aff}}_n (q^{-x};p;N;q) = {}_3\phi_2\left( \begin{matrix} |
|||
==Orthogonality== |
|||
q^{-n},0,q^{-x}\\ |
|||
pq,q^{-N}\end{matrix};q,q\right), \qquad n=0,1,2,\ldots, N.</math> |
|||
⚫ | |||
==Recurrence and difference relations== |
|||
affine q-Krawtchouk polynomials → [[little q-Laguerre polynomials]]: |
|||
==Rodrigues formula== |
|||
: <math>\lim_{a \to 1}=K_n^\text{aff}(q^{x-N};p,N\mid q)=p_n(q^x;p,q)</math>. |
|||
==Generating function== |
|||
⚫ | |||
==References== |
==References== |
||
{{Reflist}} |
|||
*{{Citation | last1=Gasper | first1=George | last2=Rahman | first2=Mizan | title=Basic hypergeometric series | publisher=[[Cambridge University Press]] | edition=2nd | series=Encyclopedia of Mathematics and its Applications | isbn=978-0-521-83357-8 | |
*{{Citation | last1=Gasper | first1=George | last2=Rahman | first2=Mizan | title=Basic hypergeometric series | publisher=[[Cambridge University Press]] | edition=2nd | series=Encyclopedia of Mathematics and its Applications | isbn=978-0-521-83357-8 | mr=2128719 | year=2004 | volume=96}} |
||
*{{Citation | last1=Koekoek | first1=Roelof | last2=Lesky | first2=Peter A. | last3=Swarttouw | first3=René F. | title=Hypergeometric orthogonal polynomials and their q-analogues |
*{{Citation | last1=Koekoek | first1=Roelof | last2=Lesky | first2=Peter A. | last3=Swarttouw | first3=René F. | title=Hypergeometric orthogonal polynomials and their q-analogues | publisher=[[Springer-Verlag]] | location=Berlin, New York | series=Springer Monographs in Mathematics | isbn=978-3-642-05013-8 | doi=10.1007/978-3-642-05014-5 | mr=2656096 | year=2010}} |
||
*{{dlmf|id=18 |
*{{dlmf|id=18|first=Tom H. |last=Koornwinder|first2=Roderick S. C.|last2= Wong|first3=Roelof |last3=Koekoek||first4=René F. |last4=Swarttouw}} |
||
*{{Citation | last1=Stanton | first1=Dennis | title=Three addition theorems for some q-Krawtchouk polynomials |
*{{Citation | last1=Stanton | first1=Dennis | title=Three addition theorems for some q-Krawtchouk polynomials | doi=10.1007/BF01447435 | mr=608153 | year=1981 | journal=Geometriae Dedicata | issn=0046-5755 | volume=10 | issue=1 | pages=403–425| s2cid=119838893 }} |
||
[[Category:Orthogonal polynomials]] |
[[Category:Orthogonal polynomials]] |
||
[[Category: |
[[Category:Q-analogs]] |
||
[[Category:Special hypergeometric functions]] |
[[Category:Special hypergeometric functions]] |
Latest revision as of 19:14, 18 December 2023
In mathematics, the affine q-Krawtchouk polynomials are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme, introduced by Carlitz and Hodges. Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties.
Definition
[edit]The polynomials are given in terms of basic hypergeometric functions by [1]
Relation to other polynomials
[edit]affine q-Krawtchouk polynomials → little q-Laguerre polynomials:
- .
References
[edit]- ^ Roelof Koekoek, Hypergeometric Orthogonal Polynomials and its q-Analogues, p. 501, Springer, 2010
- Gasper, George; Rahman, Mizan (2004), Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, vol. 96 (2nd ed.), Cambridge University Press, ISBN 978-0-521-83357-8, MR 2128719
- Koekoek, Roelof; Lesky, Peter A.; Swarttouw, René F. (2010), Hypergeometric orthogonal polynomials and their q-analogues, Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag, doi:10.1007/978-3-642-05014-5, ISBN 978-3-642-05013-8, MR 2656096
- Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), "Affine q-Krawtchouk polynomials", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248.
- Stanton, Dennis (1981), "Three addition theorems for some q-Krawtchouk polynomials", Geometriae Dedicata, 10 (1): 403–425, doi:10.1007/BF01447435, ISSN 0046-5755, MR 0608153, S2CID 119838893