Jump to content

Complex reflection group: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m References: task, replaced: Canadian Journal of Mathematics. Journal Canadien de Mathématiques → Canadian Journal of Mathematics
 
(37 intermediate revisions by 14 users not shown)
Line 1: Line 1:
{{Short description|Concept in mathematics}}
In [[mathematics]], a '''complex reflection group''' is a [[Group (mathematics)|finite group]] acting on a [[finite-dimensional vector space|finite-dimensional]] [[complex numbers|complex]] [[vector space]] that is generated by '''complex reflections''': non-trivial elements that fix a complex [[hyperplane]] pointwise.
In [[mathematics]], a '''complex reflection group''' is a [[Group (mathematics)|finite group]] acting on a [[finite-dimensional vector space|finite-dimensional]] [[complex numbers|complex]] [[vector space]] that is generated by '''complex reflections''': non-trivial elements that fix a complex [[hyperplane]] pointwise.


Line 5: Line 6:
==Definition==
==Definition==


A '''(complex) reflection''' ''r'' (sometimes also called '''pseudo reflection''' or '''unitary reflection''') of a finite-dimensional complex vector space ''V'' is an element <math>r \in GL(V)</math> of finite order that fixes a complex hyperplane pointwise. I.e., the '''fixed-space''' <math>\operatorname{Fix}(r) := \operatorname{ker}(r-\operatorname{Id}_V)</math> has codimension 1.
A (complex) reflection ''r'' (sometimes also called ''pseudo reflection'' or ''unitary reflection'') of a finite-dimensional complex vector space ''V'' is an element <math>r \in GL(V)</math> of finite order that fixes a complex hyperplane pointwise, that is, the ''fixed-space'' <math>\operatorname{Fix}(r) := \operatorname{ker}(r-\operatorname{Id}_V)</math> has codimension 1.


A ('''finite''') '''complex reflection group''' <math>W \subseteq GL(V)</math> is a finite subgroup of <math>GL(V)</math> that is generated by reflections.
A ('''finite''') '''complex reflection group''' <math>W \subseteq GL(V)</math> is a finite subgroup of <math>GL(V)</math> that is generated by reflections.
Line 12: Line 13:


Any real reflection group becomes a complex reflection group if we extend the scalars from
Any real reflection group becomes a complex reflection group if we extend the scalars from
'''R''' to '''C'''. In particular all [[Coxeter group]]s or [[Weyl group]]s give examples of complex reflection groups.
'''R''' to '''C'''. In particular, all finite [[Coxeter group]]s or [[Weyl group]]s give examples of complex reflection groups.


A complex reflection group ''W'' is '''irreducible''' if the only ''W''-invariant proper subspace of the corresponding vector space is the origin. In this case, the dimension of the vector space is called the '''rank''' of ''W''.
A complex reflection group ''W'' is '''irreducible''' if the only ''W''-invariant proper subspace of the corresponding vector space is the origin. In this case, the dimension of the vector space is called the '''rank''' of ''W''.
Line 21: Line 22:
==Classification==
==Classification==


Any complex reflection group is a product of irreducible complex reflection groups, acting on the sum of the corresponding vector spaces. So it is sufficient to classify the irreducible complex reflection groups.
Any complex reflection group is a product of irreducible complex reflection groups, acting on the sum of the corresponding vector spaces.<ref>Lehrer and Taylor, Theorem 1.27.</ref> So it is sufficient to classify the irreducible complex reflection groups.


The irreducible complex reflection groups were classified by {{Harvs |txt |first=G. C. |last=Shephard |author1-link=Geoffrey Colin Shephard|first2=J. A. |last2=Todd |author2-link=J. A. Todd |year=1954}}. They found an infinite family ''G''(''m'',''p'',''n'') depending on 3 positive integer parameters (with ''p'' dividing ''m''), and 34 exceptional cases, that they numbered from 4 to 37, listed below. The group
The irreducible complex reflection groups were classified by {{Harvs |txt |first=G. C. |last=Shephard |author1-link=Geoffrey Colin Shephard|first2=J. A. |last2=Todd |author2-link=J. A. Todd |year=1954}}. They proved that every irreducible belonged to an infinite family ''G''(''m'', ''p'', ''n'') depending on 3 positive integer parameters (with ''p'' dividing ''m'') or was one of 34 exceptional cases, which they numbered from 4 to 37.<ref>Lehrer and Taylor, p. 271.</ref> The group ''G''(''m'', 1, ''n'') is the [[generalized symmetric group]]; equivalently, it is the [[wreath product]] of the symmetric group Sym(''n'') by a cyclic group of order ''m''. As a matrix group, its elements may be realized as [[monomial matrices]] whose nonzero elements are ''m''th [[roots of unity]].
''G''(''m'',''p'',''n''), of order ''m''<sup>''n''</sup>''n''!/''p'', is the semidirect product of the abelian group
of order ''m''<sup>''n''</sup>/''p'' whose elements are (θ<sup>''a''<sub>1</sub></sup>,θ<sup>''a''<sub>2</sub></sup>, ...,θ<sup>''a''<sub>''n''</sub></sup>), by the symmetric group ''S''<sub>''n''</sub> acting by permutations of the coordinates, where θ is a primitive ''m''th root of unity and Σ''a''<sub>''i''</sub>≡ 0 mod ''p''; it is an index ''p'' subgroup of the [[generalized symmetric group]] <math>S(m,n).</math>


The group ''G''(''m'', ''p'', ''n'') is an [[index of a subgroup|index-''p'']] subgroup of ''G''(''m'', 1, ''n''). ''G''(''m'', ''p'', ''n'') is of order ''m''<sup>''n''</sup>''n''!/''p''. As matrices, it may be realized as the subset in which the product of the nonzero entries is an (''m''/''p'')th root of unity (rather than just an ''m''th root). Algebraically, ''G''(''m'', ''p'', ''n'') is a [[semidirect product]] of an abelian group of order ''m''<sup>''n''</sup>/''p'' by the symmetric group Sym(''n''); the elements of the abelian group are of the form (''θ''<sup>''a''<sub>1</sub></sup>, ''θ''<sup>''a''<sub>2</sub></sup>, ..., ''θ''<sup>''a''<sub>''n''</sub></sup>), where ''θ'' is a [[primitive root of unity|primitive]] ''m''th root of unity and Σ''a''<sub>''i''</sub> ≡ 0 mod ''p'', and Sym(''n'') acts by permutations of the coordinates.<ref>Lehrer and Taylor, Section 2.2.</ref>
Special cases of ''G''(''m'',''p'',''n''):

*''G''(1,1,''n'') is the [[Coxeter group#Properties|Coxeter group]] ''A''<sub>''n''&minus;1</sub> = {3,3,...,3,3] = {{CDD|node|3|node|3}}...{{CDD|3|node|3|node}}.
The group ''G''(''m'',''p'',''n'') acts irreducibly on '''C'''<sup>''n''</sup> except in the cases ''m'' = 1, ''n'' > 1 (the symmetric group) and ''G''(2, 2, 2) (the [[Klein four-group]]). In these cases, '''C'''<sup>''n''</sup> splits as a sum of irreducible representations of dimensions 1 and ''n''1.
*''G''(2,1,''n'') is the Coxeter group ''B''<sub>''n''</sub> = [3,3,...,3,4] = ''C''<sub>''n''</sub> = {{CDD|node|3|node|3}}...{{CDD|3|node|4|node}}.

