58 equal temperament: Difference between revisions
Wrong sign for syntonic and septimal comma errors |
minor table layout tweaks |
||
(9 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
In [[music]], '''58 equal temperament''' (also called 58-ET or |
In [[music]], '''58 equal temperament''' (also called 58-ET or 58-[[equal division of the octave|EDO]]) divides the octave into 58 equal parts of approximately 20.69 [[cent (music)|cents]] each. It is notable as the simplest equal division of the octave to faithfully represent the [[limit (music)|17-limit]],<ref name="tonalsoft">{{cite web|url=http://www.tonalsoft.com/enc/c/consistent.aspx|title=consistency / consistent}}</ref> and the first that distinguishes between all the elements of the 11-limit [[tonality diamond]]. The next-smallest equal temperament to do both these things is [[72 equal temperament]]. |
||
Compared to [[72 equal temperament]], which is also consistent in the 17-limit, 58- |
Compared to [[72 equal temperament|72-EDO]], which is also consistent in the 17-limit, 58-EDO's approximations of most intervals are not quite as good (although still workable). One obvious exception is the perfect fifth (slightly better in 58-EDO), and another is the tridecimal minor third (11:13), which is significantly better in 58-EDO than in 72-EDO. The two systems temper out different commas; 72-EDO tempers out the comma 169:168, thus equating the 14:13 and 13:12 intervals. On the other hand, 58-EDO tempers out 144:143 instead of 169:168, so 14:13 and 13:12 are left distinct, but 13:12 and 12:11 are equated. |
||
58- |
58-EDO, unlike 72-EDO, is not a [[equal temperament|multiple of 12]], so the only interval (up to octave equivalency) that it shares with 12-EDO is the 600-cent [[tritone]] (which functions as both 17:12 and 24:17). On the other hand, 58-EDO has fewer pitches than 72-EDO and is therefore simpler. |
||
==History and use== |
|||
The medieval Italian music theorist [[Marchetto da Padova]] proposed a system that is approximately 29- |
The medieval Italian music theorist [[Marchetto da Padova]] proposed a system that is approximately 29-EDO, which is a subset of 58-EDO, in 1318.<ref name="marchettus">{{cite web|url=http://www.medieval.org/emfaq/harmony/marchetmf.html|title=Marchettus, the cadential diesis, and neo-Gothic tunings}}</ref> |
||
==List of intervals== |
|||
==Interval size== |
|||
{| class="wikitable" |
{| class="wikitable" |
||
|- style="vertical-align:bottom;" |
|||
⚫ | |||
|align=center bgcolor="#ffffb4"| |
|align=center bgcolor="#ffffb4"| '''interval name''' |
||
|align=center bgcolor="#ffffb4"| |
|align=center bgcolor="#ffffb4"| '''size'''<br/>(steps) |
||
|align=center bgcolor="#ffffb4"| |
|align=center bgcolor="#ffffb4"| '''size'''<br/>(cents) |
||
|align=center bgcolor="#ffffb4"| |
|align=center bgcolor="#ffffb4"| '''just<br/>ratio''' |
||
|align=center bgcolor="#ffffb4"| |
|align=center bgcolor="#ffffb4"| '''just'''<br/>(cents) |
||
⚫ | |||
|- |
|||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
|- |
|- |
||
|align=center|[[perfect fifth]] |
|align=center| [[perfect fifth]] |
||
|align=center|34 |
|align=center| 34 |
||
|align=center|703.45 |
|align=center| 703.45 |
||
|align=center|3:2 |
|align=center| 3:2 |
||
|align=center|701.96 |
|align=center| 701.96 |
||
|align=center|+1.49 |
|align=center| +1.49 |
||
|- |
|- |
||
|align=center|[[tritone|greater septendecimal tritone]] |
|align=center| [[tritone|greater septendecimal tritone]] |
||
|rowspan=2 align=center|29 |
|rowspan=2 align=center| 29 |
||
|rowspan=2 align=center|600 |
|rowspan=2 align=center| 600 |
||
|align=center|17:12 |
|align=center| 17:12 |
||
|align=center|603.00 |
|align=center| 603.00 |
||
|align=center|−3.00 |
|align=center| −3.00 |
