Jump to content

58 equal temperament: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Wrong sign for syntonic and septimal comma errors
minor table layout tweaks
 
(9 intermediate revisions by 2 users not shown)
Line 1: Line 1:
In [[music]], '''58 equal temperament''' (also called 58-ET or 58edo) divides the octave into 58 equal parts of approximately 20.69 [[cent (music)|cents]] each. It is notable as the simplest equal division of the octave to faithfully represent the [[limit (music)|17-limit]],<ref name="tonalsoft">{{cite web|url=http://www.tonalsoft.com/enc/c/consistent.aspx|title=consistency / consistent}}</ref> and the first that distinguishes between all the elements of the 11-limit [[tonality diamond]]. The next-smallest equal temperament to do both these things is [[72 equal temperament]].
In [[music]], '''58 equal temperament''' (also called 58-ET or 58-[[equal division of the octave|EDO]]) divides the octave into 58 equal parts of approximately 20.69 [[cent (music)|cents]] each. It is notable as the simplest equal division of the octave to faithfully represent the [[limit (music)|17-limit]],<ref name="tonalsoft">{{cite web|url=http://www.tonalsoft.com/enc/c/consistent.aspx|title=consistency / consistent}}</ref> and the first that distinguishes between all the elements of the 11-limit [[tonality diamond]]. The next-smallest equal temperament to do both these things is [[72 equal temperament]].


Compared to [[72 equal temperament]], which is also consistent in the 17-limit, 58-ET's approximations of most intervals are not quite as good (although still workable). One obvious exception is the perfect fifth (slightly better in 58-ET), and another is the tridecimal minor third (11:13), which is significantly better in 58-ET than in 72-ET. The two systems temper out different commas; 72-ET tempers out the comma 169:168, thus equating the 14:13 and 13:12 intervals. On the other hand, 58-ET tempers out 144:143 instead of 169:168, so 14:13 and 13:12 are left distinct, but 13:12 and 12:11 are equated.
Compared to [[72 equal temperament|72-EDO]], which is also consistent in the 17-limit, 58-EDO's approximations of most intervals are not quite as good (although still workable). One obvious exception is the perfect fifth (slightly better in 58-EDO), and another is the tridecimal minor third (11:13), which is significantly better in 58-EDO than in 72-EDO. The two systems temper out different commas; 72-EDO tempers out the comma 169:168, thus equating the 14:13 and 13:12 intervals. On the other hand, 58-EDO tempers out 144:143 instead of 169:168, so 14:13 and 13:12 are left distinct, but 13:12 and 12:11 are equated.


58-ET, unlike 72-ET, is not a [[equal temperament|multiple of 12]], so the only interval (up to octave equivalency) that it shares with 12-ET is the 600-cent [[tritone]] (which functions as both 17:12 and 24:17). On the other hand, 58-ET has fewer pitches than 72-ET and is therefore simpler.
58-EDO, unlike 72-EDO, is not a [[equal temperament|multiple of 12]], so the only interval (up to octave equivalency) that it shares with 12-EDO is the 600-cent [[tritone]] (which functions as both 17:12 and 24:17). On the other hand, 58-EDO has fewer pitches than 72-EDO and is therefore simpler.


==History and use==
The medieval Italian music theorist [[Marchetto da Padova]] proposed a system that is approximately 29-ET, which is a subset of 58-ET. <ref name="marchettus">{{cite web|url=http://www.medieval.org/emfaq/harmony/marchetmf.html|title=Marchettus, the cadential diesis, and neo-Gothic tunings}}</ref>
The medieval Italian music theorist [[Marchetto da Padova]] proposed a system that is approximately 29-EDO, which is a subset of 58-EDO, in 1318.<ref name="marchettus">{{cite web|url=http://www.medieval.org/emfaq/harmony/marchetmf.html|title=Marchettus, the cadential diesis, and neo-Gothic tunings}}</ref>