*''G''(2,2,''n'') is the Coxeter group ''D''<sub>''n''</sub> = [3,3,...,3<sup>1,1</sup>] = {{CDD|node|3|node|3}}...{{CDD|3|node|split1|nodes}}.
*''G''(''m'',''p'',1) is a cyclic group of order ''m''/''p'' = [''m''/''p'']<sup>+</sup>.
===Special cases of ''G''(''m'', ''p'', ''n'')===
====[[Coxeter group]]s====
*''G''(''p'',''p'',2) is the Coxeter group ''I''<sub>''2''</sub>(''p'') = [''p''] = {{CDD|branch|labelp}} (and the Weyl group ''G''<sub>2</sub> when ''p'' = 6).
When ''m'' = 2, the representation described in the previous section consists of matrices with real entries, and hence in these cases ''G''(''m'',''p'',''n'') is a finite Coxeter group. In particular:<ref>Lehrer and Taylor, Example 2.11.</ref>
*''G''(''p'',1,''n'') is the Shephard group {{CDD|node|3|node|3}}...{{CDD|3|node|4|pnode}}.
* ''G''(1, 1, ''n'') has type ''A''<sub>''n''&minus;1</sub> = [3,3,...,3,3] = {{CDD|node|3|node|3}}...{{CDD|3|node|3|node}}; the symmetric group of order ''n''!
*The group ''G''(''m'',''p'',''n'') acts irreducibly on '''C'''<sup>''n''</sup> except in the cases ''m''=1, ''n''>1 (symmetric group) and ''G''(2,2,2) (Klein 4 group), when '''C'''<sup>''n''</sup> splits as a sum of irreducible representations of dimensions 1 and ''n''&minus;1.
* ''G''(2, 1, ''n'') has type ''B''<sub>''n''</sub> = [3,3,...,3,4] = {{CDD|node|3|node|3}}...{{CDD|3|node|4|node}}; the [[hyperoctahedral group]] of order 2<sup>''n''</sup>''n''!
*The only cases when two groups ''G''(''m'',''p'',''n'') are isomorphic as complex reflection groups are that ''G''(''ma'',''pa'',1) is isomorphic to ''G''(''mb'',''pb'',1) for any positive integers ''a'',''b''. However, there are other cases when two such groups are isomorphic as abstract groups.
* ''G''(2, 2, ''n'') has type ''D''<sub>''n''</sub> = [3,3,...,3<sup>1,1</sup>] = {{CDD|node|3|node|3}}...{{CDD|3|node|split1|nodes}}, order 2<sup>''n''</sup>''n''!/2.
*The complex reflection group ''G''(2,2,3) is isomorphic as a complex reflection group to ''G''(1,1,4) restricted to a 3-dimensional space.

*The complex reflection group ''G''(3,3,2) is isomorphic as a complex reflection group to ''G''(1,1,3) restricted to a 2-dimensional space.
In addition, when ''m'' = ''p'' and ''n'' = 2, the group ''G''(''p'', ''p'', 2) is the [[dihedral group]] of order 2''p''; as a Coxeter group, type ''I''<sub>''2''</sub>(''p'') = [''p''] = {{CDD|branch|labelp}} (and the Weyl group ''G''<sub>2</sub> when ''p'' = 6).
*The complex reflection group ''G''(2''p'',''p'',1) is isomorphic as a complex reflection group to ''G''(1,1,2) restricted to a 1-dimensional space.

====Other special cases and coincidences====
The only cases when two groups ''G''(''m'', ''p'', ''n'') are isomorphic as complex reflection groups{{clarify|What exactly does this mean? Any why G(2, 1, 2) and G(4, 4, 2) is not a counter-example, for example? This does not seem supported by Lehrer--Taylor, p. 271.|date=April 2020}} are that ''G''(''ma'', ''pa'', 1) is isomorphic to ''G''(''mb'', ''pb'', 1) for any positive integers ''a'', ''b'' (and both are isomorphic to the [[cyclic group]] of order ''m''/''p''). However, there are other cases when two such groups are isomorphic as abstract groups.

The groups ''G''(3, 3, 2) and ''G''(1, 1, 3) are isomorphic to the symmetric group Sym(3). The groups ''G''(2, 2, 3) and ''G''(1, 1, 4) are isomorphic to the symmetric group Sym(4). Both ''G''(2, 1, 2) and ''G''(4, 4, 2) are isomorphic to the [[dihedral group]] of order 8. And the groups ''G''(2''p'', ''p'', 1) are cyclic of order 2, as is ''G''(1, 1, 2).


