Jump to content

Total relation: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Algebraic characterization: improved writing. removed some proofs (they were poorly written).
See also: suggest to establish connection the total rel.s
 
(17 intermediate revisions by 8 users not shown)
Line 1: Line 1:
{{Short description|Type of logical relation}}
{{for|relations ''R'' where ''aRb'' or ''bRa'' for all ''a'' and ''b''|connected relation}}
{{for|relations ''R'' where ''<nowiki>x=y</nowiki>'' or ''xRy'' or ''yRx'' for all ''x'' and ''y''|connected relation}}


In [[mathematics]], a [[binary relation]] ''R'' ⊆ ''X''×''Y'' between two sets ''X'' and ''Y'' is '''total''' (or '''left total''') if the source set ''X'' equals the domain {''x'' : there is a ''y'' with ''xRy'' }. Conversely, ''R'' is called '''right total''' if ''Y'' equals the range {''y'' : there is an ''x'' with ''xRy'' }.
{{Merge to|Serial relation|discuss=Talk:Serial relation#Proposed merge of Total relation into Serial relation|date=May 2022}}
In [[mathematics]], a [[binary relation]] ''R'' ⊆ ''A''×''B'' is '''total''' (or '''left total''') if the source set ''A'' equals the domain {''x'' : there is a ''y'' with ''xRy'' }. Conversely, ''R'' is called '''right total''' if ''B'' equals the range {''y'' : there is an ''x'' with ''xRy'' }.


When ''f'': ''A'' &rightarrow; ''B'' is a [[function (mathematics)|function]], the domain of ''f'' is all of ''A'', hence ''f'' is a total relation. On the other hand, if ''f'' is a [[partial function]], then the domain may be a proper subset of ''A'', in which case ''f'' is not a total relation.
When ''f'': ''X'' ''Y'' is a [[function (mathematics)|function]], the domain of ''f'' is all of ''X'', hence ''f'' is a total relation. On the other hand, if ''f'' is a [[partial function]], then the domain may be a proper subset of ''X'', in which case ''f'' is not a total relation.


"A binary relation is said to be total with respect to a universe of discourse just in case everything in that universe of discourse stands in that relation to something else."<ref>[http://caae.phil.cmu.edu/projects/logicandproofs/alpha/htmltest/m15_functions/chapter15.html Functions] from [[Carnegie Mellon University]]</ref>
"A binary relation is said to be total with respect to a universe of discourse just in case everything in that universe of discourse stands in that relation to something else."<ref>[http://caae.phil.cmu.edu/projects/logicandproofs/alpha/htmltest/m15_functions/chapter15.html Functions] from [[Carnegie Mellon University]]</ref>


==Algebraic characterization==
==Algebraic characterization==
Total relations can be characterized algebraically by equalities and inequalities involving [[composition of relations]]. To this end, let <math>X</math> be a set, let <math>Y\ne\emptyset,</math> and let <math>R\subseteq X\times Y.</math> For any two sets <math>A,B,</math> let <math>L_{A,B}=A\times B</math> be the [[universal relation]] between <math>A</math> and <math>B,</math> and let <math>I_A=\{(a,a):a\in A\}</math> be the [[identity function|identity relation]] on <math>A.</math> We use the notation <math>R^\top</math> for the [[converse relation]] of <math>R.</math>
Total relations can be characterized algebraically by equalities and inequalities involving [[composition of relations|compositions of relations]]. To this end, let <math>X,Y</math> be two sets, and let <math>R\subseteq X\times Y.</math> For any two sets <math>A,B,</math> let <math>L_{A,B}=A\times B</math> be the [[universal relation]] between <math>A</math> and <math>B,</math> and let <math>I_A=\{(a,a):a\in A\}</math> be the [[identity relation]] on <math>A.</math> We use the notation <math>R^\top</math> for the [[converse relation]] of <math>R.</math>


