Jump to content

2-Methyl-1-butanol: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m correct minus sign in superscript
 
(22 intermediate revisions by 15 users not shown)
Line 1: Line 1:
{{chembox
{{chembox
|Watchedfields = changed
| verifiedrevid = 477213957
|verifiedrevid = 477213957
| Name = 2-Methyl-1-butanol
|Name = 2-Methyl-1-butanol
| ImageFile_Ref = {{chemboximage|correct|??}}
|ImageFile_Ref = {{chemboximage|correct|??}}
| ImageFile = 2-Methyl-1-butanol.svg
|ImageFile = 2-Methyl-1-butanol.svg
| ImageSize =
| ImageName =
|ImageSize = 150px
| IUPACName = 2-Methyl-1-butanol
|PIN = 2-Methylbutan-1-ol
| OtherNames = 2-Methylbutan-1-ol, active amyl alcohol
|OtherNames = 2-Methyl-1-butanol<br />Active amyl alcohol
| Reference = <ref name="hand">
|Reference = <ref name="hand">
{{Citation
{{Citation
| last = Lide
|last = Lide
| first = David R.
|first = David R.
|year = 1998
| author-link =
|title = Handbook of Chemistry and Physics
| last2 =
| first2 =
|edition = 87
|publication-place = Boca Raton, Florida
| author2-link =
|publisher = CRC Press
| publication-date =
|isbn = 0-8493-0594-2
| date =
|pages = 3–374, 5–42, 6–188, 8–102, 16–22
| year = 1998
| title = Handbook of Chemistry and Physics
| edition = 87
| volume =
| series =
| publication-place = Boca Raton, FL
| place =
| publisher = CRC Press
| id =
| isbn = 0-8493-0594-2
| doi =
| oclc =
| pages = 3–374, 5–42, 6–188, 8–102, 16–22
| url =
| accessdate =
}}</ref><ref name="encyc">
}}</ref><ref name="encyc">
{{Citation
{{Citation
| last = McKetta
|last1 = McKetta
| first = John J.
|first1 = John J.
|last2 = Cunningham
| author-link =
|first2 = William Aaron
| last2 = Cunningham
|year = 1977
| first2 = William Aaron
|title = Encyclopedia of Chemical Processing and Design
| author2-link =
|volume = 3
| publication-date =
|publication-place = Boca Raton, Florida
| date =
|publisher = CRC Press
| year = 1977
|isbn = 978-0-8247-2480-1
| title = Encyclopedia of Chemical Processing and Design
|pages = 279–280
| edition =
|url = https://books.google.com/books?id=iwSU5G5VzO0C&pg=PA279
| volume = 3
|access-date = 2009-12-14
| series =
| publication-place = Boca Raton, FL
| place =
| publisher = CRC Press
| id =
| isbn = 978-0-8247-2480-1
| doi =
| oclc =
| pages = 279–280
| url = http://books.google.com/?id=iwSU5G5VzO0C&pg=PA279
| accessdate = 2009-12-14
}}</ref>
}}</ref>
| Section1 = {{Chembox Identifiers
|Section1={{Chembox Identifiers
| ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}}
|ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}}
| ChemSpiderID = 8398
|ChemSpiderID = 8398
| InChI = 1/C5H12O/c1-3-5(2)4-6/h5-6H,3-4H2,1-2H3
|InChI = 1/C5H12O/c1-3-5(2)4-6/h5-6H,3-4H2,1-2H3
| InChIKey = QPRQEDXDYOZYLA-UHFFFAOYAW
|InChIKey = QPRQEDXDYOZYLA-UHFFFAOYAW
| ChEBI_Ref = {{ebicite|correct|EBI}}
|ChEBI_Ref = {{ebicite|correct|EBI}}
| ChEBI = 48945
|ChEBI = 48945
| UNII_Ref = {{fdacite|correct|FDA}}
|UNII_Ref = {{fdacite|correct|FDA}}
| UNII = 7VTJ239ASU
|UNII = 7VTJ239ASU
| SMILES = OCC(C)CC
|SMILES = OCC(C)CC
| ChEMBL_Ref = {{ebicite|correct|EBI}}
|ChEMBL_Ref = {{ebicite|correct|EBI}}
| ChEMBL = 451923
|ChEMBL = 451923
| StdInChI_Ref = {{stdinchicite|correct|chemspider}}
|StdInChI_Ref = {{stdinchicite|correct|chemspider}}
| StdInChI = 1S/C5H12O/c1-3-5(2)4-6/h5-6H,3-4H2,1-2H3
|StdInChI = 1S/C5H12O/c1-3-5(2)4-6/h5-6H,3-4H2,1-2H3
| StdInChIKey_Ref = {{stdinchicite|correct|chemspider}}
|StdInChIKey_Ref = {{stdinchicite|correct|chemspider}}
| StdInChIKey = QPRQEDXDYOZYLA-UHFFFAOYSA-N
|StdInChIKey = QPRQEDXDYOZYLA-UHFFFAOYSA-N
| CASNo = 137-32-6
|CASNo = 137-32-6
| CASNo_Ref = {{cascite|correct|CAS}}
|CASNo_Ref = {{cascite|correct|CAS}}
| RTECS =
|CASNo1 = 1565-80-6
|CASNo1_Comment = <small>(''S'')</small>
| EINECS =
| PubChem = 8723
|PubChem = 8723
}}
|Section2={{Chembox Properties
|Formula = C<sub>5</sub>H<sub>12</sub>O
|MolarMass = 88.148 g/mol
|Appearance = colorless liquid
|Density = 0.8152 g/cm<sup>3</sup>
|Solubility = 31 g/L
|SolubleOther = [[organic solvents]]
|MeltingPtC = -117.2
|BoilingPtC = 127.5
|Viscosity = 4.453 mPa·s
|VaporPressure = 3 [[mm Hg]]
}}
|Section3={{Chembox Thermochemistry
| DeltaHf = -356.6 [[Kilojoule per mole|kJ·mol<sup>−1</sup>]] (liquid) <br/> -301.4 [[Kilojoule per mole|kJ·mol<sup>−1</sup>]] (gas)
}}
|Section4={{Chembox Hazards
|AutoignitionPtC = 385
}}
|Section5={{Chembox Related
|OtherCompounds = [[Amyl alcohol]]
}}
}}
| Section2 = {{Chembox Properties
| Formula = C<sub>5</sub>H<sub>12</sub>O
| MolarMass = 88.148 g/mol
| Appearance = colorless liquid
| Density = 0.8152 g/cm<sup>3</sup>
| Solubility = 31 g/L
| SolubleOther = [[miscible]] with [[ethanol]], [[diethyl ether]]; very soluble in [[acetone]]
| MeltingPtC = -117.2
| BoilingPtC = 127.5
| Viscosity = 4.453 mPa·s
| VaporPressure = 3 [[mm Hg]]
}}
| Section3 = {{Chembox Structure
| Coordination =
| CrystalStruct =
}}
| Section4 = {{Chembox Thermochemistry
| DeltaHf = -356.6 [[Kilojoule per mole|kJ·mol<sup>−1</sup>]] (liquid) <br/> -301.4 [[Kilojoule per mole|kJ·mol<sup>−1</sup>]] (gas)
| DeltaHc =
| Entropy =
| HeatCapacity =
}}
| Section7 = {{Chembox Hazards
| ExternalMSDS =
| EUIndex =
| NFPA-H =
| NFPA-F =
| NFPA-R =
| RPhrases =
| SPhrases =
| FlashPtC=
| AutoignitionC = 385
| ExploLimits =
| LD50 =
}}
| Section8 = {{Chembox Related
| OtherCpds = [[Amyl alcohol]]
}}
}}
}}


