1-Octene: Difference between revisions
m Disambiguated: South African → South Africa |
Added {{More citations needed}} tag |
||
(10 intermediate revisions by 9 users not shown) | |||
Line 1: | Line 1: | ||
{{More citations needed|date=December 2023}} |
|||
{{chembox |
|||
{{Chembox |
|||
| Watchedfields = changed |
| Watchedfields = changed |
||
| verifiedrevid = 477208427 |
| verifiedrevid = 477208427 |
||
Line 10: | Line 11: | ||
| ImageAlt1 = 1-Octene molecule |
| ImageAlt1 = 1-Octene molecule |
||
| PIN = Oct-1-ene |
| PIN = Oct-1-ene |
||
| OtherNames = Octene-1, octylene; 1-n- |
| OtherNames = Octene-1, octylene; 1-n-octene; hexylethylene; oct-1-ene; octene; caprylene |
||
|Section1={{Chembox Identifiers |
|Section1={{Chembox Identifiers |
||
| ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}} |
| ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}} |
||
Line 25: | Line 26: | ||
| CASNo_Ref = {{cascite|correct|CAS}} |
| CASNo_Ref = {{cascite|correct|CAS}} |
||
| CASNo = 111-66-0 |
| CASNo = 111-66-0 |
||
| UNII_Ref = {{fdacite|correct|FDA}} |
|||
| UNII = E5VK21B9RC |
|||
| SMILES = C=CCCCCCC |
| SMILES = C=CCCCCCC |
||
}} |
}} |
||
Line 32: | Line 35: | ||
| Density = 0.715 g/cm<sup>3</sup> |
| Density = 0.715 g/cm<sup>3</sup> |
||
| MeltingPtC = -101.7 |
| MeltingPtC = -101.7 |
||
| MeltingPt_ref =<ref name="nist"> |
| MeltingPt_ref =<ref name="nist">{{Cite web|url=https://webbook.nist.gov/cgi/cbook.cgi?ID=C111660&Units=SI&Mask=1EFF|title = 1-Octene}}</ref> |
||
| BoilingPtC = 121 |
| BoilingPtC = 121 |
||
| BoilingPt_ref = <ref name="nist"/> |
| BoilingPt_ref = <ref name="nist"/> |
||
Line 38: | Line 41: | ||
}} |
}} |
||
'''1-Octene''' is an [[organic compound]] with a formula CH<sub>2</sub>CHC<sub>6</sub>H<sub>13</sub>. |
'''1-Octene''' is an [[organic compound]] with a formula CH<sub>2</sub>CHC<sub>6</sub>H<sub>13</sub>. The [[alkene]] is classified as a higher [[olefin]] and [[alpha-olefin]], meaning that the [[double bond]] is located at the alpha (primary) position, endowing this compound with higher reactivity and thus useful chemical properties. 1-Octene is one of the important [[linear alpha olefin]]s in industry. It is a colourless liquid. |
||
==Synthesis== |
==Synthesis== |
||
In industry, 1-octene is commonly manufactured by two main routes: [[oligomerization]] of [[ethylene]] and by [[ |
In industry, 1-octene is commonly manufactured by two main routes: [[oligomerization]] of [[ethylene]] and by [[Fischer–Tropsch process|Fischer–Tropsch synthesis]] followed by purification. Another route to 1-octene that has been used commercially on a small scale is [[Dehydration reaction|dehydration]] of [[Alcohol (chemistry)|alcohol]]s. Prior to the 1970s, 1-octene was also manufactured by thermal cracking of [[wax]]es, whereas linear internal [[octene]]s were also manufactured by [[halogenation|chlorination]]/[[dehydrochlorination]] of [[linear alkane]]s. |
||
There are five commercial processes that [[oligomerize]] [[ethylene]] to 1-octene. |
There are five commercial processes that [[oligomerization|oligomerize]] [[ethylene]] to 1-octene. Four of these processes produce 1-octene as a part of a wide distribution of alpha-olefins. In typical circumstances, [[1-Hexene|1-hexene]] content of the entire distribution of alpha-olefins ranges from about 25% of the distribution in the [[Ethyl Corporation|Ethyl]] ([[Innovene]]) process to about 8% of distribution in some modes of the [[Gulf Oil|Gulf]] (CP Chemicals) and [[Idemitsu]] processes. |
||
The only commercial process to isolate 1-octene from a wide mixture of C<sub>8</sub> hydrocarbons is practiced by [[Sasol]], a [[South Africa]]n oil and gas and petrochemical company. |
