Jump to content

Classifying space for O(n): Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Alaibot (talk | contribs)
m Robot: tagging uncategorised page
Added infinite classifying space.
 
(20 intermediate revisions by 9 users not shown)
Line 1: Line 1:
In [[mathematics]], the [[classifying space]] for O(n) may be constructed as the [[Grassmannian]] of n-planes in an infinite-dimensional real Hilbert space. This construction is detailed here.
{{DISPLAYTITLE:Classifying space for O(''n'')}}In [[mathematics]], the '''[[classifying space]] for the [[orthogonal group]] O'''(''n'') may be constructed as the [[Grassmannian]] of ''n''-planes in an infinite-dimensional real space <math>\mathbb{R}^\infty</math>.
<!-- This construction is to be detailed here. -->
== Cohomology ring ==
The [[cohomology ring]] of <math>\operatorname{BO}(n)</math> with coefficients in the [[Field (mathematics)|field]] <math>\mathbb{Z}_2</math> of [[GF(2)|two elements]] is generated by the [[Stiefel–Whitney class|Stiefel–Whitney classes]]:<ref>Milnor & Stasheff, Theorem 7.1 on page 83</ref><ref>Hatcher 02, Theorem 4D.4.</ref>


: <math>H^*(\operatorname{BO}(n);\mathbb{Z}_2)
It is analogous to the [[classifying space for U(n)]].
=\mathbb{Z}_2[w_1,\ldots,w_n].</math>
{{stub}}

== Infinite classifying space ==
The canonical inclusions <math>\operatorname{O}(n)\hookrightarrow\operatorname{O}(n+1)</math> induce canonical inclusions <math>\operatorname{BO}(n)\hookrightarrow\operatorname{BO}(n+1)</math> on their respective classifying spaces. Their respective colimits are denoted as:

: <math>\operatorname{O}
:=\lim_{n\rightarrow\infty}\operatorname{O}(n);</math>
: <math>\operatorname{BO}
:=\lim_{n\rightarrow\infty}\operatorname{BO}(n).</math>

<math>\operatorname{BO}</math> is indeed the classifying space of <math>\operatorname{O}</math>.

== See also ==

* [[classifying space for U(n)|Classifying space for U(''n'')]]
* [[Classifying space for SO(n)]]
* [[Classifying space for SU(n)]]

== Literature ==

* {{cite book|title=Characteristic classes|publisher=Princeton University Press|location=|year=1974|language=en|isbn=9780691081229|doi=10.1515/9781400881826|url=https://www.maths.ed.ac.uk/~v1ranick/papers/milnstas.pdf|last=Milnor|first=John|author-link=John Milnor|last2=Stasheff|first2=James|author-link2=James Stasheff}}
* {{cite book|last=Hatcher|first=Allen|title=Algebraic topology|publisher=[[Cambridge University Press]]|location=Cambridge|year=2002|language=en|isbn=0-521-79160-X|url=https://pi.math.cornell.edu/~hatcher/AT/ATpage.html}}
* {{cite book|title=Universal principal bundles and classifying spaces|publisher=|location=|isbn=|url=https://math.mit.edu/~mbehrens/18.906/prin.pdf|doi=|last=Mitchell|first=Stephen|year=August 2001}}

== External links ==

* [[nlab:classifying+space|classifying space]] on [[nLab]]
* [[nlab:BO(n)|BO(n)]] on nLab

== References ==
[[Category:Algebraic topology]]
<references />{{topology-stub}}

Latest revision as of 08:38, 15 March 2024

In mathematics, the classifying space for the orthogonal group O(n) may be constructed as the Grassmannian of n-planes in an infinite-dimensional real space .

Cohomology ring

[edit]

The cohomology ring of with coefficients in the field of two elements is generated by the Stiefel–Whitney classes:[1][2]

Infinite classifying space

[edit]

The canonical inclusions induce canonical inclusions on their respective classifying spaces. Their respective colimits are denoted as:

is indeed the classifying space of .

See also

[edit]

Literature

[edit]
  • Milnor, John; Stasheff, James (1974). Characteristic classes (PDF). Princeton University Press. doi:10.1515/9781400881826. ISBN 9780691081229.
  • Hatcher, Allen (2002). Algebraic topology. Cambridge: Cambridge University Press. ISBN 0-521-79160-X.
  • Mitchell, Stephen (August 2001). Universal principal bundles and classifying spaces (PDF).{{cite book}}: CS1 maint: year (link)
[edit]

References

[edit]
  1. ^ Milnor & Stasheff, Theorem 7.1 on page 83
  2. ^ Hatcher 02, Theorem 4D.4.