Super Virasoro algebra: Difference between revisions
m Copy edit |
m Removing from Category:Theoretical physics already in subcat using Cat-a-lot |
||
(6 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Supersymmetric extension to the Virasoro algebra}} |
|||
In [[mathematical physics]], a '''super Virasoro algebra''' is an [[Lie algebra extension|extension]] of the [[Virasoro algebra]] (named after [[Miguel Ángel Virasoro (physicist)|Miguel Ángel Virasoro]]) to a [[Lie superalgebra]]. There are two extensions with particular importance in [[superstring theory]]: the '''Ramond algebra'''<!--boldface per WP:R#PLA--> (named after [[Pierre Ramond]])<ref>{{cite journal | last=Ramond | first=P. | title=Dual Theory for Free Fermions | journal=Physical Review D | publisher=American Physical Society (APS) | volume=3 | issue=10 | date=1971-05-15 | issn=0556-2821 | doi=10.1103/physrevd.3.2415 | pages=2415–2418}}</ref> and the '''Neveu–Schwarz algebra'''<!--boldface per WP:R#PLA--> (named after [[André Neveu]] and [[John Henry Schwarz]]).<ref>{{cite journal | |
In [[mathematical physics]], a '''super Virasoro algebra''' is an [[Lie algebra extension|extension]] of the [[Virasoro algebra]] (named after [[Miguel Ángel Virasoro (physicist)|Miguel Ángel Virasoro]]) to a [[Lie superalgebra]]. There are two extensions with particular importance in [[superstring theory]]: the '''Ramond algebra'''<!--boldface per WP:R#PLA--> (named after [[Pierre Ramond]])<ref>{{cite journal | last=Ramond | first=P. | title=Dual Theory for Free Fermions | journal=Physical Review D | publisher=American Physical Society (APS) | volume=3 | issue=10 | date=1971-05-15 | issn=0556-2821 | doi=10.1103/physrevd.3.2415 | pages=2415–2418| bibcode=1971PhRvD...3.2415R }}</ref> and the '''Neveu–Schwarz algebra'''<!--boldface per WP:R#PLA--> (named after [[André Neveu]] and [[John Henry Schwarz]]).<ref>{{cite journal | last1=Neveu | first1=A. | last2=Schwarz | first2=J.H. | title=Tachyon-free dual model with a positive-intercept trajectory | journal=Physics Letters B | publisher=Elsevier BV | volume=34 | issue=6 | year=1971 | issn=0370-2693 | doi=10.1016/0370-2693(71)90669-1 | pages=517–518| bibcode=1971PhLB...34..517N }}</ref> Both algebras have [[supersymmetry algebra|''N'' = 1 supersymmetry]] and an even part given by the Virasoro algebra. They describe the symmetries of a superstring in two different sectors, called the '''Ramond sector'''<!--boldface per WP:R#PLA--> and the '''Neveu–Schwarz sector'''<!--boldface per WP:R#PLA-->. |
||
==The ''N'' = 1 super Virasoro algebras== |
==The ''N'' = 1 super Virasoro algebras== |
||
Line 17: | Line 18: | ||
Note that this last bracket is an [[anticommutator]], not a commutator, because both generators are odd. |
Note that this last bracket is an [[anticommutator]], not a commutator, because both generators are odd. |
||
The Ramond algebra has a [[Presentation of a group|presentation]] in terms of 2 generators and 5 conditions; and the |
The Ramond algebra has a [[Presentation of a group|presentation]] in terms of 2 generators and 5 conditions; and the Neveu—Schwarz algebra has a presentation in terms of 2 generators and 9 conditions.<ref>{{Cite journal | doi = 10.1007/BF01218387| title = A presentation for the Virasoro and super-Virasoro algebras| journal = Communications in Mathematical Physics| volume = 117| issue = 4| pages = 595| year = 1988| last1 = Fairlie | first1 = D. B.| last2 = Nuyts | first2 = J.| last3 = Zachos | first3 = C. K.|bibcode = 1988CMaPh.117..595F | s2cid = 119811901| url = http://projecteuclid.org/euclid.cmp/1104161819}}</ref> |