The only commercial process to isolate 1-octene from a wide mixture of C<sub>8</sub> hydrocarbons is practiced by [[Sasol]], a [[South Africa]]n oil and gas and petrochemical company. For commercial purposes, Sasol employs [[Fischer–Tropsch process|Fischer–Tropsch synthesis]] to make fuels from [[synthesis gas]] derived from coal and recovers 1-octene from these fuel streams, where the initial 1-octene concentration in a narrow [[distillation]] cut may be 60%, with the remainder being vinylidenes, linear and branched internal olefins, linear and branched paraffins, [[Alcohol (chemistry)|alcohol]]s, [[aldehyde]]s, [[carboxylic acid]]s, and [[aromatic hydrocarbon]]s. |
||
Another route to 1-octene involves butadiene [[telomerization]] of butadiene. This technology was commercialized by Dow in a facility in [[Tarragona]]. 1-Methoxy- |
|||
⚫ | |||
2,7-octadiene is an intermediate in this process.<ref name=Beller>{{cite journal |doi=10.1039/D3IM00009E |title=Industrially applied and relevant transformations of 1,3-butadiene using homogeneous catalysts |date=2023 |last1=Yang |first1=Ji |last2=Wang |first2=Peng |last3=Neumann |first3=Helfried |last4=Jackstell |first4=Ralf |last5=Beller |first5=Matthias |journal=Industrial Chemistry & Materials |volume=1 |issue=2 |pages=155–174 |s2cid=258122761 |doi-access=free }}</ref> |
|||
Yet another route converts 1-heptene to 1-octene plant based on a Fischer-Tropsch-derived C<sub>7</sub> olefin stream (Sasol, Secunda). |
|||
⚫ | Other 1-octene technologies exist based on selective tetramerisation of ethylene.<ref>{{cite journal |last1=Bollmann |first1=Annette |last2=Blann |first2=Kevin |last3=Dixon |first3=John T. |last4=Hess |first4=Fiona M. |last5=Killian |first5=Esna |last6=Maumela |first6=Hulisani |last7=McGuinness |first7=David S. |last8=Morgan |first8=David H. |last9=Neveling |first9=Arno |last10=Otto |first10=Stefanus |last11=Overett |first11=Matthew |last12=Slawin |first12=Alexandra M. Z. |last13=Wasserscheid |first13=Peter |last14=Kuhlmann |first14=Sven |year=2004 |title=Ethylene Tetramerization: A New Route to Produce 1-Octene in Exceptionally High Selectivities |journal=J. Am. Chem. Soc. |volume=126 |issue=45 |pages=14712–14713 |doi=10.1021/ja045602n|pmid=15535683 }}</ref> |
||
==Applications== |
==Applications== |
||
The main use of 1-octene is as a [[ |
The main use of 1-octene is as a [[comonomer]] in production of polyethylene. [[High-density polyethylene]] (HDPE) and [[linear low-density polyethylene]] (LLDPE) use approximately 2–4% and 8–10% of comonomers, respectively. |
||
Another significant use of 1-octene is for production of linear [[aldehyde]] via |
Another significant use of 1-octene is for production of linear [[aldehyde]] via oxo synthesis ([[hydroformylation]]) to give the C9 aldehyde ([[nonanal]]). Oxidation of this aldehyde gives the short-chain [[fatty acid]] [[nonanoic acid]]. Hydrogenation of the same aldehyde gives the [[fatty alcohol]] [[1-Nonanol|1-nonanol]], which is used as a [[plasticizer]]. |
||
==References== |
==References== |
||
{{Reflist}} |
|||
<references/> |
|||
{{Hydrides by group}} |
{{Hydrides by group}} |
||
{{DEFAULTSORT:Octene, 1-}} |
{{DEFAULTSORT:Octene, 1-}} |
||
[[Category:Alkenes]] |
[[Category:Alkenes]] |
Latest revision as of 15:15, 22 December 2023
This article needs additional citations for verification. (December 2023) |
Names | |
---|---|
Preferred IUPAC name
Oct-1-ene | |
Other names
Octene-1, octylene; 1-n-octene; hexylethylene; oct-1-ene; octene; caprylene
| |
Identifiers | |
3D model (JSmol)
|
|
ChEBI | |
ChemSpider | |
ECHA InfoCard | 100.003.540 |
PubChem CID
|
|
UNII | |
CompTox Dashboard (EPA)
|
|
| |
| |
Properties | |
C8H16 | |
Molar mass | 112.24 g/mol |
Density | 0.715 g/cm3 |
Melting point | −101.7 °C (−151.1 °F; 171.5 K)[1] |
Boiling point | 121 °C (250 °F; 394 K)[1] |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
1-Octene is an organic compound with a formula CH2CHC6H13. The alkene is classified as a higher olefin and alpha-olefin, meaning that the double bond is located at the alpha (primary) position, endowing this compound with higher reactivity and thus useful chemical properties. 1-Octene is one of the important linear alpha olefins in industry. It is a colourless liquid.