||
|- |
|- |
||
|align=center|[[tritone|lesser septendecimal tritone]] |
|align=center| [[tritone|lesser septendecimal tritone]] |
||
<!--|align=center|29--> |
<!-- |align=center| 29--> |
||
<!--|align=center|600--> |
<!-- |align=center| 600 --> |
||
|align=center|24:17 |
|align=center| 24:17 |
||
|align=center|597.00 |
|align=center| 597.00 |
||
|align=center|+3.00 |
|align=center| +3.00 |
||
|- |
|- |
||
|align=center|[[septimal tritone]] |
|align=center| [[septimal tritone]] |
||
|align=center|28 |
|align=center| 28 |
||
|align=center|579.31 |
|align=center| 579.31 |
||
|align=center|7:5 |
|align=center| 7:5 |
||
|align=center|582.51 |
|align=center| 582.51 |
||
|align=center|−3.20 |
|align=center| −3.20 |
||
|- |
|- |
||
|align=center|[[eleventh harmonic]] |
|align=center| [[eleventh harmonic]] |
||
|align=center|27 |
|align=center| 27 |
||
|align=center|558.62 |
|align=center| 558.62 |
||
|align=center|11:8 |
|align=center| 11:8 |
||
|align=center|551.32 |
|align=center| 551.32 |
||
|align=center|+7.30 |
|align=center| +7.30 |
||
|- |
|- |
||
|align=center|15:11 wide fourth |
|align=center| 15:11 wide fourth |
||
|align=center|26 |
|align=center| 26 |
||
|align=center|537.93 |
|align=center| 537.93 |
||
|align=center|15:11 |
|align=center| 15:11 |
||
|align=center|536.95 |
|align=center| 536.95 |
||
|align=center|+0.98 |
|align=center| +0.98 |
||
|- |
|- |
||
|align=center|[[perfect fourth]] |
|align=center| [[perfect fourth]] |
||
|align=center|24 |
|align=center| 24 |
||
|align=center|496.55 |
|align=center| 496.55 |
||
|align=center|4:3 |
|align=center| 4:3 |
||
|align=center|498.04 |
|align=center| 498.04 |
||
|align=center|−1.49 |
|align=center| −1.49 |
||
|- |
|- |
||
|align=center|septimal narrow fourth |
|align=center| septimal narrow fourth |
||
|align=center|23 |
|align=center| 23 |
||
|align=center|475.86 |
|align=center| 475.86 |
||
|align=center|21:16 |
|align=center| 21:16 |
||
|align=center|470.78 |
|align=center| 470.78 |
||
|align=center|+5.08 |
|align=center| +5.08 |
||
|- |
|- |
||
|align=center|tridecimal major third |
|align=center| tridecimal major third |
||
|align=center|22 |
|align=center| 22 |
||
|align=center|455.17 |
|align=center| 455.17 |
||
|align=center|13:10 |
|align=center| 13:10 |
||
|align=center|454.21 |
|align=center| 454.21 |
||
|align=center|+0.96 |
|align=center| +0.96 |
||
|- |
|- |
||
|align=center|[[septimal major third]] |
|align=center| [[septimal major third]] |
||
|align=center|21 |
|align=center| 21 |
||
|align=center|434.48 |
|align=center| 434.48 |
||
|align=center|9:7 |
|align=center| 9:7 |
||
|align=center|435.08 |
|align=center| 435.08 |
||
|align=center|−0.60 |
|align=center| −0.60 |
||
|- |
|- |
||
|align=center|undecimal major third |
|align=center| undecimal major third |
||
|align=center|20 |
|align=center| 20 |
||
|align=center|413.79 |
|align=center| 413.79 |
||
|align=center|14:11 |
|align=center| 14:11 |
||
|align=center|417.51 |
|align=center| 417.51 |
||
|align=center|−3.72 |
|align=center| −3.72 |
||
|- |
|- |
||
|align=center|[[major third]] |
|align=center| [[major third]] |
||
|align=center|19 |
|align=center| 19 |
||
|align=center|393.10 |
|align=center| 393.10 |
||
|align=center|5:4 |
|align=center| 5:4 |
||
|align=center|386.31 |
|align=center| 386.31 |
||
|align=center|+6.79 |
|align=center| +6.79 |
||
|- |
|- |
||
|align=center|tridecimal [[neutral third]] |
|align=center| tridecimal [[neutral third]] |
||
|rowspan=2 align=center|17 |
|rowspan=2 align=center| 17 |
||
|rowspan=2 align=center|351.72 |
|rowspan=2 align=center| 351.72 |
||
|align=center|16:13 |
|align=center| 16:13 |
||
|align=center|359.47 |
|align=center| 359.47 |
||
|align=center|−7.75 |
|align=center| −7.75 |
||
|- |
|- |
||