||
== Representations == |
== Representations == |
||
Line 41: | Line 42: | ||
==References== |
==References== |
||
*{{citation| |
*{{citation|first1=K.|last1= Becker|first2= M.|last2= Becker |first3=J.H.|last3= Schwarz|year=2007|title=String theory and M-theory: A modern introduction| publisher=Cambridge University Press|isbn= 978-0-521-86069-7}} |
||
*{{citation| |
*{{citation|first1=P.|last1=Goddard|authorlink=Peter Goddard (physicist)|first2=A.|last2=Kent|first3=D.|last3=Olive|authorlink3=David Olive|url=http://projecteuclid.org/Dienst/UI/1.0/Summarize/euclid.cmp/1104114626|archive-url=https://archive.today/20121209124641/http://projecteuclid.org/Dienst/UI/1.0/Summarize/euclid.cmp/1104114626|url-status=dead|archive-date=2012-12-09|title=Unitary representations of the Virasoro and super-Virasoro algebras|journal=Comm. Math. Phys.|volume=103|year=1986|issue=1 |pages=105–119|doi=10.1007/bf01464283|bibcode=1986CMaPh.103..105G|s2cid=91181508}} |
||
*{{citation| |
*{{citation|first1=Michael B.|last1=Green|authorlink=Michael B. Green|first2=John H.|last2=Schwarz|authorlink2=John Henry Schwarz|first3=Edward|last3=Witten| |
||
authorlink3=Edward Witten|title=Superstring theory, Volume 1: Introduction|publisher=Cambridge University Press|year=1988a|isbn=0521357527}} |
authorlink3=Edward Witten|title=Superstring theory, Volume 1: Introduction|publisher=Cambridge University Press|year=1988a|isbn=0521357527}} |
||
*{{citation| |
*{{citation|last1=Kac|first1= Victor G.|last2= Todorov|first2= Ivan T.|title=Superconformal current algebras and their unitary representations|journal= Comm. Math. Phys. |volume= 102 |year=1985|issue= 2|pages=337–347|doi=10.1007/bf01229384|bibcode = 1985CMaPh.102..337K |s2cid= 189831973|url= http://projecteuclid.org/euclid.cmp/1104114386}} |
||
*{{citation| |
*{{citation|last1=Kazama|first1= Yoichi|last2= Suzuki|first2= Hisao|title=New ''N'' = 2 superconformal field theories and superstring compactification|journal=Nuclear Physics B |volume=321 |year=1989|issue= 1|pages= 232–268|bibcode = 1989NuPhB.321..232K |doi = 10.1016/0550-3213(89)90250-2 }} |
||
*{{cite journal | |
*{{cite journal |author1=Mezincescu, L. |author2=Nepomechie, I. |author3=Zachos, C. K. |year=1989 |title=(Super)conformal algebra on the (super)torus |journal=Nuclear Physics B |volume=315 |issue=1 |page=43 |doi=10.1016/0550-3213(89)90448-3|bibcode = 1989NuPhB.315...43M }} |
||
[[Category:Theoretical physics]] |
|||
[[Category:String theory]] |
[[Category:String theory]] |
||
[[Category:Lie algebras]] |
[[Category:Lie algebras]] |
Latest revision as of 04:21, 12 February 2024
In mathematical physics, a super Virasoro algebra is an extension of the Virasoro algebra (named after Miguel Ángel Virasoro) to a Lie superalgebra. There are two extensions with particular importance in superstring theory: the Ramond algebra (named after Pierre Ramond)[1] and the Neveu–Schwarz algebra (named after André Neveu and John Henry Schwarz).[2] Both algebras have N = 1 supersymmetry and an even part given by the Virasoro algebra. They describe the symmetries of a superstring in two different sectors, called the Ramond sector and the Neveu–Schwarz sector.
The N = 1 super Virasoro algebras
[edit]There are two minimal extensions of the Virasoro algebra with N = 1 supersymmetry: the Ramond algebra and the Neveu–Schwarz algebra. They are both Lie superalgebras whose even part is the Virasoro algebra: this Lie algebra has a basis consisting of a central element C and generators Lm (for integer m) satisfying
where is the Kronecker delta.