==List of intervals==


==Interval size==
{| class="wikitable"
{| class="wikitable"
|- style="vertical-align:bottom;"
|align=center bgcolor="#ffffb4"|interval name
|align=center bgcolor="#ffffb4"|size (steps)
|align=center bgcolor="#ffffb4"| '''interval name'''
|align=center bgcolor="#ffffb4"|size (cents)
|align=center bgcolor="#ffffb4"| '''size'''<br/>(steps)
|align=center bgcolor="#ffffb4"|just ratio
|align=center bgcolor="#ffffb4"| '''size'''<br/>(cents)
|align=center bgcolor="#ffffb4"|just (cents)
|align=center bgcolor="#ffffb4"| '''just<br/>ratio'''
|align=center bgcolor="#ffffb4"|error
|align=center bgcolor="#ffffb4"| '''just'''<br/>(cents)
|align=center bgcolor="#ffffb4"| '''error'''<br/>(cents)
|-
|align=center| [[octave]]
|align=center| 58
|align=center| 1200
|align=center| 2:1
|align=center| 1200
|align=center| 0
|-
|-
|align=center|[[perfect fifth]]
|align=center| [[perfect fifth]]
|align=center|34
|align=center| 34
|align=center|703.45
|align=center| 703.45
|align=center|3:2
|align=center| 3:2
|align=center|701.96
|align=center| 701.96
|align=center|+1.49
|align=center| +1.49
|-
|-
|align=center|[[tritone|greater septendecimal tritone]]
|align=center| [[tritone|greater septendecimal tritone]]
|rowspan=2 align=center|29
|rowspan=2 align=center| 29
|rowspan=2 align=center|600
|rowspan=2 align=center| 600
|align=center|17:12
|align=center| 17:12
|align=center|603.00
|align=center| 603.00
|align=center|&minus;3.00
|align=center| &minus;3.00
|-
|-
|align=center|[[tritone|lesser septendecimal tritone]]
|align=center| [[tritone|lesser septendecimal tritone]]
<!--|align=center|29-->
<!-- |align=center| 29-->
<!--|align=center|600-->
<!-- |align=center| 600 -->
|align=center|24:17
|align=center| 24:17
|align=center|597.00
|align=center| 597.00
|align=center|+3.00
|align=center| +3.00
|-
|-
|align=center|[[septimal tritone]]
|align=center| [[septimal tritone]]
|align=center|28
|align=center| 28
|align=center|579.31
|align=center| 579.31
|align=center|7:5
|align=center| 7:5
|align=center|582.51
|align=center| 582.51
|align=center|&minus;3.20
|align=center| &minus;3.20
|-
|-
|align=center|[[eleventh harmonic]]
|align=center| [[eleventh harmonic]]
|align=center|27
|align=center| 27
|align=center|558.62
|align=center| 558.62
|align=center|11:8
|align=center| 11:8
|align=center|551.32
|align=center| 551.32
|align=center|+7.30
|align=center| +7.30
|-
|-
|align=center|15:11 wide fourth
|align=center| 15:11 wide fourth
|align=center|26
|align=center| 26
|align=center|537.93
|align=center| 537.93
|align=center|15:11
|align=center| 15:11
|align=center|536.95
|align=center| 536.95
|align=center|+0.98
|align=center| +0.98
|-
|-
|align=center|[[perfect fourth]]
|align=center| [[perfect fourth]]
|align=center|24
|align=center| 24
|align=center|496.55
|align=center| 496.55
|align=center|4:3
|align=center| 4:3
|align=center|498.04
|align=center| 498.04
|align=center|&minus;1.49
|align=center| &minus;1.49
|-
|-
|align=center|septimal narrow fourth
|align=center| septimal narrow fourth
|align=center|23
|align=center| 23
|align=center|475.86
|align=center| 475.86
|align=center|21:16
|align=center| 21:16
|align=center|470.78
|align=center| 470.78
|align=center|+5.08
|align=center| +5.08
|-
|-
|align=center|tridecimal major third
|align=center| tridecimal major third
|align=center|22
|align=center| 22
|align=center|455.17
|align=center| 455.17
|align=center|13:10
|align=center| 13:10
|align=center|454.21
|align=center| 454.21
|align=center|+0.96
|align=center| +0.96