==List of irreducible complex reflection groups==
==List of irreducible complex reflection groups==
Line 52: Line 56:
! ST
! ST
! Rank
! Rank
! Structure and names
! Structure and names||Coxeter names
! data-sort-type="number"|Order
! data-sort-type="number"|Order
! Reflections
! Reflections
Line 60: Line 64:
| 1
| 1
| ''n''&minus;1
| ''n''&minus;1
| [[Symmetric group]] ''G''(1,1,''n'') = Sym(''n'')
| [[Symmetric group]] ''G''(1,1,''n'') = Sym(''n'')||
| ''n''!
| ''n''!
| 2<sup>''n''(''n''&nbsp;&minus;&nbsp;1)/2</sup>
| 2<sup>''n''(''n''&nbsp;&minus;&nbsp;1)/2</sup>
Line 68: Line 72:
| 2
| 2
| ''n''
| ''n''
| ''G''(''m'',''p'',''n'') ''m''&nbsp;&gt;&nbsp;1, ''n''&nbsp;&gt;&nbsp;1, ''p''<nowiki>|</nowiki>''m'' (''G''(2,2,2) is reducible)
| ''G''(''m'',''p'',''n'') ''m''&nbsp;&gt;&nbsp;1, ''n''&nbsp;&gt;&nbsp;1, ''p''<nowiki>|</nowiki>''m'' (''G''(2,2,2) is reducible)||
| ''m''<sup>''n''</sup>''n''!/''p''
| ''m''<sup>''n''</sup>''n''!/''p''
| 2<sup>''mn''(''n''&minus;1)/2</sup>,''d''<sup>''n''φ(''d'')</sup> (''d''<nowiki>|</nowiki>''m''/''p'',&nbsp;''d''&nbsp;>&nbsp;1)
| 2<sup>''mn''(''n''&minus;1)/2</sup>,''d''<sup>''n''φ(''d'')</sup> (''d''<nowiki>|</nowiki>''m''/''p'',&nbsp;''d''&nbsp;>&nbsp;1)
| ''m'',2''m'',..,(''n''&nbsp;&minus;&nbsp;1)''m''; ''mn''/''p''
| ''m'',2''m'',..,(''n''&nbsp;&minus;&nbsp;1)''m''; ''mn''/''p''
| 0,''m'',..., (''n''&nbsp;&minus;&nbsp;1)''m'' if ''p''&nbsp;<&nbsp;''m''; 0,''m'',...,(''n''&nbsp;&minus;&nbsp;2)''m'', (''n''&nbsp;&minus;&nbsp;1)''m''&nbsp;&minus;&nbsp;''n'' if ''p''&nbsp;=&nbsp;''m''
| 0,''m'',..., (''n''&nbsp;&minus;&nbsp;1)''m'' if ''p''&nbsp;<&nbsp;''m''; 0,''m'',...,(''n''&nbsp;&minus;&nbsp;2)''m'', (''n''&nbsp;&minus;&nbsp;1)''m''&nbsp;&minus;&nbsp;''n'' if ''p''&nbsp;=&nbsp;''m''
|-
| 2
| 2
| ''G''(''p'',1,2) ''p''&nbsp;&gt;&nbsp;1, || p[4]2 or {{CDD|pnode|4|node}}
| 2''p''<sup>2</sup>
| 2<sup>''p''</sup>,''d''<sup>2φ(''d'')</sup> (''d''<nowiki>|</nowiki>''p'',&nbsp;''d''&nbsp;>&nbsp;1)
| ''p''; ''2p''
| 0,''p''
|-
| 2
| 2
| [[Dihedral group]] ''G''(''p'',''p'',2) ''p''&nbsp;&gt;&nbsp;2 || [''p''] or {{CDD|node|p|node}}
| 2''p''
| 2<sup>''p''</sup>
| 2,''p''
| 0,''p-2''
|-
|-
| 3
| 3
| 1
| 1
| Cyclic group ''G''(''m'',1,1) = '''Z'''<sub>''m''</sub>
| [[Cyclic group]] ''G''(''p'',1,1) = '''Z'''<sub>''p''</sub>|| ''p''[] or {{CDD|pnode}}
| ''m''
| ''p''
| ''d''<sup>φ(''d'')</sup> (''d''<nowiki>|</nowiki>''m'',&nbsp;''d''&nbsp;>&nbsp;1)
| ''d''<sup>φ(''d'')</sup> (''d''<nowiki>|</nowiki>''p'',&nbsp;''d''&nbsp;>&nbsp;1)
| ''m''
| ''p''
| 0
| 0
|-
|-
| 4
| 4
| 2
| 2
| W(L<sub>2</sub>), '''Z'''<sub>2</sub>.''T'' = 3[3]3 or {{CDD|3node|3|3node}}, [[Binary tetrahedral group|<2,3,3>]]
| W(L<sub>2</sub>), '''Z'''<sub>2</sub>.''T'' || 3[3]3 or {{CDD|3node|3|3node}}, [[Binary tetrahedral group|⟨2,3,3⟩]]
| 24
| 24
| 3<sup>8</sup>
| 3<sup>8</sup>
Line 92: Line 112:
| 5
| 5
| 2
| 2
| '''Z'''<sub>6</sub>.''T'' = 3[4]3 or {{CDD|3node|4|3node}}
| '''Z'''<sub>6</sub>.''T'' || 3[4]3 or {{CDD|3node|4|3node}}
| 72
| 72
| 3<sup>16</sup>
| 3<sup>16</sup>
Line 100: Line 120:
| 6
| 6
| 2
| 2
| '''Z'''<sub>4</sub>.''T'' = 3[6]2 or {{CDD|3node|6|node}}
| '''Z'''<sub>4</sub>.''T'' || 3[6]2 or {{CDD|3node|6|node}}
| 48
| 48
| 2<sup>6</sup>3<sup>8</sup>
| 2<sup>6</sup>3<sup>8</sup>
Line 108: Line 128:
| 7
| 7
| 2
| 2
| '''Z'''<sub>12</sub>.''T'' =〈3,3,3〉<sub>2</sub> or 〈3,3,2〉<sub>6</sub>
| '''Z'''<sub>12</sub>.''T'' ||‹3,3,3›<sub>2</sub> or ⟨2,3,3⟩<sub>6</sub>
| 144
| 144
| 2<sup>6</sup>3<sup>16</sup>
| 2<sup>6</sup>3<sup>16</sup>
Line 116: Line 136:
| 8
| 8
| 2
| 2
| '''Z'''<sub>4</sub>.''O'' = 4[3]4 or {{CDD|4node|3|4node}}
| '''Z'''<sub>4</sub>.''O'' || 4[3]4 or {{CDD|4node|3|4node}}
| 96
| 96
| 2<sup>6</sup>4<sup>12</sup>
| 2<sup>6</sup>4<sup>12</sup>
Line 124: Line 144:
| 9
| 9
| 2
| 2
| '''Z'''<sub>8</sub>.''O'' = 4[6]2 or {{CDD|4node|6|node}}
| '''Z'''<sub>8</sub>.''O'' || 4[6]2 or {{CDD|4node|6|node}} or ⟨2,3,4⟩<sub>4</sub>
| 192
| 192
| 2<sup>18</sup>4<sup>12</sup>
| 2<sup>18</sup>4<sup>12</sup>
Line 132: Line 152:
| 10
| 10
| 2
| 2
| '''Z'''<sub>12</sub>.''O'' = 4[4]3 or {{CDD|4node|4|3node}}
| '''Z'''<sub>12</sub>.''O''|| 4[4]3 or {{CDD|4node|4|3node}}
| 288
| 288
| 2<sup>6</sup>3<sup>16</sup>4<sup>12</sup>
| 2<sup>6</sup>3<sup>16</sup>4<sup>12</sup>
Line 140: Line 160:
| 11
| 11
| 2
| 2
| '''Z'''<sub>24</sub>.''O'' = 〈4,3,2〉<sub>12</sub>
| '''Z'''<sub>24</sub>.''O'' ||⟨2,3,4⟩<sub>12</sub>
| 576
| 576
| 2<sup>18</sup>3<sup>16</sup>4<sup>12</sup>
| 2<sup>18</sup>3<sup>16</sup>4<sup>12</sup>
Line 148: Line 168:
| 12
| 12
| 2
| 2
| '''Z'''<sub>2</sub>.''O''= GL<sub>2</sub>('''F'''<sub>3</sub>), [[Binary octahedral group|<2,3,4>]]
| '''Z'''<sub>2</sub>.''O''= GL<sub>2</sub>('''F'''<sub>3</sub>)|| [[Binary octahedral group|⟨2,3,4⟩]]
| 48
| 48
| 2<sup>12</sup>
| 2<sup>12</sup>
Line 156: Line 176:
| 13
| 13
| 2
| 2
| '''Z'''<sub>4</sub>.''O'' = 〈4,3,2〉<sub>2</sub>
| '''Z'''<sub>4</sub>.''O'' ||⟨2,3,4⟩<sub>2</sub>
| 96
| 96
| 2<sup>18</sup>
| 2<sup>18</sup>
Line 164: Line 184:
| 14
| 14
| 2
| 2
| '''Z'''<sub>6</sub>.''O'' = 3[8]2 or {{CDD|3node|8|node}}
| '''Z'''<sub>6</sub>.''O'' || 3[8]2 or {{CDD|3node|8|node}}
| 144
| 144
| 2<sup>12</sup>3<sup>16</sup>
| 2<sup>12</sup>3<sup>16</sup>
Line 172: Line 192:
| 15
| 15
| 2
| 2
| '''Z'''<sub>12</sub>.''O'' = 〈4,3,2〉<sub>6</sub>
| '''Z'''<sub>12</sub>.''O''||⟨2,3,4⟩<sub>6</sub>
| 288
| 288
| 2<sup>18</sup>3<sup>16</sup>
| 2<sup>18</sup>3<sup>16</sup>
Line 180: Line 200:
| 16
| 16
| 2
| 2
| '''Z'''<sub>10</sub>.''I'' = 5[3]5 or {{CDD|5node|3|5node}}, [[binary icosahedral group|<2,3,5>]]×'''Z'''<sub>5</sub>.
| '''Z'''<sub>10</sub>.''I'', [[binary icosahedral group|⟨2,3,5⟩]]×'''Z'''<sub>5</sub> || 5[3]5 or {{CDD|5node|3|5node}}
| 600
| 600
| 5<sup>48</sup>
| 5<sup>48</sup>
Line 188: Line 208:
| 17
| 17
| 2
| 2
| '''Z'''<sub>20</sub>.''I'' = 5[6]2 or {{CDD|5node|6|node}}
| '''Z'''<sub>20</sub>.''I'' || 5[6]2 or {{CDD|5node|6|node}}
| 1200
| 1200
| 2<sup>30</sup>5<sup>48</sup>
| 2<sup>30</sup>5<sup>48</sup>
Line 196: Line 216:
| 18
| 18
| 2
| 2
| '''Z'''<sub>30</sub>.''I'' = 5[4]3 or {{CDD|5node|4|3node}}
| '''Z'''<sub>30</sub>.''I'' || 5[4]3 or {{CDD|5node|4|3node}}
| 1800
| 1800
| 3<sup>40</sup>5<sup>48</sup>
| 3<sup>40</sup>5<sup>48</sup>
Line 204: Line 224:
| 19
| 19
| 2
| 2
| '''Z'''<sub>60</sub>.''I'' = 〈5,3,2〉<sub>30</sub>
| '''Z'''<sub>60</sub>.''I'' ||⟨2,3,5⟩<sub>30</sub>
| 3600
| 3600
| 2<sup>30</sup>3<sup>40</sup>5<sup>48</sup>
| 2<sup>30</sup>3<sup>40</sup>5<sup>48</sup>
Line 212: Line 232:
| 20
| 20
| 2
| 2
| '''Z'''<sub>6</sub>.''I'' = 3[5]3 or {{CDD|3node|5|3node}}
| '''Z'''<sub>6</sub>.''I'' || 3[5]3 or {{CDD|3node|5|3node}}
| 360
| 360
| 3<sup>40</sup>
| 3<sup>40</sup>
Line 220: Line 240:
| 21
| 21
| 2
| 2
| '''Z'''<sub>12</sub>.''I'' = 3[10]2 or {{CDD|3node|10|node}}
| '''Z'''<sub>12</sub>.''I'' || 3[10]2 or {{CDD|3node|10|node}}
| 720
| 720
| 2<sup>30</sup>3<sup>40</sup>
| 2<sup>30</sup>3<sup>40</sup>
Line 228: Line 248:
| 22
| 22
| 2
| 2
| '''Z'''<sub>4</sub>.''I'' = 〈5,3,2〉<sub>2</sub>
| '''Z'''<sub>4</sub>.''I'' ||⟨2,3,5⟩<sub>2</sub>
| 240
| 240
| 2<sup>30</sup>
| 2<sup>30</sup>
| 12,20
| 12,20
| 0,28
| 0,28
|- BGCOLOR="#f0ffff"
|-
| 23
| 23
| 3
| 3
| W(H<sub>3</sub>) = '''Z'''<sub>2</sub> &times; PSL<sub>2</sub>(5),<br>Coxeter [5,3], {{CDD|node|5|node|3|node}}
| W(H<sub>3</sub>) = '''Z'''<sub>2</sub> × PSL<sub>2</sub>(5)|| [5,3], {{CDD|node|5|node|3|node}}
| 120
| 120
| 2<sup>15</sup>
| 2<sup>15</sup>
Line 244: Line 264:
| 24
| 24
| 3
| 3
| W(J<sub>3</sub>(4)) = '''Z'''<sub>2</sub> &times; PSL<sub>2</sub>(7), [[Klein quartic|Klein]]<br>[1 1 1<sup>4</sup>]<sup>4</sup>, {{CDD|node|4split1|branch|label4}}
| W(J<sub>3</sub>(4)) = '''Z'''<sub>2</sub> × PSL<sub>2</sub>(7), [[Klein quartic|Klein]]||[1 1 1<sup>4</sup>]<sup>4</sup>, {{CDD|node|4split1|branch|label4}}
| 336
| 336
| 2<sup>21</sup>
| 2<sup>21</sup>
Line 252: Line 272:
| 25
| 25
| 3
| 3
| W(L<sub>3</sub>) = W(P<sub>3</sub>) = 3<sup>1+2</sup>.SL<sub>2</sub>(3),<br>[[Hessian group|Hessian]] 3[3]3[3]3, {{CDD|3node|3|3node|3|3node}}
| W(L<sub>3</sub>) = W(P<sub>3</sub>) = 3<sup>1+2</sup>.SL<sub>2</sub>(3) [[Hessian group|Hessian]]|| 3[3]3[3]3, {{CDD|3node|3|3node|3|3node}}
| 648
| 648
| 3<sup>24</sup>
| 3<sup>24</sup>
Line 260: Line 280:
| 26
| 26
| 3
| 3
| W(M<sub>3</sub>) ='''Z'''<sub>2</sub> &times;3<sup>1+2</sup>.SL<sub>2</sub>(3),<br>[[Hessian group|Hessian]], 2[4]3[3]3, {{CDD|node|4|3node|3|3node}}
| W(M<sub>3</sub>) ='''Z'''<sub>2</sub> ×3<sup>1+2</sup>.SL<sub>2</sub>(3) [[Hessian group|Hessian]]||2[4]3[3]3, {{CDD|node|4|3node|3|3node}}
| 1296
| 1296
| 2<sup>9</sup> 3<sup>24</sup>
| 2<sup>9</sup> 3<sup>24</sup>
Line 268: Line 288:
| 27
| 27
| 3
| 3
| W(J<sub>3</sub>(5)) = '''Z'''<sub>2</sub> &times;('''Z'''<sub>3</sub>.Alt(6)), [[Valentiner group|Valentiner]]<br>[1 1 1<sup>5</sup>]<sup>4</sup>, {{CDD|node|4split1|branch|label5}}<br>[1 1 1<sup>4</sup>]<sup>5</sup>, {{CDD|node|5split1|branch|label4}}
| W(J<sub>3</sub>(5)) = '''Z'''<sub>2</sub> ×('''Z'''<sub>3</sub>.Alt(6)), [[Valentiner group|Valentiner]]||[1 1 1<sup>5</sup>]<sup>4</sup>, {{CDD|node|4split1|branch|label5}}<br>[1 1 1<sup>4</sup>]<sup>5</sup>, {{CDD|node|5split1|branch|label4}}
| 2160
| 2160
| 2<sup>45</sup>
| 2<sup>45</sup>
| 6,12,30
| 6,12,30
| 0,18,24
| 0,18,24
|- BGCOLOR="#f0ffff"
|-
| 28
| 28
| 4
| 4
| W(F<sub>4</sub>) = (SL<sub>2</sub>(3)* SL<sub>2</sub>(3)).('''Z'''<sub>2</sub> &times; '''Z'''<sub>2</sub>)<br>Weyl [3,4,3], {{CDD|node|3|node|4|node|3|node}}
| W(F<sub>4</sub>) = (SL<sub>2</sub>(3)* SL<sub>2</sub>(3)).('''Z'''<sub>2</sub> × '''Z'''<sub>2</sub>)|| [3,4,3], {{CDD|node|3|node|4|node|3|node}}
| 1152
| 1152
| 2<sup>12+12</sup>
| 2<sup>12+12</sup>
Line 284: Line 304:
| 29
| 29
| 4
| 4
| W(N<sub>4</sub>) = ('''Z'''<sub>4</sub>*2<sup>1 + 4</sup>).Sym(5)<br>[1 1 2]<sup>4</sup>, {{CDD|node|4split1|branch|3a|nodea}}
| W(N<sub>4</sub>) = ('''Z'''<sub>4</sub>*2<sup>1 + 4</sup>).Sym(5)||[1 1 2]<sup>4</sup>, {{CDD|node|4split1|branch|3a|nodea}}
| 7680
| 7680
| 2<sup>40</sup>
| 2<sup>40</sup>
| 4,8,12,20
| 4,8,12,20
| 0,8,12,16
| 0,8,12,16
|- BGCOLOR="#f0ffff"
|-
| 30
| 30
| 4
| 4
| W(H<sub>4</sub>) = (SL<sub>2</sub>(5)*SL<sub>2</sub>(5)).'''Z'''<sub>2</sub><br>Coxeter [5,3,3], {{CDD|node|5|node|3|node|3|node}}
| W(H<sub>4</sub>) = (SL<sub>2</sub>(5)*SL<sub>2</sub>(5)).'''Z'''<sub>2</sub>|| [5,3,3], {{CDD|node|5|node|3|node|3|node}}
| 14400
| 14400
| 2<sup>60</sup>
| 2<sup>60</sup>
Line 300: Line 320:
| 31
| 31
| 4
| 4
| W(EN<sub>4</sub>) = W(O<sub>4</sub>) = ('''Z'''<sub>4</sub>*2<sup>1 + 4</sup>).Sp<sub>4</sub>(2)
| W(EN<sub>4</sub>) = W(O<sub>4</sub>) = ('''Z'''<sub>4</sub>*2<sup>1&nbsp;+&nbsp;4</sup>).Sp<sub>4</sub>(2)||
| 46080
| 46080