|align=center|undecimal neutral third |
|align=center| undecimal neutral third |
||
<!--|align=center|17--> |
<!-- |align=center|17 --> |
||
<!--|align=center|351.72--> |
<!-- |align=center|351.72 --> |
||
|align=center|11:9 |
|align=center| 11:9 |
||
|align=center|347.41 |
|align=center| 347.41 |
||
|align=center|+4.31 |
|align=center| +4.31 |
||
|- |
|- |
||
|align=center|[[minor third]] |
|align=center| [[minor third]] |
||
|align=center|15 |
|align=center| 15 |
||
|align=center|310.34 |
|align=center| 310.34 |
||
|align=center|6:5 |
|align=center| 6:5 |
||
|align=center|315.64 |
|align=center| 315.64 |
||
|align=center|−5.30 |
|align=center| −5.30 |
||
|- |
|- |
||
|align=center|tridecimal minor third |
|align=center| tridecimal minor third |
||
|align=center|14 |
|align=center| 14 |
||
|align=center|289.66 |
|align=center| 289.66 |
||
|align=center|13:11 |
|align=center| 13:11 |
||
|align=center|289.21 |
|align=center| 289.21 |
||
|align=center|+0.45 |
|align=center| +0.45 |
||
|- |
|- |
||
|align=center|[[septimal minor third]] |
|align=center| [[septimal minor third]] |
||
|align=center|13 |
|align=center| 13 |
||
|align=center|268.97 |
|align=center| 268.97 |
||
|align=center|7:6 |
|align=center| 7:6 |
||
|align=center|266.87 |
|align=center| 266.87 |
||
|align=center|+2.10 |
|align=center| +2.10 |
||
|- |
|- |
||
|align=center|tridecimal semifourth |
|align=center| tridecimal semifourth |
||
|align=center|12 |
|align=center| 12 |
||
|align=center|248.28 |
|align=center| 248.28 |
||
|align=center|15:13 |
|align=center| 15:13 |
||
|align=center|247.74 |
|align=center| 247.74 |
||
|align=center|+0.54 |
|align=center| +0.54 |
||
|- |
|- |
||
|align=center|[[septimal whole tone]] |
|align=center| [[septimal whole tone]] |
||
|align=center|11 |
|align=center| 11 |
||
|align=center|227.59 |
|align=center| 227.59 |
||
|align=center|8:7 |
|align=center| 8:7 |
||
|align=center|231.17 |
|align=center| 231.17 |
||
|align=center|−3.58 |
|align=center| −3.58 |
||
|- |
|- |
||
|align=center|whole tone, [[major tone]] |
|align=center| whole tone, [[major tone]] |
||
|align=center|10 |
|align=center| 10 |
||
|align=center|206.90 |
|align=center| 206.90 |
||
|align=center|9:8 |
|align=center| 9:8 |
||
|align=center|203.91 |
|align=center| 203.91 |
||
|align=center|+2.99 |
|align=center| +2.99 |
||
|- |
|- |
||
|align=center|whole tone, [[minor tone]] |
|align=center| whole tone, [[minor tone]] |
||
|align=center|9 |
|align=center| 9 |
||
|align=center|186.21 |
|align=center| 186.21 |
||
|align=center|10:9 |
|align=center| 10:9 |
||
|align=center|182.40 |
|align=center| 182.40 |
||
|align=center|+3.81 |
|align=center| +3.81 |
||
|- |
|- |
||
|align=center|greater undecimal [[neutral second]] |
|align=center| greater undecimal [[neutral second]] |
||
|align=center|8 |
|align=center| 8 |
||
|align=center|165.52 |
|align=center| 165.52 |
||
|align=center|11:10 |
|align=center| 11:10 |
||
|align=center|165.00 |
|align=center| 165.00 |
||
|align=center|+0.52 |
|align=center| +0.52 |
||
|- |
|- |
||
|align=center|lesser undecimal [[neutral second]] |
|align=center| lesser undecimal [[neutral second]] |
||
|align=center|7 |
|align=center| 7 |
||
|align=center|144.83 |
|align=center| 144.83 |
||
|align=center|12:11 |
|align=center| 12:11 |
||
|align=center|150.64 |
|align=center| 150.64 |
||
|align=center|−5.81 |
|align=center| −5.81 |
||
|- |
|- |
||
|align=center|[[septimal diatonic semitone]] |
|align=center| [[septimal diatonic semitone]] |
||
|align=center|6 |
|align=center| 6 |
||
|align=center|124.14 |
|align=center| 124.14 |
||
|align=center|15:14 |
|align=center| 15:14 |
||
|align=center|119.44 |
|align=center| 119.44 |
||
|align=center|+4.70 |
|align=center| +4.70 |
||
|- |
|- |
||