|-
|-
|align=center|[[septimal major third]]
|align=center| [[septimal major third]]
|align=center|21
|align=center| 21
|align=center|434.48
|align=center| 434.48
|align=center|9:7
|align=center| 9:7
|align=center|435.08
|align=center| 435.08
|align=center|&minus;0.60
|align=center| &minus;0.60
|-
|-
|align=center|undecimal major third
|align=center| undecimal major third
|align=center|20
|align=center| 20
|align=center|413.79
|align=center| 413.79
|align=center|14:11
|align=center| 14:11
|align=center|417.51
|align=center| 417.51
|align=center|&minus;3.72
|align=center| &minus;3.72
|-
|-
|align=center|[[major third]]
|align=center| [[major third]]
|align=center|19
|align=center| 19
|align=center|393.10
|align=center| 393.10
|align=center|5:4
|align=center| 5:4
|align=center|386.31
|align=center| 386.31
|align=center|+6.79
|align=center| +6.79
|-
|-
|align=center|tridecimal [[neutral third]]
|align=center| tridecimal [[neutral third]]
|rowspan=2 align=center|17
|rowspan=2 align=center| 17
|rowspan=2 align=center|351.72
|rowspan=2 align=center| 351.72
|align=center|16:13
|align=center| 16:13
|align=center|359.47
|align=center| 359.47
|align=center|&minus;7.75
|align=center| &minus;7.75
|-
|-
|align=center|undecimal neutral third
|align=center| undecimal neutral third
<!--|align=center|17-->
<!-- |align=center|17 -->
<!--|align=center|351.72-->
<!-- |align=center|351.72 -->
|align=center|11:9
|align=center| 11:9
|align=center|347.41
|align=center| 347.41
|align=center|+4.31
|align=center| +4.31
|-
|-
|align=center|[[minor third]]
|align=center| [[minor third]]
|align=center|15
|align=center| 15
|align=center|310.34
|align=center| 310.34
|align=center|6:5
|align=center| 6:5
|align=center|315.64
|align=center| 315.64
|align=center|&minus;5.30
|align=center| &minus;5.30
|-
|-
|align=center|tridecimal minor third
|align=center| tridecimal minor third
|align=center|14
|align=center| 14
|align=center|289.66
|align=center| 289.66
|align=center|13:11
|align=center| 13:11
|align=center|289.21
|align=center| 289.21
|align=center|+0.45
|align=center| +0.45
|-
|-
|align=center|[[septimal minor third]]
|align=center| [[septimal minor third]]
|align=center|13
|align=center| 13
|align=center|268.97
|align=center| 268.97
|align=center|7:6
|align=center| 7:6
|align=center|266.87
|align=center| 266.87
|align=center|+2.10
|align=center| +2.10
|-
|-
|align=center|tridecimal semifourth
|align=center| tridecimal semifourth
|align=center|12
|align=center| 12
|align=center|248.28
|align=center| 248.28
|align=center|15:13
|align=center| 15:13
|align=center|247.74
|align=center| 247.74
|align=center|+0.54
|align=center| +0.54
|-
|-
|align=center|[[septimal whole tone]]
|align=center| [[septimal whole tone]]
|align=center|11
|align=center| 11
|align=center|227.59
|align=center| 227.59
|align=center|8:7
|align=center| 8:7
|align=center|231.17
|align=center| 231.17
|align=center|&minus;3.58
|align=center| &minus;3.58
|-
|-
|align=center|whole tone, [[major tone]]
|align=center| whole tone, [[major tone]]
|align=center|10
|align=center| 10
|align=center|206.90
|align=center| 206.90
|align=center|9:8
|align=center| 9:8
|align=center|203.91
|align=center| 203.91
|align=center|+2.99
|align=center| +2.99
|-
|-
|align=center|whole tone, [[minor tone]]
|align=center| whole tone, [[minor tone]]
|align=center|9
|align=center| 9
|align=center|186.21
|align=center| 186.21
|align=center|10:9
|align=center| 10:9
|align=center|182.40
|align=center| 182.40
|align=center|+3.81
|align=center| +3.81