'''2-Methyl-1-butanol''' ([[IUPAC]] name, also called '''active amyl alcohol''') is an [[organic compound]] with the formula CH<sub>3</sub>CH<sub>2</sub>CH(CH<sub>3</sub>)CH<sub>2</sub>OH. It is one of several [[isomer]]s of [[amyl alcohol]]. This colorless liquid occurs naturally in trace amounts and has attracted some attention as a potential [[biofuel]], exploiting its hydrophobic (gasoline-like) and branched structure. It is [[chiral]].<ref>{{cite journal |doi=10.1002/1521-3773(20011203)40:23<4422::AID-ANIE4422>3.0.CO;2-G|title=Enantioseparation of Racemic Organic Molecules by a Zeolite Analogue|year=2001|last1=Xiong|first1= Ren-Gen|last2=You|first2=Xiao-Zeng|last3=Abrahams|first3= Brendan F.|last4=Xue|first4=Ziling|last5=Che|first5=Chi-Ming|journal=Angewandte Chemie International Edition|volume=40|issue=23|pages=4422–4425|pmid=12404434}}</ref>
'''2-Methyl-1-butanol''' ([[IUPAC]] name, also called '''active amyl alcohol''') is an [[organic chemistry|organic]] [[chemical compound]].


== Occurrence ==
It is one of the components of the aroma of ''[[Tuber melanosporum]]'', the black truffle.
2-Methyl-1-butanol is a component of many mixtures of commercial [[amyl alcohol]]s.