Line 309: Line 329:
| 32
| 32
| 4
| 4
| W(L<sub>4</sub>) = '''Z'''<sub>3</sub> &times; Sp<sub>4</sub>(3),<br>3[3]3[3]3[3]3, {{CDD|3node|3|3node|3|3node|3|3node}}
| W(L<sub>4</sub>) = '''Z'''<sub>3</sub> × Sp<sub>4</sub>(3)||3[3]3[3]3[3]3, {{CDD|3node|3|3node|3|3node|3|3node}}
| 155520
| 155520
| 3<sup>80</sup>
| 3<sup>80</sup>
Line 317: Line 337:
| 33
| 33
| 5
| 5
| W(K<sub>5</sub>) = '''Z'''<sub>2</sub> &times;Ω<sub>5</sub>(3) = '''Z'''<sub>2</sub> &times; PSp<sub>4</sub>(3)= '''Z'''<sub>2</sub> &times; PSU<sub>4</sub>(2)<br>[1 2 2]<sup>3</sup>, {{CDD|node|3split1|branch|3ab|nodes}}
| W(K<sub>5</sub>) = '''Z'''<sub>2</sub> ×Ω<sub>5</sub>(3) = '''Z'''<sub>2</sub> × PSp<sub>4</sub>(3)= '''Z'''<sub>2</sub> × PSU<sub>4</sub>(2)||[1 2 2]<sup>3</sup>, {{CDD|node|3split1|branch|3ab|nodes}}
| 51840
| 51840
| 2<sup>45</sup>
| 2<sup>45</sup>
Line 325: Line 345:
| 34
| 34
| 6
| 6
| W(K<sub>6</sub>)= '''Z'''<sub>3</sub>.Ω{{su|p=&minus;|b=6}}(3).'''Z'''<sub>2</sub>, [[Mitchell's group]]<br>[1 2 3]<sup>3</sup>, {{CDD|node|3split1|branch|3ab|nodes|3a|nodea}}
| W(K<sub>6</sub>)= '''Z'''<sub>3</sub>.Ω{{su|p=&minus;|b=6}}(3).'''Z'''<sub>2</sub>, [[Mitchell's group]]||[1 2 3]<sup>3</sup>, {{CDD|node|3split1|branch|3ab|nodes|3a|nodea}}
| 39191040
| 39191040
| 2<sup>126</sup>
| 2<sup>126</sup>
| 6,12,18,24,30,42
| 6,12,18,24,30,42
| 0,12,18,24,30,36
| 0,12,18,24,30,36
|- BGCOLOR="#f0ffff"
|-
| 35
| 35
| 6
| 6
| W(E<sub>6</sub>) = SO<sub>5</sub>(3) = O{{su|p=&minus;|b=6}}(2) = PSp<sub>4</sub>(3).'''Z'''<sub>2</sub> = PSU<sub>4</sub>(2).'''Z'''<sub>2</sub>,<br>Weyl [3<sup>2,2,1</sup>], {{CDD|node|3|node|split1|nodes|3ab|nodes}}
| W(E<sub>6</sub>) = SO<sub>5</sub>(3) = O{{su|p=&minus;|b=6}}(2) = PSp<sub>4</sub>(3).'''Z'''<sub>2</sub> = PSU<sub>4</sub>(2).'''Z'''<sub>2</sub>||[3<sup>2,2,1</sup>], {{CDD|node|3|node|split1|nodes|3ab|nodes}}
| 51840
| 51840
| 2<sup>36</sup>
| 2<sup>36</sup>
| 2,5,6,8,9,12
| 2,5,6,8,9,12
| 0,3,4,6,7,10
| 0,3,4,6,7,10
|- BGCOLOR="#f0ffff"
|-
| 36
| 36
| 7
| 7
| W(E<sub>7</sub>) = '''Z'''<sub>2</sub> &times;Sp<sub>6</sub>(2),<br>Weyl [3<sup>3,2,1</sup>], {{CDD|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea|3a|nodea}}
| W(E<sub>7</sub>) = '''Z'''<sub>2</sub> ×Sp<sub>6</sub>(2)||[3<sup>3,2,1</sup>], {{CDD|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea|3a|nodea}}
| 2903040
| 2903040
| 2<sup>63</sup>
| 2<sup>63</sup>

