Jump to content

2-Methyl-1-butanol: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
truffles and intro
 
(9 intermediate revisions by 7 users not shown)
Line 1: Line 1:
{{chembox
{{chembox
| Watchedfields = changed
|Watchedfields = changed
| verifiedrevid = 477213957
|verifiedrevid = 477213957
| Name = 2-Methyl-1-butanol
|Name = 2-Methyl-1-butanol
| ImageFile_Ref = {{chemboximage|correct|??}}
|ImageFile_Ref = {{chemboximage|correct|??}}
| ImageFile = 2-Methyl-1-butanol.svg
|ImageFile = 2-Methyl-1-butanol.svg
| ImageSize = 150px
|ImageSize = 150px
|PIN = 2-Methylbutan-1-ol
| ImageName =
|OtherNames = 2-Methyl-1-butanol<br />Active amyl alcohol
| PIN = 2-Methylbutan-1-ol
|Reference = <ref name="hand">
| OtherNames = 2-Methyl-1-butanol<br />Active amyl alcohol
| Reference = <ref name="hand">
{{Citation
{{Citation
| last = Lide
|last = Lide
| first = David R.
|first = David R.
| year = 1998
|year = 1998
| title = Handbook of Chemistry and Physics
|title = Handbook of Chemistry and Physics
| edition = 87
|edition = 87
| publication-place = Boca Raton, Florida
|publication-place = Boca Raton, Florida
| publisher = CRC Press
|publisher = CRC Press
| isbn = 0-8493-0594-2
|isbn = 0-8493-0594-2
| pages = 3–374, 5–42, 6–188, 8–102, 16–22
|pages = 3–374, 5–42, 6–188, 8–102, 16–22
}}</ref><ref name="encyc">
}}</ref><ref name="encyc">
{{Citation
{{Citation
| last1 = McKetta
|last1 = McKetta
| first1 = John J.
|first1 = John J.
| last2 = Cunningham
|last2 = Cunningham
| first2 = William Aaron
|first2 = William Aaron
| year = 1977
|year = 1977
| title = Encyclopedia of Chemical Processing and Design
|title = Encyclopedia of Chemical Processing and Design
| volume = 3
|volume = 3
| publication-place = Boca Raton, Florida
|publication-place = Boca Raton, Florida
| publisher = CRC Press
|publisher = CRC Press
| isbn = 978-0-8247-2480-1
|isbn = 978-0-8247-2480-1
| pages = 279–280
|pages = 279–280
| url = https://books.google.com/books?id=iwSU5G5VzO0C&pg=PA279
|url = https://books.google.com/books?id=iwSU5G5VzO0C&pg=PA279
| access-date = 2009-12-14
|access-date = 2009-12-14
}}</ref>
}}</ref>
|Section1={{Chembox Identifiers
|Section1={{Chembox Identifiers
| ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}}
|ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}}
| ChemSpiderID = 8398
|ChemSpiderID = 8398
| InChI = 1/C5H12O/c1-3-5(2)4-6/h5-6H,3-4H2,1-2H3
|InChI = 1/C5H12O/c1-3-5(2)4-6/h5-6H,3-4H2,1-2H3
| InChIKey = QPRQEDXDYOZYLA-UHFFFAOYAW
|InChIKey = QPRQEDXDYOZYLA-UHFFFAOYAW
| ChEBI_Ref = {{ebicite|correct|EBI}}
|ChEBI_Ref = {{ebicite|correct|EBI}}
| ChEBI = 48945
|ChEBI = 48945
| UNII_Ref = {{fdacite|correct|FDA}}
|UNII_Ref = {{fdacite|correct|FDA}}
| UNII = 7VTJ239ASU
|UNII = 7VTJ239ASU
| SMILES = OCC(C)CC
|SMILES = OCC(C)CC
| ChEMBL_Ref = {{ebicite|correct|EBI}}
|ChEMBL_Ref = {{ebicite|correct|EBI}}
| ChEMBL = 451923
|ChEMBL = 451923
| StdInChI_Ref = {{stdinchicite|correct|chemspider}}
|StdInChI_Ref = {{stdinchicite|correct|chemspider}}
| StdInChI = 1S/C5H12O/c1-3-5(2)4-6/h5-6H,3-4H2,1-2H3
|StdInChI = 1S/C5H12O/c1-3-5(2)4-6/h5-6H,3-4H2,1-2H3
| StdInChIKey_Ref = {{stdinchicite|correct|chemspider}}
|StdInChIKey_Ref = {{stdinchicite|correct|chemspider}}
| StdInChIKey = QPRQEDXDYOZYLA-UHFFFAOYSA-N
|StdInChIKey = QPRQEDXDYOZYLA-UHFFFAOYSA-N
| CASNo = 137-32-6
|CASNo = 137-32-6
| CASNo_Ref = {{cascite|correct|CAS}}
|CASNo_Ref = {{cascite|correct|CAS}}
| CASNo1 = 1565-80-6
|CASNo1 = 1565-80-6
| CASNo1_Comment = <small>(''S'')</small>
|CASNo1_Comment = <small>(''S'')</small>
|PubChem = 8723
| RTECS =
| EINECS =
| PubChem = 8723
}}
}}
|Section2={{Chembox Properties
|Section2={{Chembox Properties
| Formula = C<sub>5</sub>H<sub>12</sub>O
|Formula = C<sub>5</sub>H<sub>12</sub>O
| MolarMass = 88.148 g/mol
|MolarMass = 88.148 g/mol
| Appearance = colorless liquid
|Appearance = colorless liquid
| Density = 0.8152 g/cm<sup>3</sup>
|Density = 0.8152 g/cm<sup>3</sup>
| Solubility = 31 g/L
|Solubility = 31 g/L
| SolubleOther = [[organic solvents]]
|SolubleOther = [[organic solvents]]
| MeltingPtC = -117.2
|MeltingPtC = -117.2
| BoilingPtC = 127.5
|BoilingPtC = 127.5
| Viscosity = 4.453 mPa·s
|Viscosity = 4.453 mPa·s
| VaporPressure = 3 [[mm Hg]]
|VaporPressure = 3 [[mm Hg]]
}}
}}
|Section3={{Chembox Structure
|Section3={{Chembox Thermochemistry
| Coordination =
| CrystalStruct =
}}
|Section4={{Chembox Thermochemistry
| DeltaHf = -356.6 [[Kilojoule per mole|kJ·mol<sup>−1</sup>]] (liquid) <br/> -301.4 [[Kilojoule per mole|kJ·mol<sup>−1</sup>]] (gas)
| DeltaHf = -356.6 [[Kilojoule per mole|kJ·mol<sup>−1</sup>]] (liquid) <br/> -301.4 [[Kilojoule per mole|kJ·mol<sup>−1</sup>]] (gas)
}}
| DeltaHc =
|Section4={{Chembox Hazards
| Entropy =
|AutoignitionPtC = 385
| HeatCapacity =
}}
}}
|Section7={{Chembox Hazards
|Section5={{Chembox Related
|OtherCompounds = [[Amyl alcohol]]
| ExternalSDS =
}}
| NFPA-H =
| NFPA-F =
| NFPA-R =
| RPhrases =
| SPhrases =
| FlashPtC=
| AutoignitionPtC = 385
| ExploLimits =
| LD50 =
}}
|Section8={{Chembox Related
| OtherCompounds = [[Amyl alcohol]]
}}
}}
}}