2M1B also occurs naturally. For example, [[fusel alcohol]]s like 2M1B are grain fermentation byproducts, and therefore trace amounts of 2M1B are present in [[comparison of psychoactive alcohols in alcoholic drinks|many alcoholic beverages]]. Also, it is one of the many components of the aroma of various fungi and fruit, e.g., the summer [[truffle]], tomato,<ref>{{cite journal |doi=10.1021/jf00076a025|title=Fresh tomato aroma volatiles: A quantitative study|year=1987|last1=Buttery|first1=Ron G.|last2=Teranishi|first2=Roy|last3=Ling|first3=Louisa C.|journal=Journal of Agricultural and Food Chemistry|volume=35|issue=4|pages=540–544}}</ref> and [[cantaloupe]].<ref>{{cite journal |doi=10.1016/j.chroma.2003.08.016|title=Truffle Aroma Characterization by Headspace solid-phase microextraction|year=2003|last1=Dı́Az|first1=P.|last2=Ibáñez|first2 =E.|last3=Señoráns|first3=F.J|last4=Reglero|first4=G.|journal=Journal of Chromatography A|volume=1017|issue=1–2|pages=207–214|pmid=14584705}}</ref><ref>{{cite journal |doi=10.1021/jf0005768|title=Identification of Volatile Compounds in Cantaloupe at Various Developmental Stages Using Solid Phase Microextraction|year=2001|last1=Beaulieu|first1=John C.|last2=Grimm|first2=Casey C.|journal=Journal of Agricultural and Food Chemistry|volume=49|issue=3|pages=1345–1352|pmid=11312862}}</ref>
== Uses ==
It is used as a [[solvent]] and an intermediate in the manufacture of other chemicals. 2-Methyl-1-butanol is a component of many mixtures of [[amyl alcohol]]s sold industrially.


== Reactions ==
==Production and reactions ==
2-Methyl-1-butanol has been produced from glucose by genetically modified [[E. coli]]. 2-Keto-3-methylvalerate, a precursor to [[threonine]], is converted to the target alcohol by the sequential action of 2-keto acid [[decarboxylase]] and [[dehydrogenase]].<ref>{{cite journal |doi=10.1038/nature06450|title=Non-Fermentative Pathways for Synthesis of Branched-Chain Higher Alcohols as Biofuels|year=2008|last1=Atsumi|first1=Shota|last2= Hanai|first2=Taizo|last3=Liao|first3=James C.|journal=Nature|volume=451|issue=7174|pages=86–89|pmid=18172501|bibcode=2008Natur.451...86A|s2cid=4413113}}</ref> It can be derived from [[fusel oil]] (because it occurs naturally in [[fruit]]s such as [[grape]]s<ref name="hef">
2-Methyl-1-butanol can be derived from [[fusel oil]] (because it occurs naturally in [[fruit]]s such as [[grape]]s<ref name="hef">
{{Citation
{{Citation
| last = Howard
| last = Howard
| first = Philip H.
| first = Philip H.
| author-link =
| year = 1993
| title = Handbook of Environmental Fate and Exposure Data for Organic Chemicals
| last2 =
| first2 =
| volume = 4
| publication-place = Boca Raton, Florida
| author2-link =
| publisher = CRC Press
| publication-date =
| isbn = 978-0-87371-413-6
| date =
| year = 1993
| pages = 392–396
| url = https://books.google.com/books?id=HdhohbQrg8IC&pg=PA392
| title = Handbook of Environmental Fate and Exposure Data for Organic Chemicals
| access-date = 2009-12-14
| edition =
| volume = 4
| series =
| publication-place = Boca Raton, FL
| place =
| publisher = CRC Press
| id =
| isbn = 978-0-87371-413-6
| doi =
| oclc =
| pages = 392–396
| url = http://books.google.com/?id=HdhohbQrg8IC&pg=PA392
| accessdate = 2009-12-14
}}</ref>) or manufactured by either the [[oxo process]] or via the [[halogenation]] of [[pentane]].<ref name="encyc" />
}}</ref>) or manufactured by either the [[oxo process]] or via the [[halogenation]] of [[pentane]].<ref name="encyc" />


Line 166: Line 113:
[[Category:Alcohol solvents]]
[[Category:Alcohol solvents]]
[[Category:Primary alcohols]]
[[Category:Primary alcohols]]
[[Category:Alkanols]]