| 2,6,8,10,12,14,18
| 2,6,8,10,12,14,18
| 0,4,6,8,10,12,16
| 0,4,6,8,10,12,16
|- BGCOLOR="#f0ffff"
|-
| 37
| 37
| 8
| 8
| W(E<sub>8</sub>)= '''Z'''<sub>2</sub>.O{{su|p=+|b=8}}(2),<br>Weyl [3<sup>4,2,1</sup>], {{CDD|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea|3a|nodea|3a|nodea}}
| W(E<sub>8</sub>)= '''Z'''<sub>2</sub>.O{{su|p=+|b=8}}(2)||[3<sup>4,2,1</sup>], {{CDD|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea|3a|nodea|3a|nodea}}
| 696729600
| 696729600
| 2<sup>120</sup>
| 2<sup>120</sup>
Line 387: Line 406:
==Shephard groups==
==Shephard groups==


The well-generated complex reflection groups include a subset called the ''Shephard groups''. These groups are the symmetry groups of [[regular complex polytope]]s. In particular, they include the symmetry groups of regular real polyhedra. The Shephard groups may be characterized as the complex reflection groups that admit a "Coxeter-like" presentation with a linear diagram. That is, a Shephard group has associated positive integers {{math|''p''<sub>1</sub>, , ''p''<sub>''n''</sub>}} and {{math|''q''<sub>1</sub>, , ''q''<sub>''n'' − 1</sub>}} such that there is a generating set {{math|''s''<sub>1</sub>, , ''s''<sub>''n''</sub>}} satisfying the relations
The well-generated complex reflection groups include a subset called the ''Shephard groups''. These groups are the symmetry groups of [[regular complex polytope]]s. In particular, they include the symmetry groups of regular real polyhedra. The Shephard groups may be characterized as the complex reflection groups that admit a "Coxeter-like" presentation with a linear diagram. That is, a Shephard group has associated positive integers {{math|''p''<sub>1</sub>, ..., ''p''<sub>''n''</sub>}} and {{math|''q''<sub>1</sub>, ..., ''q''<sub>''n'' − 1</sub>}} such that there is a generating set {{math|''s''<sub>1</sub>, ..., ''s''<sub>''n''</sub>}} satisfying the relations
: <math>(s_i)^{p_i} = 1</math> for {{math|''i'' {{=}} 1, , ''n''}},
: <math>(s_i)^{p_i} = 1</math> for {{math|''i'' {{=}} 1, ..., ''n''}},
: <math> s_i s_j = s_j s_i</math> if <math>|i - j| > 1</math>,
: <math> s_i s_j = s_j s_i</math> if <math>|i - j| > 1</math>,
and
and
: <math> s_i s_{i + 1}s_i s_{i + 1} \cdots = s_{i + 1}s_i s_{i + 1}s_i \cdots</math> where the products on both sides have {{math|''q''<sub>''i''</sub>}} terms, for {{math|''i'' {{=}} 1, , ''n'' − 1}}.
: <math> s_i s_{i + 1}s_i s_{i + 1} \cdots = s_{i + 1}s_i s_{i + 1}s_i \cdots</math> where the products on both sides have {{math|''q''<sub>''i''</sub>}} terms, for {{math|''i'' {{=}} 1, ..., ''n'' − 1}}.


This information is sometimes collected in the Coxeter-type symbol {{math|''p''<sub>1</sub>[''q''<sub>1</sub>]''p''<sub>2</sub>[''q''<sub>2</sub>] [''q''<sub>''n'' − 1</sub>]''p''<sub>''n''</sub>}}, as seen in the table above.
This information is sometimes collected in the Coxeter-type symbol {{math|''p''<sub>1</sub>[''q''<sub>1</sub>]''p''<sub>2</sub>[''q''<sub>2</sub>] ... [''q''<sub>''n'' − 1</sub>]''p''<sub>''n''</sub>}}, as seen in the table above.


Among groups in the infinite family {{math|''G''(''m'', ''p'', ''n'')}}, the Shephard groups are those in which {{math|''p'' {{=}} 1}}. There are also 18 exceptional Shephard groups, of which three are real.<ref>[[Peter Orlik]], Victor Reiner, Anne V. Shepler. ''The sign representation for Shephard groups''. ''Mathematische Annalen''. March 2002, Volume 322, Issue 3, pp 477–492. DOI:10.1007/s002080200001 [http://www.math.unt.edu/~ashepler/papers/ORS.pdf]</ref><ref>[[Harold Scott MacDonald Coxeter|Coxeter, H. S. M.]]; ''Regular Complex Polytopes'', Cambridge University Press, 1974.</ref>
Among groups in the infinite family {{math|''G''(''m'', ''p'', ''n'')}}, the Shephard groups are those in which {{math|''p'' {{=}} 1}}. There are also 18 exceptional Shephard groups, of which three are real.<ref>[[Peter Orlik]], Victor Reiner, Anne V. Shepler. ''The sign representation for Shephard groups''. ''Mathematische Annalen''. March 2002, Volume 322, Issue 3, pp 477–492. DOI:10.1007/s002080200001 [http://www.math.unt.edu/~ashepler/papers/ORS.pdf]</ref><ref>[[Harold Scott MacDonald Coxeter|Coxeter, H. S. M.]]; ''Regular Complex Polytopes'', Cambridge University Press, 1974.</ref>


== Cartan matrices ==
== Cartan matrices ==
An extended [[Cartan matrix]] defines the Unitary group. Shephard groups of rank ''n'' group have ''n'' generators.
An extended [[Cartan matrix]] defines the unitary group. Shephard groups of rank ''n'' group have ''n'' generators.

Ordinary Cartan matrices have diagonal elements 2, while unitary reflections do not have this restriction.<ref>Unitary Reflection Groups, pp.91-93</ref>
Ordinary Cartan matrices have diagonal elements 2, while unitary reflections do not have this restriction.<ref>Unitary Reflection Groups, pp.91-93</ref>
For example, the rank 1 group of order ''p'' (with symbols p[], {{CDD|pnode}}) is defined by the {{math|1 × 1}} matrix <math>\left[1-e^{2\pi i/p}\right]</math>.