'''2-Methyl-1-butanol''' ([[IUPAC]] name, also called '''active amyl alcohol''') is an [[organic compound]] with the formula CH3CH2CH(CH3)CH2OH. It is one of several [[isomer]]s of [[amyl alcohol]]. A colorless liquid, it occurs naturally in trace amounts and has attracted some attention as a potential [[biofulel]], exploiting its hydrophobic (gasoline-like) and branched structure. It is [[chiral]].<ref>{{cite journal |doi=10.1002/1521-3773(20011203)40:23<4422::AID-ANIE4422>3.0.CO;2-G|title=Enantioseparation of Racemic Organic Molecules by a Zeolite Analogue This work was supported by the Major State Basic Research Development Program (Grant No. G2000077500), the National Natural Science Foundation of China, the Camille Dreyfus Teacher–Scholar Program, the National Science Foundation of the USA (CHE-9904338), and the University of Tennessee SARIF EPPE Fund|year=2001|last1=Xiong|first1=Ren-Gen|last2=You|first2=Xiao-Zeng|last3=Abrahams|first3=Brendan F.|last4=Xue|first4=Ziling|last5=Che|first5=Chi-Ming|journal=Angewandte Chemie International Edition|volume=40|issue=23|pages=4422–4425|pmid=12404434}}</ref>
'''2-Methyl-1-butanol''' ([[IUPAC]] name, also called '''active amyl alcohol''') is an [[organic compound]] with the formula CH<sub>3</sub>CH<sub>2</sub>CH(CH<sub>3</sub>)CH<sub>2</sub>OH. It is one of several [[isomer]]s of [[amyl alcohol]]. This colorless liquid occurs naturally in trace amounts and has attracted some attention as a potential [[biofuel]], exploiting its hydrophobic (gasoline-like) and branched structure. It is [[chiral]].<ref>{{cite journal |doi=10.1002/1521-3773(20011203)40:23<4422::AID-ANIE4422>3.0.CO;2-G|title=Enantioseparation of Racemic Organic Molecules by a Zeolite Analogue|year=2001|last1=Xiong|first1= Ren-Gen|last2=You|first2=Xiao-Zeng|last3=Abrahams|first3= Brendan F.|last4=Xue|first4=Ziling|last5=Che|first5=Chi-Ming|journal=Angewandte Chemie International Edition|volume=40|issue=23|pages=4422–4425|pmid=12404434}}</ref>