|align=center|septendecimal semitone; 17th harmonic |
|align=center| septendecimal semitone; 17th harmonic |
||
|align=center|5 |
|align=center rowspan=2| 5 |
||
|align=center|103.45 |
|align=center rowspan=2| 103.45 |
||
|align=center|17:16 |
|align=center| 17:16 |
||
|align=center|104.96 |
|align=center| 104.96 |
||
|align=center|−1.51 |
|align=center| −1.51 |
||
|- |
|- |
||
|align=center|[[diatonic semitone]] |
|align=center| [[diatonic semitone]] |
||
|align=center| |
|align=center| 16:15 |
||
|align=center| |
|align=center| 111.73 |
||
|align=center| |
|align=center| −8.28 |
||
⚫ | |||
|align=center|−8.28 |
|||
|- |
|- |
||
|align=center|[[septimal chromatic semitone]] |
|align=center| [[septimal chromatic semitone]] |
||
|align=center|4 |
|align=center| 4 |
||
|align=center|82.76 |
|align=center| 82.76 |
||
|align=center|21:20 |
|align=center| 21:20 |
||
|align=center|84.47 |
|align=center| 84.47 |
||
|align=center|−1.71 |
|align=center| −1.71 |
||
|- |
|- |
||
|align=center|[[chromatic semitone]] |
|align=center| [[chromatic semitone]] |
||
|align=center|3 |
|align=center rowspan=2| 3 |
||
|align=center|62.07 |
|align=center rowspan=2| 62.07 |
||
|align=center|25:24 |
|align=center| 25:24 |
||
|align=center|70.67 |
|align=center| 70.67 |
||
|align=center|−8.60 |
|align=center| −8.60 |
||
|- |
|- |
||
|align=center|[[septimal third tone]] |
|align=center| [[septimal third tone]] |
||
|align=center| |
|align=center| 28:27 |
||
|align=center|62. |
|align=center| 62.96 |
||
|align=center| |
|align=center| −0.89 |
||
⚫ | |||
⚫ | |||
|- |
|- |
||
|align=center|[[septimal quarter tone]] |
|align=center| [[septimal quarter tone]] |
||
|align=center|2 |
|align=center rowspan=2| 2 |
||
|align=center|41.38 |
|align=center rowspan=2| 41.38 |
||
|align=center|36:35 |
|align=center| 36:35 |
||
|align=center|48.77 |
|align=center| 48.77 |
||
|align=center|−7.39 |
|align=center| −7.39 |
||
|- |
|- |
||
|align=center|[[septimal diesis]] |
|align=center|[[septimal diesis]] |
||
|align=center| |
|align=center| 49:48 |
||
|align=center| |
|align=center| 35.70 |
||
|align=center| |
|align=center| +5.68 |
||
⚫ | |||
⚫ | |||
|- |
|- |
||
|align=center|[[septimal comma]] |
|align=center| [[septimal comma]] |
||
|align=center|1 |
|align=center rowspan=2| 1 |
||
|align=center|20.69 |
|align=center rowspan=2| 20.69 |
||
|align=center|64:63 |
|align=center| 64:63 |
||
|align=center|27.26 |
|align=center| 27.26 |
||
|align=center|−6.57 |
|align=center| −6.57 |
||
|- |
|- |
||
|align=center|[[syntonic comma]] |
|align=center| [[syntonic comma]] |
||
|align=center| |
|align=center| 81:80 |
||
|align=center| |
|align=center| 21.51 |
||
|align=center| |
|align=center |−0.82 |
||
⚫ | |||
|align=center|−0.82 |
|||
|} |
|} |
||
==See also== |
==See also== |
||
*[[Harry Partch's 43-tone scale]]; 58- |
*[[Harry Partch's 43-tone scale]]; 58-EDO is the smallest equal temperament that can reasonably approximate this scale |
||
==References== |
==References== |
||
Line 256: | Line 256: | ||
==External links== |
==External links== |
||
* [ |
* [https://en.xen.wiki/w/58edo Xenharmonic Wiki article on 58edo] |
||
{{Microtonal music}} |
{{Microtonal music}} |
||
{{Musical tuning}} |
{{Musical tuning}} |
||
[[Category: |
[[Category:Equal temperaments]] |
||
[[Category:Microtonality]] |
Latest revision as of 06:53, 23 January 2024
In music, 58 equal temperament (also called 58-ET or 58-EDO) divides the octave into 58 equal parts of approximately 20.69 cents each. It is notable as the simplest equal division of the octave to faithfully represent the 17-limit,[1] and the first that distinguishes between all the elements of the 11-limit tonality diamond. The next-smallest equal temperament to do both these things is 72 equal temperament.
