Jump to content

Herglotz–Zagier function: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
authorlink
fix missing title and inline refs
 
(10 intermediate revisions by 8 users not shown)
Line 1: Line 1:
In mathematics, the '''Herglotz–Zagier function''',{{r|m}} named after [[Gustav Herglotz]] and [[Don Zagier]],{{r|h|z}} is the function
{{orphan}}

In mathematics, the '''Herglotz–Zagier function''', named after [[Gustav Herglotz]] and [[Don Zagier]], is the function


:<math>F(x)= \sum^{\infty}_{n=1} \left\{\frac{\Gamma^{\prime}(nx)}{\Gamma (nx)} -\log (nx)\right\} \frac{1}{n}.</math>
:<math>F(x)= \sum^{\infty}_{n=1} \left\{\frac{\Gamma^{\prime}(nx)}{\Gamma (nx)} -\log (nx)\right\} \frac{1}{n}.</math>


introduced by {{harvtxt|Zagier|1975}} who used to to obtain a [[Kronecker limit formula]] for [[real quadratic field]]s.
introduced by {{harvtxt|Zagier|1975}} who used it to obtain a [[Kronecker limit formula]] for [[real quadratic field]]s.{{r|z}}


==References==
==References==
{{reflist|refs=
*{{citation|first=G. |last=Herglotz | authorlink=Gustav Herglotz| journal=Ber. Verh. Sächs. Gesellschaft. Wiss. Leipzig Math.-Phys. Kl.|volume= 75 |year=1923|pages= 3–14}}

*{{Citation | last1=Masri | first1=Riad | title=The Herglotz–Zagier function, double zeta functions, and values of L-series | url=http://dx.doi.org/10.1016/j.jnt.2004.01.004 | id={{MathSciNet | id = 2059072}} | year=2004 | journal=[[Journal of Number Theory]] | issn=0022-314X | volume=106 | issue=2 | pages=219–237}}
<ref name=h>{{citation|first=G. |last=Herglotz | authorlink=Gustav Herglotz| journal=Berichte über die Verhandlungen der Königlich-Sächsischen Gesellschaft der Wissenschaften zu Leipzig, Mathematisch-Physische Klasse<!-- "Reports on the Proceedings of the Royal Saxon Association of Sciences at Leipzig, Mathematical-Physical Classification" -->|title=
*{{Citation | last1=Zagier | first1=Don | authorlink=Don Zagier| title=A Kronecker limit formula for real quadratic fields | doi=10.1007/BF01343950 | id={{MathSciNet | id = 0366877}} | year=1975 | journal=[[Mathematische Annalen]] | issn=0025-5831 | volume=213 | pages=153–184}}
Über die Kroneckersche Grenzformel für reelle, quadratische Körper |volume= 75 |year=1923|pages= 3–14|jfm=49.0125.03}}</ref>

<ref name=m>{{Citation | last1=Masri | first1=Riad | title=The Herglotz–Zagier function, double zeta functions, and values of L-series | doi=10.1016/j.jnt.2004.01.004 | mr=2059072 | year=2004 | journal=[[Journal of Number Theory]] | issn=0022-314X | volume=106 | issue=2 | pages=219–237| doi-access=free }}</ref>

<ref name=z>{{Citation | last1=Zagier | first1=Don | authorlink=Don Zagier| title=A Kronecker limit formula for real quadratic fields | doi=10.1007/BF01343950 | mr=0366877 | year=1975 | journal=[[Mathematische Annalen]] | issn=0025-5831 | volume=213 | issue=2 | pages=153–184| s2cid=54539768 }}</ref>

}}


{{DEFAULTSORT:Herglotz-Zagier function}}
[[Category:special functions]]
[[Category:Special functions]]

Latest revision as of 02:16, 24 March 2024

In mathematics, the Herglotz–Zagier function,[1] named after Gustav Herglotz and Don Zagier,[2][3] is the function

introduced by Zagier (1975) who used it to obtain a Kronecker limit formula for real quadratic fields.[3]

References

[edit]
  1. ^ Masri, Riad (2004), "The Herglotz–Zagier function, double zeta functions, and values of L-series", Journal of Number Theory, 106 (2): 219–237, doi:10.1016/j.jnt.2004.01.004, ISSN 0022-314X, MR 2059072
  2. ^ Herglotz, G. (1923), "Über die Kroneckersche Grenzformel für reelle, quadratische Körper", Berichte über die Verhandlungen der Königlich-Sächsischen Gesellschaft der Wissenschaften zu Leipzig, Mathematisch-Physische Klasse, 75: 3–14, JFM 49.0125.03
  3. ^ a b Zagier, Don (1975), "A Kronecker limit formula for real quadratic fields", Mathematische Annalen, 213 (2): 153–184, doi:10.1007/BF01343950, ISSN 0025-5831, MR 0366877, S2CID 54539768