Given: <math>\zeta_p = e^{2\pi i/p}, \omega = \zeta_3 = e^{2\pi i/3} = \tfrac{1}{2}(-1+i\sqrt{3}), \zeta_4 = e^{2\pi i/4} = i, \zeta_5 = e^{2\pi i/5} = \tfrac{1}{4}(\left(\sqrt5-1\right) + i\sqrt{2(5+\sqrt5)}), \tau = \tfrac{1+\sqrt5}{2}, \lambda = \tfrac{1+i\sqrt7}{2}, \omega = \tfrac{-1+i\sqrt3}{2} </math>.
For example, the rank 1 group, p[], {{CDD|pnode}}, is defined by a 1×1 matrix [1-<math>e^{2\pi i/p}</math>].

Given: <math>\zeta_p = e^{2\pi i/p}, \omega \ \zeta_3 = e^{2\pi i/3} = \tfrac{1}{2}(-1+i\sqrt{3}), \zeta_4 = e^{2\pi i/4} = i, \zeta_5 = e^{2\pi i/5} = \tfrac{1}{4}(\left(\sqrt5-1\right) + i\sqrt{2(5+\sqrt5)}), \tau = \tfrac{1+\sqrt5}{2}, \lambda = \tfrac{1+i\sqrt7}{2}, \omega = \tfrac{-1+i\sqrt3}{2} </math>.


{| class=wikitable
{| class=wikitable
Line 496: Line 513:
||[1 2 2]<sup>3</sup>||{{CDD|node|3split1|branch|3ab|nodes}} || <math>\left [\begin{smallmatrix}2&-1&0&0&0\\-1&2&-1&-1&0\\0&-1&2&-\omega&0\\0&-1&-\omega^2&2&-\omega^2\\0&0&0&-\omega&2\end{smallmatrix}\right ]</math>
||[1 2 2]<sup>3</sup>||{{CDD|node|3split1|branch|3ab|nodes}} || <math>\left [\begin{smallmatrix}2&-1&0&0&0\\-1&2&-1&-1&0\\0&-1&2&-\omega&0\\0&-1&-\omega^2&2&-\omega^2\\0&0&0&-\omega&2\end{smallmatrix}\right ]</math>
|}
|}

==See also==
* [[Parabolic subgroup of a reflection group]]


==References==
==References==
{{reflist}}
{{reflist}}
*{{Citation | last1=Broué | first1=Michel | authorlink1=Michel Broué | last2=Malle | first2=Gunter | last3=Rouquier | first3=Raphaël | authorlink3=Raphaël Rouquier | title=Representations of groups (Banff, AB, 1994) | url=http://www.math.ucla.edu/~rouquier/papers/banff.pdf | publisher=[[American Mathematical Society]] | location=Providence, R.I. | series=CMS Conf. Proc. | mr=1357192 | year=1995 | volume=16 | chapter=On complex reflection groups and their associated braid groups | pages=1–13}}
*{{Citation | last1=Broué | first1=Michel | authorlink1=Michel Broué | last2=Malle | first2=Gunter | last3=Rouquier | first3=Raphaël | authorlink3=Raphaël Rouquier | title=Representations of groups (Banff, AB, 1994) | chapter-url=https://www.math.ucla.edu/~rouquier/papers/banff.pdf | publisher=[[American Mathematical Society]] | location=Providence, R.I. | series=CMS Conf. Proc. | mr=1357192 | year=1995 | volume=16 | chapter=On complex reflection groups and their associated braid groups | pages=1–13}}
*{{Citation | last1=Broué | first1=Michel | authorlink1=Michel Broué | last2=Malle | first2=Gunter | last3=Rouquier | first3=Raphaël | authorlink3=Raphaël Rouquier | title=Complex reflection groups, braid groups, Hecke algebras | citeseerx = 10.1.1.128.2907 | mr=1637497 | year=1998 | journal=[[Journal für die reine und angewandte Mathematik]] | issn=0075-4102 | volume=500 | pages=127–190 | doi=10.1515/crll.1998.064}}
*{{Citation | last1=Broué | first1=Michel | authorlink1=Michel Broué | last2=Malle | first2=Gunter | last3=Rouquier | first3=Raphaël | authorlink3=Raphaël Rouquier | title=Complex reflection groups, braid groups, Hecke algebras | citeseerx = 10.1.1.128.2907 | mr=1637497 | year=1998 | journal=[[Journal für die reine und angewandte Mathematik]] | issn=0075-4102 | volume=1998 | issue=500 | pages=127–190 | doi=10.1515/crll.1998.064}}
*{{Citation | last1=Deligne | first1=Pierre | author1-link=Pierre Deligne | title=Les immeubles des groupes de tresses généralisés | doi=10.1007/BF01406236 | mr=0422673 | year=1972 | journal=[[Inventiones Mathematicae]] | issn=0020-9910 | volume=17 | pages=273–302 | issue=4| bibcode=1972InMat..17..273D }}
*{{Citation | last1=Deligne | first1=Pierre | author1-link=Pierre Deligne | title=Les immeubles des groupes de tresses généralisés | doi=10.1007/BF01406236 | mr=0422673 | year=1972 | journal=[[Inventiones Mathematicae]] | issn=0020-9910 | volume=17 | pages=273–302 | issue=4| bibcode=1972InMat..17..273D | s2cid=123680847 }}
*Hiller, Howard ''Geometry of Coxeter groups.'' Research Notes in Mathematics, 54. Pitman (Advanced Publishing Program), Boston, Mass.-London, 1982. iv+213 pp.&nbsp;{{ISBN|0-273-08517-4}}*
*Hiller, Howard ''Geometry of Coxeter groups.'' Research Notes in Mathematics, 54. Pitman (Advanced Publishing Program), Boston, Mass.-London, 1982. iv+213 pp.&nbsp;{{ISBN|0-273-08517-4}}*
*{{Citation | last1=Lehrer | first1=Gustav I. | last2=Taylor | first2=Donald E. | title=Unitary reflection groups | publisher=[[Cambridge University Press]] | series=Australian Mathematical Society Lecture Series | isbn=978-0-521-74989-3 | mr=2542964 | year=2009 | volume=20}}
*{{Citation | last1=Lehrer | first1=Gustav I. | last2=Taylor | first2=Donald E. | title=Unitary reflection groups | publisher=[[Cambridge University Press]] | series=Australian Mathematical Society Lecture Series | isbn=978-0-521-74989-3 | mr=2542964 | year=2009 | volume=20}}
*{{Citation | last1=Shephard | first1=G. C. | last2=Todd | first2=J. A. | title=Finite unitary reflection groups | url=https://books.google.com/books?id=Bi7EKLHppuYC | mr=0059914 | year=1954 | journal=Canadian Journal of Mathematics | issn=0008-414X | volume=6 | pages=274–304 | publisher=Canadian Mathematical Society | doi=10.4153/CJM-1954-028-3}}
*{{Citation | last1=Shephard | first1=G. C. | last2=Todd | first2=J. A. | title=Finite unitary reflection groups | url=https://books.google.com/books?id=Bi7EKLHppuYC | mr=0059914 | year=1954 | journal=Canadian Journal of Mathematics | issn=0008-414X | volume=6 | pages=274–304 | publisher=Canadian Mathematical Society | doi=10.4153/CJM-1954-028-3| s2cid=3342221 | doi-access=free }}
* [[Coxeter]], ''Finite Groups Generated by Unitary Reflections'', 1966, 4. ''The Graphical Notation'', Table of n-dimensional groups generated by n Unitary Reflections. pp.&nbsp;422–423
* [[Coxeter]], ''Finite Groups Generated by Unitary Reflections'', 1966, 4. ''The Graphical Notation'', Table of n-dimensional groups generated by n Unitary Reflections. pp.&nbsp;422–423


==External links==
==External links==
*[http://magma.maths.usyd.edu.au/magma/htmlhelp/text1038.htm ''MAGMA Computational Algebra System'' page]
*[http://magma.maths.usyd.edu.au/magma/handbook/text/1174 ''MAGMA Computational Algebra System'' page]


[[Category:Lie groups]]
[[Category:Reflection groups]]
[[Category:Geometry]]
[[Category:Geometry]]
[[Category:Group theory]]
[[Category:Group theory]]

Latest revision as of 19:48, 10 January 2024

In mathematics, a complex reflection group is a finite group acting on a finite-dimensional complex vector space that is generated by complex reflections: non-trivial elements that fix a complex hyperplane pointwise.