== Occurrence ==
== Occurrence ==
2-Methyl-1-butanol is a component of many mixtures of commercial [[amyl alcohol]]s.
It is used as a [[solvent]] and an intermediate in the manufacture of other chemicals. 2-Methyl-1-butanol is a component of many mixtures of [[amyl alcohol]]s sold industrially. It is one of the many components of the aroma of the summer [[truffle]] ''[[Tuber aestivum]]''.<ref>{{cite journal |doi=10.1016/j.chroma.2003.08.016|title=Truffle aroma characterization by headspace solid-phase microextraction|year=2003|last1=Dı́Az|first1=P.|last2=Ibáñez|first2=E.|last3=Señoráns|first3=F.J|last4=Reglero|first4=G.|journal=Journal of Chromatography A|volume=1017|issue=1–2|pages=207–214|pmid=14584705}}</ref>

2M1B also occurs naturally. For example, [[fusel alcohol]]s like 2M1B are grain fermentation byproducts, and therefore trace amounts of 2M1B are present in [[comparison of psychoactive alcohols in alcoholic drinks|many alcoholic beverages]]. Also, it is one of the many components of the aroma of various fungi and fruit, e.g., the summer [[truffle]], tomato,<ref>{{cite journal |doi=10.1021/jf00076a025|title=Fresh tomato aroma volatiles: A quantitative study|year=1987|last1=Buttery|first1=Ron G.|last2=Teranishi|first2=Roy|last3=Ling|first3=Louisa C.|journal=Journal of Agricultural and Food Chemistry|volume=35|issue=4|pages=540–544}}</ref> and [[cantaloupe]].<ref>{{cite journal |doi=10.1016/j.chroma.2003.08.016|title=Truffle Aroma Characterization by Headspace solid-phase microextraction|year=2003|last1=Dı́Az|first1=P.|last2=Ibáñez|first2 =E.|last3=Señoráns|first3=F.J|last4=Reglero|first4=G.|journal=Journal of Chromatography A|volume=1017|issue=1–2|pages=207–214|pmid=14584705}}</ref><ref>{{cite journal |doi=10.1021/jf0005768|title=Identification of Volatile Compounds in Cantaloupe at Various Developmental Stages Using Solid Phase Microextraction|year=2001|last1=Beaulieu|first1=John C.|last2=Grimm|first2=Casey C.|journal=Journal of Agricultural and Food Chemistry|volume=49|issue=3|pages=1345–1352|pmid=11312862}}</ref>


==Production and reactions ==
==Production and reactions ==
2-Methyl-1-butanol has been produced from glucose by genetically modified [[E. coli]]. 2-Keto-3-methylvalerate, a precursor to [[threonine]], is converted to the target alcohol by the sequential action of [[2-Keto acid decarboxylase]] and [[dehydrogenase]].<ref>{{cite journal |doi=10.1038/nature06450|title=Non-Fermentative Pathways for Synthesis of Branched-Chain Higher Alcohols as Biofuels|year=2008|last1=Atsumi|first1=Shota|last2= Hanai|first2=Taizo|last3=Liao|first3=James C.|journal=Nature|volume=451|issue=7174|pages=86–89|pmid=18172501|bibcode=2008Natur.451...86A}}</ref> It can be derived from [[fusel oil]] (because it occurs naturally in [[fruit]]s such as [[grape]]s<ref name="hef">
2-Methyl-1-butanol has been produced from glucose by genetically modified [[E. coli]]. 2-Keto-3-methylvalerate, a precursor to [[threonine]], is converted to the target alcohol by the sequential action of 2-keto acid [[decarboxylase]] and [[dehydrogenase]].<ref>{{cite journal |doi=10.1038/nature06450|title=Non-Fermentative Pathways for Synthesis of Branched-Chain Higher Alcohols as Biofuels|year=2008|last1=Atsumi|first1=Shota|last2= Hanai|first2=Taizo|last3=Liao|first3=James C.|journal=Nature|volume=451|issue=7174|pages=86–89|pmid=18172501|bibcode=2008Natur.451...86A|s2cid=4413113}}</ref> It can be derived from [[fusel oil]] (because it occurs naturally in [[fruit]]s such as [[grape]]s<ref name="hef">
{{Citation
{{Citation
| last = Howard
| last = Howard