|-
|-
|align=center|greater undecimal [[neutral second]]
|align=center| greater undecimal [[neutral second]]
|align=center|8
|align=center| 8
|align=center|165.52
|align=center| 165.52
|align=center|11:10
|align=center| 11:10
|align=center|165.00
|align=center| 165.00
|align=center|+0.52
|align=center| +0.52
|-
|-
|align=center|lesser undecimal [[neutral second]]
|align=center| lesser undecimal [[neutral second]]
|align=center|7
|align=center| 7
|align=center|144.83
|align=center| 144.83
|align=center|12:11
|align=center| 12:11
|align=center|150.64
|align=center| 150.64
|align=center|&minus;5.81
|align=center| &minus;5.81
|-
|-
|align=center|[[septimal diatonic semitone]]
|align=center| [[septimal diatonic semitone]]
|align=center|6
|align=center| 6
|align=center|124.14
|align=center| 124.14
|align=center|15:14
|align=center| 15:14
|align=center|119.44
|align=center| 119.44
|align=center|+4.70
|align=center| +4.70
|-
|-
|align=center|septendecimal semitone; 17th harmonic
|align=center| septendecimal semitone; 17th harmonic
|align=center|5
|align=center rowspan=2| 5
|align=center|103.45
|align=center rowspan=2| 103.45
|align=center|17:16
|align=center| 17:16
|align=center|104.96
|align=center| 104.96
|align=center|&minus;1.51
|align=center| &minus;1.51
|-
|-
|align=center|[[diatonic semitone]]
|align=center| [[diatonic semitone]]
|align=center|5
|align=center| 16:15
|align=center|103.45
|align=center| 111.73
|align=center|16:15
|align=center| &minus;8.28
|align=center|111.73
|align=center|&minus;8.28
|-
|-
|align=center|[[septimal chromatic semitone]]
|align=center| [[septimal chromatic semitone]]
|align=center|4
|align=center| 4
|align=center|82.76
|align=center| 82.76
|align=center|21:20
|align=center| 21:20
|align=center|84.47
|align=center| 84.47
|align=center|&minus;1.71
|align=center| &minus;1.71
|-
|-
|align=center|[[chromatic semitone]]
|align=center| [[chromatic semitone]]
|align=center|3
|align=center rowspan=2| 3
|align=center|62.07
|align=center rowspan=2| 62.07
|align=center|25:24
|align=center| 25:24
|align=center|70.67
|align=center| 70.67
|align=center|&minus;8.60
|align=center| &minus;8.60
|-
|-
|align=center|[[septimal third tone]]
|align=center| [[septimal third tone]]
|align=center|3
|align=center| 28:27
|align=center|62.07
|align=center| 62.96
|align=center|28:27
|align=center| &minus;0.89
|align=center|62.96
|align=center|&minus;0.89
|-
|-
|align=center|[[septimal quarter tone]]
|align=center| [[septimal quarter tone]]
|align=center|2
|align=center rowspan=2| 2
|align=center|41.38
|align=center rowspan=2| 41.38
|align=center|36:35
|align=center| 36:35
|align=center|48.77
|align=center| 48.77
|align=center|&minus;7.39
|align=center| &minus;7.39
|-
|-
|align=center|[[septimal diesis]]
|align=center|[[septimal diesis]]
|align=center|2
|align=center| 49:48
|align=center|41.38
|align=center| 35.70
|align=center|49:48
|align=center| +5.68
|align=center|35.70
|align=center|+5.68
|-
|-
|align=center|[[septimal comma]]
|align=center| [[septimal comma]]
|align=center|1
|align=center rowspan=2| 1
|align=center|20.69
|align=center rowspan=2| 20.69
|align=center|64:63
|align=center| 64:63
|align=center|27.26
|align=center| 27.26
|align=center|&minus;6.57
|align=center| &minus;6.57
|-
|-
|align=center|[[syntonic comma]]
|align=center| [[syntonic comma]]
|align=center|1
|align=center| 81:80
|align=center|20.69
|align=center| 21.51
|align=center|81:80
|align=center |&minus;0.82
|align=center|21.51
|align=center|&minus;0.82
|}
|}