The odd part of the algebra has basis , where is either an integer (the Ramond case), or half an odd integer (the Neveu–Schwarz case). In both cases, is central in the superalgebra, and the additional graded brackets are given by
Note that this last bracket is an anticommutator, not a commutator, because both generators are odd.
The Ramond algebra has a presentation in terms of 2 generators and 5 conditions; and the Neveu—Schwarz algebra has a presentation in terms of 2 generators and 9 conditions.[3]
Representations
[edit]The unitary highest weight representations of these algebras have a classification analogous to that for the Virasoro algebra, with a continuum of representations together with an infinite discrete series. The existence of these discrete series was conjectured by Daniel Friedan, Zongan Qiu, and Stephen Shenker (1984). It was proven by Peter Goddard, Adrian Kent and David Olive (1986), using a supersymmetric generalisation of the coset construction or GKO construction.
Application to superstring theory
[edit]In superstring theory, the fermionic fields on the closed string may be either periodic or anti-periodic on the circle around the string. States in the "Ramond sector" admit one option (periodic conditions are referred to as Ramond boundary conditions), described by the Ramond algebra, while those in the "Neveu–Schwarz sector" admit the other (anti-periodic conditions are referred to as Neveu–Schwarz boundary conditions), described by the Neveu–Schwarz algebra.
For a fermionic field, the periodicity depends on the choice of coordinates on the worldsheet. In the w-frame, in which the worldsheet of a single string state is described as a long cylinder, states in the Neveu–Schwarz sector are anti-periodic and states in the Ramond sector are periodic. In the z-frame, in which the worldsheet of a single string state is described as an infinite punctured plane, the opposite is true.
The Neveu–Schwarz sector and Ramond sector are also defined in the open string and depend on the boundary conditions of the fermionic field at the edges of the open string.
See also
[edit]Notes
[edit]- ^ Ramond, P. (1971-05-15). "Dual Theory for Free Fermions". Physical Review D. 3 (10). American Physical Society (APS): 2415–2418. Bibcode:1971PhRvD...3.2415R. doi:10.1103/physrevd.3.2415. ISSN 0556-2821.
- ^ Neveu, A.; Schwarz, J.H. (1971). "Tachyon-free dual model with a positive-intercept trajectory". Physics Letters B. 34 (6). Elsevier BV: 517–518. Bibcode:1971PhLB...34..517N. doi:10.1016/0370-2693(71)90669-1. ISSN 0370-2693.
- ^ Fairlie, D. B.; Nuyts, J.; Zachos, C. K. (1988). "A presentation for the Virasoro and super-Virasoro algebras". Communications in Mathematical Physics. 117 (4): 595. Bibcode:1988CMaPh.117..595F. doi:10.1007/BF01218387. S2CID 119811901.
References
[edit]- Becker, K.; Becker, M.; Schwarz, J.H. (2007), String theory and M-theory: A modern introduction, Cambridge University Press, ISBN 978-0-521-86069-7
- Goddard, P.; Kent, A.; Olive, D. (1986), "Unitary representations of the Virasoro and super-Virasoro algebras", Comm. Math. Phys., 103 (1): 105–119, Bibcode:1986CMaPh.103..105G, doi:10.1007/bf01464283, S2CID 91181508, archived from the original on 2012-12-09
- Green, Michael B.; Schwarz, John H.; Witten, Edward (1988a), Superstring theory, Volume 1: Introduction, Cambridge University Press, ISBN 0521357527
- Kac, Victor G.; Todorov, Ivan T. (1985), "Superconformal current algebras and their unitary representations", Comm. Math. Phys., 102 (2): 337–347, Bibcode:1985CMaPh.102..337K, doi:10.1007/bf01229384, S2CID 189831973
- Kazama, Yoichi; Suzuki, Hisao (1989), "New N = 2 superconformal field theories and superstring compactification", Nuclear Physics B, 321 (1): 232–268, Bibcode:1989NuPhB.321..232K, doi:10.1016/0550-3213(89)90250-2
- Mezincescu, L.; Nepomechie, I.; Zachos, C. K. (1989). "(Super)conformal algebra on the (super)torus". Nuclear Physics B. 315 (1): 43. Bibcode:1989NuPhB.315...43M. doi:10.1016/0550-3213(89)90448-3.