* <math>R</math> is total iff for any set <math>W</math> and any <math>S\subseteq W\times X,</math> <math>S\ne\emptyset</math> implies <math>SR\ne\emptyset.</math><ref name=R&G>{{cite book|last1=Schmidt|first1=Gunther|last2=Ströhlein|first2=Thomas|title=Relations and Graphs: Discrete Mathematics for Computer Scientists|url={{google books |plainurl=y |id=ZgarCAAAQBAJ|paged=54}}|date=6 December 2012|publisher=[[Springer Science & Business Media]]|isbn=978-3-642-77968-8|author-link1=Gunther Schmidt}}</ref>{{rp|54}}
* <math>R</math> is total iff for any set <math>W</math> and any <math>S\subseteq W\times X,</math> <math>S\ne\emptyset</math> implies <math>SR\ne\emptyset.</math><ref name=R&G>{{cite book|last1=Schmidt|first1=Gunther|last2=Ströhlein|first2=Thomas|title=Relations and Graphs: Discrete Mathematics for Computer Scientists|url={{google books |plainurl=y |id=ZgarCAAAQBAJ|paged=54}}|date=6 December 2012|publisher=[[Springer Science & Business Media]]|isbn=978-3-642-77968-8|author-link1=Gunther Schmidt}}</ref>{{rp|54}}
* <math>R</math> is total iff <math>I_X\subseteq RR^\top.</math>{{rp|54}}
* <math>R</math> is total iff <math>I_X\subseteq RR^\top.</math><ref name=R&G/>{{rp|54}}
* If <math>R</math> is total, then <math>L_{X,Y}=RL_{Y,Y}.</math> The converse is true if <math>Y\ne\emptyset.</math>
* If <math>R</math> is total, then <math>L_{X,Y}=RL_{Y,Y}.</math> The converse is true if <math>Y\ne\emptyset.</math><ref group=note>If <math>Y=\emptyset\ne X,</math> then <math>R</math> will be not total.</ref>
* If <math>R</math> is total, then <math>\overline{RL_{Y,Y}}=\emptyset.</math> The converse is true if <math>Y\ne\emptyset.</math><ref group=note>Observe <math>\overline{RL_{Y,Y}}=\emptyset\Leftrightarrow RL_{Y,Y}=L_{X,Y},</math> and apply the previous bullet.</ref><ref name=R&G/>{{rp|63}}
* If <math>R</math> is total, then <math>\overline{RL_{Y,Y}}=\emptyset.</math> The converse is true if <math>Y\ne\emptyset.</math><ref group=note>Observe <math>\overline{RL_{Y,Y}}=\emptyset\Leftrightarrow RL_{Y,Y}=L_{X,Y},</math> and apply the previous bullet.</ref><ref name=R&G/>{{rp|63}}
* If <math>R</math> is total, then <math>\overline R\subseteq R\overline{I_Y}.</math> The converse is true if <math>Y\ne\emptyset.</math><ref name=R&G/><ref name=GS11>{{cite book | doi=10.1017/CBO9780511778810 | isbn=9780511778810 | author=Gunther Schmidt | title=Relational Mathematics | publisher=[[Cambridge University Press]] | year=2011 }} Definition 5.8, page 57.</ref>
* If <math>R</math> is total, then <math>\overline R\subseteq R\overline{I_Y}.</math> The converse is true if <math>Y\ne\emptyset.</math><ref name=R&G/>{{rp|54}}<ref name=GS11>{{cite book | doi=10.1017/CBO9780511778810 | isbn=9780511778810 | author=Gunther Schmidt | title=Relational Mathematics | publisher=[[Cambridge University Press]] | year=2011 }} Definition 5.8, page 57.</ref>
* More generally, if <math>R</math> is total, then for any set <math>Z</math> and any <math>S\subseteq Y\times Z,</math> <math>\overline{RS}\subseteq R\overline S.</math> The converse is true if <math>Y\ne\emptyset.</math><ref group=note>Take <math>Z=Y,S=I_Y</math> and appeal to the previous bullet.</ref><ref name=R&G/>{{rp|57}}
* More generally, if <math>R</math> is total, then for any set <math>Z</math> and any <math>S\subseteq Y\times Z,</math> <math>\overline{RS}\subseteq R\overline S.</math> The converse is true if <math>Y\ne\emptyset.</math><ref group=note>Take <math>Z=Y,S=I_Y</math> and appeal to the previous bullet.</ref><ref name=R&G/>{{rp|57}}

==See also==
* [[Serial relation]] &mdash; a total homogeneous relation

==Notes==
{{reflist|group=note}}


==References==
==References==
Line 26: Line 32:
* Gunther Schmidt (2011) {{Google books|E4REBTs5WsC|Relational Mathematics|page=57}}
* Gunther Schmidt (2011) {{Google books|E4REBTs5WsC|Relational Mathematics|page=57}}


{{Order theory}}


[[Category:Binary relations]]
[[Category:Properties of binary relations]]

Latest revision as of 15:30, 7 February 2024

In mathematics, a binary relation RX×Y between two sets X and Y is total (or left total) if the source set X equals the domain {x : there is a y with xRy }. Conversely, R is called right total if Y equals the range {y : there is an x with xRy }.

When f: XY is a function, the domain of f is all of X, hence f is a total relation. On the other hand, if f is a partial function, then the domain may be a proper subset of X, in which case f is not a total relation.

"A binary relation is said to be total with respect to a universe of discourse just in case everything in that universe of discourse stands in that relation to something else."[1]

Algebraic characterization

[edit]

Total relations can be characterized algebraically by equalities and inequalities involving compositions of relations. To this end, let be two sets, and let For any two sets let be the universal relation between and and let be the identity relation on We use the notation for the converse relation of

  • is total iff for any set and any implies [2]: 54 
  • is total iff [2]: 54 
  • If is total, then The converse is true if [note 1]
  • If is total, then The converse is true if [note 2][2]: 63 
  • If is total, then The converse is true if [2]: 54 [3]
  • More generally, if is total, then for any set and any The converse is true if [note 3][2]: 57 

See also

[edit]

Notes

[edit]
  1. ^ If then will be not total.
  2. ^ Observe and apply the previous bullet.
  3. ^ Take and appeal to the previous bullet.

References

[edit]
  1. ^ Functions from Carnegie Mellon University
  2. ^ a b c d e Schmidt, Gunther; Ströhlein, Thomas (6 December 2012). Relations and Graphs: Discrete Mathematics for Computer Scientists. Springer Science & Business Media. ISBN 978-3-642-77968-8.
  3. ^ Gunther Schmidt (2011). Relational Mathematics. Cambridge University Press. doi:10.1017/CBO9780511778810. ISBN 9780511778810. Definition 5.8, page 57.