Kolmogorov microscales: Difference between revisions
+see also (other turbulent scales) |
No edit summary |
||
(61 intermediate revisions by 36 users not shown) | |||
Line 1: | Line 1: | ||
{{short description|Smallest length scales in turbulent fluid flow}} |
|||
'''[[Andrey Kolmogorov|Kolmogorov]] microscales''' are the smallest [[scale (ratio)|scale]]s in [[Turbulence|turbulent flow]]. They are defined by |
|||
[[File:Kolmogorov Scaled Scalar Transport.webm|thumb|Visualization of the output of a 2D computational fluid dynamics simulation solving the Navier Stokes equations with a scalar transport term. The flow is initialized with turbulence generated using Kolmogorov scaling and the velocity field then moves from left to right at 1 grid cell per second. A point source is situated upwind to simulate the dispersion of a scalar plume in this velocity field]] |
|||
In [[fluid dynamics]], '''Kolmogorov microscales''' are the smallest [[Length scale|scale]]s in [[Turbulence|turbulent flow]]. At the Kolmogorov scale, [[viscosity]] dominates and the [[turbulence kinetic energy]] is [[dissipated]] into [[Internal Energy|thermal energy]]. They are defined<ref>{{cite book|title=Turbulence and Random Processes in Fluid Mechanics|year=1992|publisher=Cambridge University Press|isbn=978-0521422130|author=M. T. Landahl|edition=2nd|author2=E. Mollo-Christensen |page=10}}</ref> by |
|||
{| class="wikitable" |
{| class="wikitable" |
||
| Kolmogorov length scale |
| Kolmogorov length scale |
||
| <math>\eta = \left( \frac{\nu^3}{\ |
| <math>\eta = \left( \frac{\nu^3}{\varepsilon} \right)^{1/4}</math> |
||
|- |
|- |
||
| Kolmogorov time scale |
| Kolmogorov time scale |
||
| <math>\tau_\eta = \ |
| <math>\tau_\eta = \sqrt{ \frac{\nu}{\varepsilon} }</math> |
||
|- |
|- |
||
| Kolmogorov velocity scale |
| Kolmogorov velocity scale |
||
| <math>u_\eta = \left( \nu \ |
| <math>u_\eta = \left( \nu \varepsilon \right)^{1/4}</math> |
||
|} |
|} |
||
where |
|||
where <math>\epsilon</math> is the average rate of energy dissipation per unit mass, and <math>\nu</math> is the kinematic viscosity of the fluid. |
|||
*{{mvar|ε}} is the average rate of dissipation of turbulence kinetic energy per unit mass, and |
|||
*{{mvar|ν}} is the [[kinematic viscosity]] of the fluid. |
|||
Typical values of the Kolmogorov length scale, for [[Atmospheric circulation|atmospheric motion]] in which the large eddies have length scales on the order of kilometers, range from 0.1 to 10 millimeters; for smaller flows such as in laboratory systems, {{mvar|η}} may be much smaller.<ref>George, William K. "Lectures in Turbulence for the 21st Century." Department of Thermo and Fluid Engineering, Chalmers University of Technology, Göteborg, Sweden (2005).p 64 [online] http://www.turbulence-online.com/Publications/Lecture_Notes/Turbulence_Lille/TB_16January2013.pdf</ref> |
|||
In |
In 1941, [[Andrey Kolmogorov]] introduced the hypothesis that the smallest scales of [[turbulence]] are universal (similar for every [[turbulent flow]]) and that they depend only on {{mvar|ε}} and {{mvar|ν}}.<ref>{{cite journal |last1=Kolmogorov |first1=A. N. |title=Local structure of turbulence in an incompressible fluid at very high Reynolds numbers |journal=Dokl. Akad. Nauk SSSR |date=1941 |volume=31 |pages=99-101}}</ref> The definitions of the Kolmogorov microscales can be obtained using this idea and [[dimensional analysis]]. Since the dimension of kinematic viscosity is length<sup>2</sup>/time, and the dimension of the [[energy dissipation]] rate per unit mass is length<sup>2</sup>/time<sup>3</sup>, the only combination that has the dimension of time is <math> \tau_\eta=\sqrt{ \tfrac \nu \varepsilon }</math> which is the Kolmogorov time scale. Similarly, the Kolmogorov length scale is the only combination of {{mvar|ε}} and {{mvar|ν}} that has dimension of length. |
||
Alternatively, the definition of the Kolmogorov time scale can be obtained from the inverse of the mean square [[strain rate tensor]], <math> \tau_\eta = \tfrac{1}{\sqrt{2 \langle E_{ij} E_{ij} \rangle}},</math> which also gives <math> \tau_\eta = \sqrt{ \tfrac \nu \varepsilon }</math> using the definition of the energy dissipation rate per unit mass <math> \varepsilon = 2 \nu \langle E_{ij} E_{ij} \rangle .</math> Then the Kolmogorov length scale can be obtained as the scale at which the [[Reynolds number]] ({{math|Re}}) is equal to 1, |
|||
⚫ | |||