Complex reflection groups arise in the study of the invariant theory of polynomial rings. In the mid-20th century, they were completely classified in work of Shephard and Todd. Special cases include the symmetric group of permutations, the dihedral groups, and more generally all finite real reflection groups (the Coxeter groups or Weyl groups, including the symmetry groups of regular polyhedra).

Definition

[edit]

A (complex) reflection r (sometimes also called pseudo reflection or unitary reflection) of a finite-dimensional complex vector space V is an element of finite order that fixes a complex hyperplane pointwise, that is, the fixed-space has codimension 1.

A (finite) complex reflection group is a finite subgroup of that is generated by reflections.

Properties

[edit]

Any real reflection group becomes a complex reflection group if we extend the scalars from R to C. In particular, all finite Coxeter groups or Weyl groups give examples of complex reflection groups.

A complex reflection group W is irreducible if the only W-invariant proper subspace of the corresponding vector space is the origin. In this case, the dimension of the vector space is called the rank of W.

The Coxeter number of an irreducible complex reflection group W of rank is defined as where denotes the set of reflections and denotes the set of reflecting hyperplanes. In the case of real reflection groups, this definition reduces to the usual definition of the Coxeter number for finite Coxeter systems.

Classification

[edit]

Any complex reflection group is a product of irreducible complex reflection groups, acting on the sum of the corresponding vector spaces.[1] So it is sufficient to classify the irreducible complex reflection groups.

The irreducible complex reflection groups were classified by G. C. Shephard and J. A. Todd (1954). They proved that every irreducible belonged to an infinite family G(m, p, n) depending on 3 positive integer parameters (with p dividing m) or was one of 34 exceptional cases, which they numbered from 4 to 37.[2] The group G(m, 1, n) is the generalized symmetric group; equivalently, it is the wreath product of the symmetric group Sym(n) by a cyclic group of order m. As a matrix group, its elements may be realized as monomial matrices whose nonzero elements are mth roots of unity.

The group G(m, p, n) is an index-p subgroup of G(m, 1, n). G(m, p, n) is of order mnn!/p. As matrices, it may be realized as the subset in which the product of the nonzero entries is an (m/p)th root of unity (rather than just an mth root). Algebraically, G(m, p, n) is a semidirect product of an abelian group of order mn/p by the symmetric group Sym(n); the elements of the abelian group are of the form (θa1, θa2, ..., θan), where θ is a primitive mth root of unity and Σai ≡ 0 mod p, and Sym(n) acts by permutations of the coordinates.[3]

The group G(m,p,n) acts irreducibly on Cn except in the cases m = 1, n > 1 (the symmetric group) and G(2, 2, 2) (the Klein four-group). In these cases, Cn splits as a sum of irreducible representations of dimensions 1 and n − 1.

Special cases of G(m, p, n)

[edit]

When m = 2, the representation described in the previous section consists of matrices with real entries, and hence in these cases G(m,p,n) is a finite Coxeter group. In particular:[4]

  • G(1, 1, n) has type An−1 = [3,3,...,3,3] = ...; the symmetric group of order n!
  • G(2, 1, n) has type Bn = [3,3,...,3,4] = ...; the hyperoctahedral group of order 2nn!
  • G(2, 2, n) has type Dn = [3,3,...,31,1] = ..., order 2nn!/2.

In addition, when m = p and n = 2, the group G(p, p, 2) is the dihedral group of order 2p; as a Coxeter group, type I2(p) = [p] = (and the Weyl group G2 when p = 6).

Other special cases and coincidences

[edit]

The only cases when two groups G(m, p, n) are isomorphic as complex reflection groups[clarification needed] are that G(ma, pa, 1) is isomorphic to G(mb, pb, 1) for any positive integers a, b (and both are isomorphic to the cyclic group of order m/p). However, there are other cases when two such groups are isomorphic as abstract groups.

The groups G(3, 3, 2) and G(1, 1, 3) are isomorphic to the symmetric group Sym(3). The groups G(2, 2, 3) and G(1, 1, 4) are isomorphic to the symmetric group Sym(4). Both G(2, 1, 2) and G(4, 4, 2) are isomorphic to the dihedral group of order 8. And the groups G(2p, p, 1) are cyclic of order 2, as is G(1, 1, 2).

List of irreducible complex reflection groups

[edit]

There are a few duplicates in the first 3 lines of this list; see the previous section for details.

  • ST is the Shephard–Todd number of the reflection group.
  • Rank is the dimension of the complex vector space the group acts on.
  • Structure describes the structure of the group. The symbol * stands for a central product of two groups. For rank 2, the quotient by the (cyclic) center is the group of rotations of a tetrahedron, octahedron, or icosahedron (T = Alt(4), O = Sym(4), I = Alt(5), of orders 12, 24, 60), as stated in the table. For the notation 21+4, see extra special group.
  • Order is the number of elements of the group.
  • Reflections describes the number of reflections: 26412 means that there are 6 reflections of order 2 and 12 of order 4.
  • Degrees gives the degrees of the fundamental invariants of the ring of polynomial invariants. For example, the invariants of group number 4 form a polynomial ring with 2 generators of degrees 4 and 6.
ST Rank Structure and names Coxeter names Order Reflections Degrees Codegrees
1 n−1 Symmetric group G(1,1,n) = Sym(n) n! 2n(n − 1)/2 2, 3, ...,n 0,1,...,n − 2
2 n G(m,p,n) m > 1, n > 1, p|m (G(2,2,2) is reducible) mnn!/p 2mn(n−1)/2,dnφ(d) (d|m/pd > 1) m,2m,..,(n − 1)m; mn/p 0,m,..., (n − 1)m if p < m; 0,m,...,(n − 2)m, (n − 1)m − n if p = m
2 2 G(p,1,2) p > 1, p[4]2 or 2p2 2p,d2φ(d) (d|pd > 1) p; 2p 0,p
2 2 Dihedral group G(p,p,2) p > 2 [p] or 2p 2p 2,p 0,p-2
3 1 Cyclic group G(p,1,1) = Zp p[] or p dφ(d) (d|pd > 1) p 0
4 2 W(L2), Z2.T 3[3]3 or , ⟨2,3,3⟩ 24 38 4,6 0,2
5 2 Z6.T 3[4]3 or 72 316 6,12 0,6
6 2 Z4.T 3[6]2 or 48 2638 4,12 0,8
7 2 Z12.T ‹3,3,3›2 or ⟨2,3,3⟩6 144 26316 12,12 0,12
8 2 Z4.O 4[3]4 or 96 26412 8,12 0,4
9 2 Z8.O 4[6]2 or or ⟨2,3,4⟩4 192 218412 8,24 0,16
10 2 Z12.O 4[4]3 or 288 26316412 12,24 0,12
11 2 Z24.O ⟨2,3,4⟩12 576 218316412 24,24 0,24
12 2 Z2.O= GL2(F3) ⟨2,3,4⟩ 48 212 6,8 0,10
13 2 Z4.O ⟨2,3,4⟩2 96 218 8,12 0,16
14 2 Z6.O 3[8]2 or 144 212316 6,24 0,18
15 2 Z12.O ⟨2,3,4⟩6 288 218316 12,24 0,24
16 2 Z10.I, ⟨2,3,5⟩×Z5 5[3]5 or 600 548 20,30 0,10
17 2 Z20.I 5[6]2 or 1200 230548 20,60 0,40
18 2 Z30.I 5[4]3 or 1800 340548 30,60 0,30
19 2 Z60.I ⟨2,3,5⟩30 3600 230340548 60,60 0,60
20 2 Z6.I 3[5]3 or 360 340 12,30 0,18
21 2 Z12.I 3[10]2 or 720 230340 12,60 0,48
22 2 Z4.I ⟨2,3,5⟩2 240 230 12,20 0,28
23 3 W(H3) = Z2 × PSL2(5) [5,3], 120 215 2,6,10 0,4,8
24 3 W(J3(4)) = Z2 × PSL2(7), Klein [1 1 14]4, 336 221 4,6,14 0,8,10
25 3 W(L3) = W(P3) = 31+2.SL2(3) Hessian 3[3]3[3]3, 648 324 6,9,12 0,3,6
26 3 W(M3) =Z2 ×31+2.SL2(3) Hessian 2[4]3[3]3, 1296 29 324 6,12,18 0,6,12
27 3 W(J3(5)) = Z2 ×(Z3.Alt(6)), Valentiner [1 1 15]4,
[1 1 14]5,
2160 245 6,12,30 0,18,24
28 4 W(F4) = (SL2(3)* SL2(3)).(Z2 × Z2) [3,4,3], 1152 212+12 2,6,8,12 0,4,6,10
29 4 W(N4) = (Z4*21 + 4).Sym(5) [1 1 2]4, 7680 240 4,8,12,20 0,8,12,16
30 4 W(H4) = (SL2(5)*SL2(5)).Z2 [5,3,3], 14400 260 2,12,20,30 0,10,18,28
31 4 W(EN4) = W(O4) = (Z4*21 + 4).Sp4(2) 46080 260 8,12,20,24 0,12,16,28
32 4 W(L4) = Z3 × Sp4(3) 3[3]3[3]3[3]3, 155520 380 12,18,24,30 0,6,12,18
33 5 W(K5) = Z2 ×Ω5(3) = Z2 × PSp4(3)= Z2 × PSU4(2) [1 2 2]3, 51840 245 4,6,10,12,18 0,6,8,12,14
34 6 W(K6)= Z3
6
(3).Z2, Mitchell's group
[1 2 3]3, 39191040 2126 6,12,18,24,30,42 0,12,18,24,30,36
35 6 W(E6) = SO5(3) = O
6
(2) = PSp4(3).Z2 = PSU4(2).Z2
[32,2,1], 51840 236 2,5,6,8,9,12 0,3,4,6,7,10
36 7 W(E7) = Z2 ×Sp6(2) [33,2,1], 2903040 263 2,6,8,10,12,14,18 0,4,6,8,10,12,16
37 8 W(E8)= Z2.O+
8
(2)
[34,2,1], 696729600 2120 2,8,12,14,18,20,24,30 0,6,10,12,16,18,22,28