Synthesis
[edit]In industry, 1-octene is commonly manufactured by two main routes: oligomerization of ethylene and by Fischer–Tropsch synthesis followed by purification. Another route to 1-octene that has been used commercially on a small scale is dehydration of alcohols. Prior to the 1970s, 1-octene was also manufactured by thermal cracking of waxes, whereas linear internal octenes were also manufactured by chlorination/dehydrochlorination of linear alkanes.
There are five commercial processes that oligomerize ethylene to 1-octene. Four of these processes produce 1-octene as a part of a wide distribution of alpha-olefins. In typical circumstances, 1-hexene content of the entire distribution of alpha-olefins ranges from about 25% of the distribution in the Ethyl (Innovene) process to about 8% of distribution in some modes of the Gulf (CP Chemicals) and Idemitsu processes.
The only commercial process to isolate 1-octene from a wide mixture of C8 hydrocarbons is practiced by Sasol, a South African oil and gas and petrochemical company. For commercial purposes, Sasol employs Fischer–Tropsch synthesis to make fuels from synthesis gas derived from coal and recovers 1-octene from these fuel streams, where the initial 1-octene concentration in a narrow distillation cut may be 60%, with the remainder being vinylidenes, linear and branched internal olefins, linear and branched paraffins, alcohols, aldehydes, carboxylic acids, and aromatic hydrocarbons.
Another route to 1-octene involves butadiene telomerization of butadiene. This technology was commercialized by Dow in a facility in Tarragona. 1-Methoxy- 2,7-octadiene is an intermediate in this process.[2]
Yet another route converts 1-heptene to 1-octene plant based on a Fischer-Tropsch-derived C7 olefin stream (Sasol, Secunda).
Other 1-octene technologies exist based on selective tetramerisation of ethylene.[3]
Applications
[edit]The main use of 1-octene is as a comonomer in production of polyethylene. High-density polyethylene (HDPE) and linear low-density polyethylene (LLDPE) use approximately 2–4% and 8–10% of comonomers, respectively.
Another significant use of 1-octene is for production of linear aldehyde via oxo synthesis (hydroformylation) to give the C9 aldehyde (nonanal). Oxidation of this aldehyde gives the short-chain fatty acid nonanoic acid. Hydrogenation of the same aldehyde gives the fatty alcohol 1-nonanol, which is used as a plasticizer.
References
[edit]- ^ a b "1-Octene".
- ^ Yang, Ji; Wang, Peng; Neumann, Helfried; Jackstell, Ralf; Beller, Matthias (2023). "Industrially applied and relevant transformations of 1,3-butadiene using homogeneous catalysts". Industrial Chemistry & Materials. 1 (2): 155–174. doi:10.1039/D3IM00009E. S2CID 258122761.
- ^ Bollmann, Annette; Blann, Kevin; Dixon, John T.; Hess, Fiona M.; Killian, Esna; Maumela, Hulisani; McGuinness, David S.; Morgan, David H.; Neveling, Arno; Otto, Stefanus; Overett, Matthew; Slawin, Alexandra M. Z.; Wasserscheid, Peter; Kuhlmann, Sven (2004). "Ethylene Tetramerization: A New Route to Produce 1-Octene in Exceptionally High Selectivities". J. Am. Chem. Soc. 126 (45): 14712–14713. doi:10.1021/ja045602n. PMID 15535683.