==See also==
==See also==
*[[Harry Partch's 43-tone scale]]; 58-ET is the smallest equal temperament that can reasonably approximate this scale
*[[Harry Partch's 43-tone scale]]; 58-EDO is the smallest equal temperament that can reasonably approximate this scale


==References==
==References==
Line 256: Line 256:


==External links==
==External links==
* [http://xenharmonic.wikispaces.com/58edo Xenharmonic Wiki article on 58edo]
* [https://en.xen.wiki/w/58edo Xenharmonic Wiki article on 58edo]


{{Microtonal music}}
{{Microtonal music}}
{{Musical tuning}}
{{Musical tuning}}


[[Category:Octaves]]
[[Category:Equal temperaments]]
[[Category:Microtonality]]

Latest revision as of 06:53, 23 January 2024

In music, 58 equal temperament (also called 58-ET or 58-EDO) divides the octave into 58 equal parts of approximately 20.69 cents each. It is notable as the simplest equal division of the octave to faithfully represent the 17-limit,[1] and the first that distinguishes between all the elements of the 11-limit tonality diamond. The next-smallest equal temperament to do both these things is 72 equal temperament.

Compared to 72-EDO, which is also consistent in the 17-limit, 58-EDO's approximations of most intervals are not quite as good (although still workable). One obvious exception is the perfect fifth (slightly better in 58-EDO), and another is the tridecimal minor third (11:13), which is significantly better in 58-EDO than in 72-EDO. The two systems temper out different commas; 72-EDO tempers out the comma 169:168, thus equating the 14:13 and 13:12 intervals. On the other hand, 58-EDO tempers out 144:143 instead of 169:168, so 14:13 and 13:12 are left distinct, but 13:12 and 12:11 are equated.

58-EDO, unlike 72-EDO, is not a multiple of 12, so the only interval (up to octave equivalency) that it shares with 12-EDO is the 600-cent tritone (which functions as both 17:12 and 24:17). On the other hand, 58-EDO has fewer pitches than 72-EDO and is therefore simpler.

History and use

[edit]

The medieval Italian music theorist Marchetto da Padova proposed a system that is approximately 29-EDO, which is a subset of 58-EDO, in 1318.[2]

Interval size

[edit]
interval name size
(steps)
size
(cents)
just
ratio
just
(cents)
error
(cents)
octave 58 1200 2:1 1200 0
perfect fifth 34 703.45 3:2 701.96 +1.49
greater septendecimal tritone 29 600 17:12 603.00 −3.00
lesser septendecimal tritone 24:17 597.00 +3.00
septimal tritone 28 579.31 7:5 582.51 −3.20
eleventh harmonic 27 558.62 11:8 551.32 +7.30
15:11 wide fourth 26 537.93 15:11 536.95 +0.98
perfect fourth 24 496.55 4:3 498.04 −1.49
septimal narrow fourth 23 475.86 21:16 470.78 +5.08
tridecimal major third 22 455.17 13:10 454.21 +0.96
septimal major third 21 434.48 9:7 435.08 −0.60
undecimal major third 20 413.79 14:11 417.51 −3.72
major third 19 393.10 5:4 386.31 +6.79
tridecimal neutral third 17 351.72 16:13 359.47 −7.75
undecimal neutral third 11:9 347.41 +4.31
minor third 15 310.34 6:5 315.64 −5.30
tridecimal minor third 14 289.66 13:11 289.21 +0.45
septimal minor third 13 268.97 7:6 266.87 +2.10
tridecimal semifourth 12 248.28 15:13 247.74 +0.54
septimal whole tone 11 227.59 8:7 231.17 −3.58
whole tone, major tone 10 206.90 9:8 203.91 +2.99
whole tone, minor tone 9 186.21 10:9 182.40 +3.81
greater undecimal neutral second 8 165.52 11:10 165.00 +0.52
lesser undecimal neutral second 7 144.83 12:11 150.64 −5.81
septimal diatonic semitone 6 124.14 15:14 119.44 +4.70
septendecimal semitone; 17th harmonic 5 103.45 17:16 104.96 −1.51
diatonic semitone 16:15 111.73 −8.28
septimal chromatic semitone 4 82.76 21:20 84.47 −1.71
chromatic semitone 3 62.07 25:24 70.67 −8.60
septimal third tone 28:27 62.96 −0.89
septimal quarter tone 2 41.38 36:35 48.77 −7.39
septimal diesis 49:48 35.70 +5.68
septimal comma 1 20.69 64:63 27.26 −6.57
syntonic comma 81:80 21.51 −0.82

See also

[edit]

References

[edit]
  1. ^ "consistency / consistent".
  2. ^ "Marchettus, the cadential diesis, and neo-Gothic tunings".
[edit]