Compared to 72-EDO, which is also consistent in the 17-limit, 58-EDO's approximations of most intervals are not quite as good (although still workable). One obvious exception is the perfect fifth (slightly better in 58-EDO), and another is the tridecimal minor third (11:13), which is significantly better in 58-EDO than in 72-EDO. The two systems temper out different commas; 72-EDO tempers out the comma 169:168, thus equating the 14:13 and 13:12 intervals. On the other hand, 58-EDO tempers out 144:143 instead of 169:168, so 14:13 and 13:12 are left distinct, but 13:12 and 12:11 are equated.
58-EDO, unlike 72-EDO, is not a multiple of 12, so the only interval (up to octave equivalency) that it shares with 12-EDO is the 600-cent tritone (which functions as both 17:12 and 24:17). On the other hand, 58-EDO has fewer pitches than 72-EDO and is therefore simpler.
History and use
[edit]The medieval Italian music theorist Marchetto da Padova proposed a system that is approximately 29-EDO, which is a subset of 58-EDO, in 1318.[2]
Interval size
[edit]interval name | size (steps) |
size (cents) |
just ratio |
just (cents) |
error (cents) |
octave | 58 | 1200 | 2:1 | 1200 | 0 |
perfect fifth | 34 | 703.45 | 3:2 | 701.96 | +1.49 |
greater septendecimal tritone | 29 | 600 | 17:12 | 603.00 | −3.00 |
lesser septendecimal tritone | 24:17 | 597.00 | +3.00 | ||
septimal tritone | 28 | 579.31 | 7:5 | 582.51 | −3.20 |
eleventh harmonic | 27 | 558.62 | 11:8 | 551.32 | +7.30 |
15:11 wide fourth | 26 | 537.93 | 15:11 | 536.95 | +0.98 |
perfect fourth | 24 | 496.55 | 4:3 | 498.04 | −1.49 |
septimal narrow fourth | 23 | 475.86 | 21:16 | 470.78 | +5.08 |
tridecimal major third | 22 | 455.17 | 13:10 | 454.21 | +0.96 |
septimal major third | 21 | 434.48 | 9:7 | 435.08 | −0.60 |
undecimal major third | 20 | 413.79 | 14:11 | 417.51 | −3.72 |
major third | 19 | 393.10 | 5:4 | 386.31 | +6.79 |
tridecimal neutral third | 17 | 351.72 | 16:13 | 359.47 | −7.75 |
undecimal neutral third | 11:9 | 347.41 | +4.31 | ||
minor third | 15 | 310.34 | 6:5 | 315.64 | −5.30 |
tridecimal minor third | 14 | 289.66 | 13:11 | 289.21 | +0.45 |
septimal minor third | 13 | 268.97 | 7:6 | 266.87 | +2.10 |
tridecimal semifourth | 12 | 248.28 | 15:13 | 247.74 | +0.54 |
septimal whole tone | 11 | 227.59 | 8:7 | 231.17 | −3.58 |
whole tone, major tone | 10 | 206.90 | 9:8 | 203.91 | +2.99 |
whole tone, minor tone | 9 | 186.21 | 10:9 | 182.40 | +3.81 |
greater undecimal neutral second | 8 | 165.52 | 11:10 | 165.00 | +0.52 |
lesser undecimal neutral second | 7 | 144.83 | 12:11 | 150.64 | −5.81 |
septimal diatonic semitone | 6 | 124.14 | 15:14 | 119.44 | +4.70 |
septendecimal semitone; 17th harmonic | 5 | 103.45 | 17:16 | 104.96 | −1.51 |
diatonic semitone | 16:15 | 111.73 | −8.28 | ||
septimal chromatic semitone | 4 | 82.76 | 21:20 | 84.47 | −1.71 |
chromatic semitone | 3 | 62.07 | 25:24 | 70.67 | −8.60 |
septimal third tone | 28:27 | 62.96 | −0.89 | ||
septimal quarter tone | 2 | 41.38 | 36:35 | 48.77 | −7.39 |
septimal diesis | 49:48 | 35.70 | +5.68 | ||
septimal comma | 1 | 20.69 | 64:63 | 27.26 | −6.57 |
syntonic comma | 81:80 | 21.51 | −0.82 |
See also
[edit]- Harry Partch's 43-tone scale; 58-EDO is the smallest equal temperament that can reasonably approximate this scale