:<math> \mathrm{Re} = \frac{UL}{\nu} = \frac{(\eta/\tau_\eta) \eta}{\nu} = 1.</math> |
|||
⚫ | Kolmogorov's 1941 theory is a [[mean field theory]] since it assumes that the relevant dynamical parameter is the mean energy dissipation rate. In [[fluid turbulence]], the energy dissipation rate fluctuates in space and time, so it is possible to think of the microscales as quantities that also vary in space and time. However, standard practice is to use mean field values since they represent the typical values of the smallest scales in a given flow. In 1961, Kolomogorov published a refined version of the similarity hypotheses that accounts for the log-normal distribution of the dissipation rate.<ref>{{cite journal |last1=Kolmogorov |first1=A. N. |title=A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number |journal=Journal of Fluid Mechanics |date=1961 |volume=13 |issue=1 |pages=82-85 |doi=10.1017/S0022112062000518}}</ref> |
||
==See also== |
==See also== |
||
*[[Taylor microscale]] |
*[[Taylor microscale]] |
||
*[[Integral length scale]] |
*[[Integral length scale]] |
||
*[[Batchelor scale]] |
|||
==References== |
|||
⚫ | |||
{{reflist}} |
|||
[[Category:Units of measure]] |
|||
[[File:Kolmogorov Scaled Scalar Transport.webm|right|1x1px]] |
|||
[[it:Scala di Kolmogorov]] |
|||
{{DEFAULTSORT:Kolmogorov Microscales}} |
|||
⚫ |
Latest revision as of 03:09, 26 March 2024
In fluid dynamics, Kolmogorov microscales are the smallest scales in turbulent flow. At the Kolmogorov scale, viscosity dominates and the turbulence kinetic energy is dissipated into thermal energy. They are defined[1] by
Kolmogorov length scale | |
Kolmogorov time scale | |
Kolmogorov velocity scale |
where
- ε is the average rate of dissipation of turbulence kinetic energy per unit mass, and
- ν is the kinematic viscosity of the fluid.
Typical values of the Kolmogorov length scale, for atmospheric motion in which the large eddies have length scales on the order of kilometers, range from 0.1 to 10 millimeters; for smaller flows such as in laboratory systems, η may be much smaller.[2]
In 1941, Andrey Kolmogorov introduced the hypothesis that the smallest scales of turbulence are universal (similar for every turbulent flow) and that they depend only on ε and ν.[3] The definitions of the Kolmogorov microscales can be obtained using this idea and dimensional analysis. Since the dimension of kinematic viscosity is length2/time, and the dimension of the energy dissipation rate per unit mass is length2/time3, the only combination that has the dimension of time is which is the Kolmogorov time scale. Similarly, the Kolmogorov length scale is the only combination of ε and ν that has dimension of length.
Alternatively, the definition of the Kolmogorov time scale can be obtained from the inverse of the mean square strain rate tensor, which also gives using the definition of the energy dissipation rate per unit mass Then the Kolmogorov length scale can be obtained as the scale at which the Reynolds number (Re) is equal to 1,
Kolmogorov's 1941 theory is a mean field theory since it assumes that the relevant dynamical parameter is the mean energy dissipation rate. In fluid turbulence, the energy dissipation rate fluctuates in space and time, so it is possible to think of the microscales as quantities that also vary in space and time. However, standard practice is to use mean field values since they represent the typical values of the smallest scales in a given flow. In 1961, Kolomogorov published a refined version of the similarity hypotheses that accounts for the log-normal distribution of the dissipation rate.[4]
See also
[edit]References
[edit]- ^ M. T. Landahl; E. Mollo-Christensen (1992). Turbulence and Random Processes in Fluid Mechanics (2nd ed.). Cambridge University Press. p. 10. ISBN 978-0521422130.
- ^ George, William K. "Lectures in Turbulence for the 21st Century." Department of Thermo and Fluid Engineering, Chalmers University of Technology, Göteborg, Sweden (2005).p 64 [online] http://www.turbulence-online.com/Publications/Lecture_Notes/Turbulence_Lille/TB_16January2013.pdf
- ^ Kolmogorov, A. N. (1941). "Local structure of turbulence in an incompressible fluid at very high Reynolds numbers". Dokl. Akad. Nauk SSSR. 31: 99–101.
- ^ Kolmogorov, A. N. (1961). "A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number". Journal of Fluid Mechanics. 13 (1): 82–85. doi:10.1017/S0022112062000518.