For more information, including diagrams, presentations, and codegrees of complex reflection groups, see the tables in (Michel Broué, Gunter Malle & Raphaël Rouquier 1998).

Degrees

[edit]

Shephard and Todd proved that a finite group acting on a complex vector space is a complex reflection group if and only if its ring of invariants is a polynomial ring (Chevalley–Shephard–Todd theorem). For being the rank of the reflection group, the degrees of the generators of the ring of invariants are called degrees of W and are listed in the column above headed "degrees". They also showed that many other invariants of the group are determined by the degrees as follows:

  • The center of an irreducible reflection group is cyclic of order equal to the greatest common divisor of the degrees.
  • The order of a complex reflection group is the product of its degrees.
  • The number of reflections is the sum of the degrees minus the rank.
  • An irreducible complex reflection group comes from a real reflection group if and only if it has an invariant of degree 2.
  • The degrees di satisfy the formula

Codegrees

[edit]

For being the rank of the reflection group, the codegrees of W can be defined by

  • For a real reflection group, the codegrees are the degrees minus 2.
  • The number of reflection hyperplanes is the sum of the codegrees plus the rank.

Well-generated complex reflection groups

[edit]

By definition, every complex reflection group is generated by its reflections. The set of reflections is not a minimal generating set, however, and every irreducible complex reflection groups of rank n has a minimal generating set consisting of either n or n + 1 reflections. In the former case, the group is said to be well-generated.

The property of being well-generated is equivalent to the condition for all . Thus, for example, one can read off from the classification that the group G(m, p, n) is well-generated if and only if p = 1 or m.

For irreducible well-generated complex reflection groups, the Coxeter number h defined above equals the largest degree, . A reducible complex reflection group is said to be well-generated if it is a product of irreducible well-generated complex reflection groups. Every finite real reflection group is well-generated.

Shephard groups

[edit]

The well-generated complex reflection groups include a subset called the Shephard groups. These groups are the symmetry groups of regular complex polytopes. In particular, they include the symmetry groups of regular real polyhedra. The Shephard groups may be characterized as the complex reflection groups that admit a "Coxeter-like" presentation with a linear diagram. That is, a Shephard group has associated positive integers p1, ..., pn and q1, ..., qn − 1 such that there is a generating set s1, ..., sn satisfying the relations

for i = 1, ..., n,
if ,

and

where the products on both sides have qi terms, for i = 1, ..., n − 1.

This information is sometimes collected in the Coxeter-type symbol p1[q1]p2[q2] ... [qn − 1]pn, as seen in the table above.

Among groups in the infinite family G(m, p, n), the Shephard groups are those in which p = 1. There are also 18 exceptional Shephard groups, of which three are real.[5][6]

Cartan matrices

[edit]

An extended Cartan matrix defines the unitary group. Shephard groups of rank n group have n generators. Ordinary Cartan matrices have diagonal elements 2, while unitary reflections do not have this restriction.[7] For example, the rank 1 group of order p (with symbols p[], ) is defined by the 1 × 1 matrix .

Given: .

Rank 1
Group Cartan Group Cartan
2[] 3[]
4[] 5[]
Rank 2
Group Cartan Group Cartan
G4 3[3]3 G5 3[4]3
G6 2[6]3 G8 4[3]4
G9 2[6]4 G10 3[4]4
G14 3[8]2 G16 5[3]5
G17 2[6]5 G18 3[4]5
G20 3[5]3 G21 2[10]3
Rank 3
Group Cartan Group Cartan
G22 <5,3,2>2 G23 [5,3]
G24 [1 1 14]4 G25 3[3]3[3]3
G26 3[3]3[4]2 G27 [1 1 15]4
Rank 4
Group Cartan Group Cartan
G28 [3,4,3] G29 [1 1 2]4
G30 [5,3,3] G32 3[3]3[3]3
Rank 5
Group Cartan Group Cartan
G31 O4 G33 [1 2 2]3

See also

[edit]

References

[edit]
  1. ^ Lehrer and Taylor, Theorem 1.27.
  2. ^ Lehrer and Taylor, p. 271.
  3. ^ Lehrer and Taylor, Section 2.2.
  4. ^ Lehrer and Taylor, Example 2.11.
  5. ^ Peter Orlik, Victor Reiner, Anne V. Shepler. The sign representation for Shephard groups. Mathematische Annalen. March 2002, Volume 322, Issue 3, pp 477–492. DOI:10.1007/s002080200001 [1]
  6. ^ Coxeter, H. S. M.; Regular Complex Polytopes, Cambridge University Press, 1974.
  7. ^ Unitary Reflection Groups, pp.91-93
  • Broué, Michel; Malle, Gunter; Rouquier, Raphaël (1995), "On complex reflection groups and their associated braid groups" (PDF), Representations of groups (Banff, AB, 1994), CMS Conf. Proc., vol. 16, Providence, R.I.: American Mathematical Society, pp. 1–13, MR 1357192
  • Broué, Michel; Malle, Gunter; Rouquier, Raphaël (1998), "Complex reflection groups, braid groups, Hecke algebras", Journal für die reine und angewandte Mathematik, 1998 (500): 127–190, CiteSeerX 10.1.1.128.2907, doi:10.1515/crll.1998.064, ISSN 0075-4102, MR 1637497
  • Deligne, Pierre (1972), "Les immeubles des groupes de tresses généralisés", Inventiones Mathematicae, 17 (4): 273–302, Bibcode:1972InMat..17..273D, doi:10.1007/BF01406236, ISSN 0020-9910, MR 0422673, S2CID 123680847
  • Hiller, Howard Geometry of Coxeter groups. Research Notes in Mathematics, 54. Pitman (Advanced Publishing Program), Boston, Mass.-London, 1982. iv+213 pp. ISBN 0-273-08517-4*
  • Lehrer, Gustav I.; Taylor, Donald E. (2009), Unitary reflection groups, Australian Mathematical Society Lecture Series, vol. 20, Cambridge University Press, ISBN 978-0-521-74989-3, MR 2542964
  • Shephard, G. C.; Todd, J. A. (1954), "Finite unitary reflection groups", Canadian Journal of Mathematics, 6, Canadian Mathematical Society: 274–304, doi:10.4153/CJM-1954-028-3, ISSN 0008-414X, MR 0059914, S2CID 3342221
  • Coxeter, Finite Groups Generated by Unitary Reflections, 1966, 4. The Graphical Notation, Table of n-dimensional groups generated by n Unitary Reflections. pp. 422–423
[edit]