Latest revision as of 16:13, 13 March 2024

2-Methyl-1-butanol[1][2]
Names
Preferred IUPAC name
2-Methylbutan-1-ol
Other names
2-Methyl-1-butanol
Active amyl alcohol
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.004.809 Edit this at Wikidata
UNII
  • InChI=1S/C5H12O/c1-3-5(2)4-6/h5-6H,3-4H2,1-2H3 checkY
    Key: QPRQEDXDYOZYLA-UHFFFAOYSA-N checkY
  • InChI=1/C5H12O/c1-3-5(2)4-6/h5-6H,3-4H2,1-2H3
    Key: QPRQEDXDYOZYLA-UHFFFAOYAW
  • OCC(C)CC
Properties
C5H12O
Molar mass 88.148 g/mol
Appearance colorless liquid
Density 0.8152 g/cm3
Melting point −117.2 °C (−179.0 °F; 156.0 K)
Boiling point 127.5 °C (261.5 °F; 400.6 K)
31 g/L
Solubility organic solvents
Vapor pressure 3 mm Hg
Viscosity 4.453 mPa·s
Thermochemistry
-356.6 kJ·mol−1 (liquid)
-301.4 kJ·mol−1 (gas)
Hazards
385 °C (725 °F; 658 K)
Related compounds
Related compounds
Amyl alcohol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

2-Methyl-1-butanol (IUPAC name, also called active amyl alcohol) is an organic compound with the formula CH3CH2CH(CH3)CH2OH. It is one of several isomers of amyl alcohol. This colorless liquid occurs naturally in trace amounts and has attracted some attention as a potential biofuel, exploiting its hydrophobic (gasoline-like) and branched structure. It is chiral.[3]

Occurrence

[edit]

2-Methyl-1-butanol is a component of many mixtures of commercial amyl alcohols.

2M1B also occurs naturally. For example, fusel alcohols like 2M1B are grain fermentation byproducts, and therefore trace amounts of 2M1B are present in many alcoholic beverages. Also, it is one of the many components of the aroma of various fungi and fruit, e.g., the summer truffle, tomato,[4] and cantaloupe.[5][6]

Production and reactions

[edit]

2-Methyl-1-butanol has been produced from glucose by genetically modified E. coli. 2-Keto-3-methylvalerate, a precursor to threonine, is converted to the target alcohol by the sequential action of 2-keto acid decarboxylase and dehydrogenase.[7] It can be derived from fusel oil (because it occurs naturally in fruits such as grapes[8]) or manufactured by either the oxo process or via the halogenation of pentane.[2]

See also

[edit]

References

[edit]
  1. ^ Lide, David R. (1998), Handbook of Chemistry and Physics (87 ed.), Boca Raton, Florida: CRC Press, pp. 3–374, 5–42, 6–188, 8–102, 16–22, ISBN 0-8493-0594-2
  2. ^ a b McKetta, John J.; Cunningham, William Aaron (1977), Encyclopedia of Chemical Processing and Design, vol. 3, Boca Raton, Florida: CRC Press, pp. 279–280, ISBN 978-0-8247-2480-1, retrieved 2009-12-14
  3. ^ Xiong, Ren-Gen; You, Xiao-Zeng; Abrahams, Brendan F.; Xue, Ziling; Che, Chi-Ming (2001). "Enantioseparation of Racemic Organic Molecules by a Zeolite Analogue". Angewandte Chemie International Edition. 40 (23): 4422–4425. doi:10.1002/1521-3773(20011203)40:23<4422::AID-ANIE4422>3.0.CO;2-G. PMID 12404434.
  4. ^ Buttery, Ron G.; Teranishi, Roy; Ling, Louisa C. (1987). "Fresh tomato aroma volatiles: A quantitative study". Journal of Agricultural and Food Chemistry. 35 (4): 540–544. doi:10.1021/jf00076a025.
  5. ^ Dı́Az, P.; Ibáñez, E.; Señoráns, F.J; Reglero, G. (2003). "Truffle Aroma Characterization by Headspace solid-phase microextraction". Journal of Chromatography A. 1017 (1–2): 207–214. doi:10.1016/j.chroma.2003.08.016. PMID 14584705.
  6. ^ Beaulieu, John C.; Grimm, Casey C. (2001). "Identification of Volatile Compounds in Cantaloupe at Various Developmental Stages Using Solid Phase Microextraction". Journal of Agricultural and Food Chemistry. 49 (3): 1345–1352. doi:10.1021/jf0005768. PMID 11312862.
  7. ^ Atsumi, Shota; Hanai, Taizo; Liao, James C. (2008). "Non-Fermentative Pathways for Synthesis of Branched-Chain Higher Alcohols as Biofuels". Nature. 451 (7174): 86–89. Bibcode:2008Natur.451...86A. doi:10.1038/nature06450. PMID 18172501. S2CID 4413113.
  8. ^ Howard, Philip H. (1993), Handbook of Environmental Fate and Exposure Data for Organic Chemicals, vol. 4, Boca Raton, Florida: CRC Press, pp. 392–396, ISBN 978-0-87371-413-6, retrieved 2009-12-14