Latest revision as of 16:13, 13 March 2024

2-Methyl-1-butanol[1][2]
Names
Preferred IUPAC name
2-Methylbutan-1-ol
Other names
2-Methyl-1-butanol
Active amyl alcohol
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.004.809 Edit this at Wikidata
UNII
  • InChI=1S/C5H12O/c1-3-5(2)4-6/h5-6H,3-4H2,1-2H3 checkY
    Key: QPRQEDXDYOZYLA-UHFFFAOYSA-N checkY
  • InChI=1/C5H12O/c1-3-5(2)4-6/h5-6H,3-4H2,1-2H3
    Key: QPRQEDXDYOZYLA-UHFFFAOYAW
  • OCC(C)CC
Properties
C5H12O
Molar mass 88.148 g/mol
Appearance colorless liquid
Density 0.8152 g/cm3
Melting point −117.2 °C (−179.0 °F; 156.0 K)
Boiling point 127.5 °C (261.5 °F; 400.6 K)
31 g/L
Solubility organic solvents
Vapor pressure 3 mm Hg
Viscosity 4.453 mPa·s
Thermochemistry
-356.6 kJ·mol−1 (liquid)
-301.4 kJ·mol−1 (gas)
Hazards
385 °C (725 °F; 658 K)
Related compounds
Related compounds
Amyl alcohol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

2-Methyl-1-butanol (IUPAC name, also called active amyl alcohol) is an organic compound with the formula CH3CH2CH(CH3)CH2OH. It is one of several isomers of amyl alcohol. This colorless liquid occurs naturally in trace amounts and has attracted some attention as a potential biofuel, exploiting its hydrophobic (gasoline-like) and branched structure. It is chiral.[3]

Occurrence

[edit]

2-Methyl-1-butanol is a component of many mixtures of commercial amyl alcohols.

2M1B also occurs naturally. For example, fusel alcohols like 2M1B are grain fermentation byproducts, and therefore trace amounts of 2M1B are present in many alcoholic beverages. Also, it is one of the many components of the aroma of various fungi and fruit, e.g., the summer truffle, tomato,[4] and cantaloupe.[5][6]

Production and reactions

[edit]

2-Methyl-1-butanol has been produced from glucose by genetically modified E. coli. 2-Keto-3-methylvalerate, a precursor to threonine, is converted to the target alcohol by the sequential action of 2-keto acid decarboxylase and dehydrogenase.[7] It can be derived from fusel oil (because it occurs naturally in fruits such as grapes[8]) or manufactured by either the oxo process or via the halogenation of pentane.[2]

See also

[edit]

References

[edit]
  1. ^ Lide, David R. (1998), Handbook of Chemistry and Physics (87 ed.), Boca Raton, Florida: CRC Press, pp. 3–374, 5–42, 6–188, 8–102, 16–22, ISBN 0-8493-0594-2
  2. ^ a b McKetta, John J.; Cunningham, William Aaron (1977), Encyclopedia of Chemical Processing and Design, vol. 3, Boca Raton, Florida: CRC Press, pp. 279–280, ISBN 978-0-8247-2480-1, retrieved 2009-12-14
  3. ^ Xiong, Ren-Gen; You, Xiao-Zeng; Abrahams, Brendan F.; Xue, Ziling; Che, Chi-Ming (2001). "Enantioseparation of Racemic Organic Molecules by a Zeolite Analogue". Angewandte Chemie International Edition. 40 (23): 4422–4425. doi:10.1002/1521-3773(20011203)40:23<4422::AID-ANIE4422>3.0.CO;2-G. PMID 12404434.
  4. ^ Buttery, Ron G.; Teranishi, Roy; Ling, Louisa C. (1987). "Fresh tomato aroma volatiles: A quantitative study". Journal of Agricultural and Food Chemistry. 35 (4): 540–544. doi:10.1021/jf00076a025.
  5. ^ Dı́Az, P.; Ibáñez, E.; Señoráns, F.J; Reglero, G. (2003). "Truffle Aroma Characterization by Headspace solid-phase microextraction". Journal of Chromatography A. 1017 (1–2): 207–214. doi:10.1016/j.chroma.2003.08.016. PMID 14584705.
  6. ^ Beaulieu, John C.; Grimm, Casey C. (2001). "Identification of Volatile Compounds in Cantaloupe at Various Developmental Stages Using Solid Phase Microextraction". Journal of Agricultural and Food Chemistry. 49 (3): 1345–1352. doi:10.1021/jf0005768. PMID 11312862.
  7. ^ Atsumi, Shota; Hanai, Taizo; Liao, James C. (2008). "Non-Fermentative Pathways for Synthesis of Branched-Chain Higher Alcohols as Biofuels". Nature. 451 (7174): 86–89. Bibcode:2008Natur.451...86A. doi:10.1038/nature06450. PMID 18172501. S2CID 4413113.
  8. ^ Howard, Philip H. (1993), Handbook of Environmental Fate and Exposure Data for Organic Chemicals, vol. 4, Boca Raton, Florida: CRC Press, pp. 392–396, ISBN 978-0-87371-413-6, retrieved 2009-12-14