Jump to content

Utrecht Atlas: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m WL 2 first-publishers; WP:GenFixes on; using AWB
Spelling fix, fourty → forty, as explained at MOS:TITLETYPOCON - also some copy editing
 
(8 intermediate revisions by 6 users not shown)
Line 16: Line 16:
| english_pub_date =
| english_pub_date =
| media_type =
| media_type =
| pages = 174 pages of microphotometer tracings with an introduction in English and Esperanto<ref>{{cite journal|author=Williams, Robley C.|authorlink=Robley C. Williams|title=Review of ''Photometric Atlas of the Solar Spectrum''|journal=Astrophysical Journal|year=1941|volume=94|pages=143–144|bibcode=1941ApJ....94..143.}}</ref>
| pages = 174 pages of microphotometer tracings with an introduction in English and Esperanto<ref>{{cite journal|author=Williams, Robley C.|authorlink=Robley C. Williams|title=Review of ''Photometric Atlas of the Solar Spectrum''|journal=Astrophysical Journal|year=1941|volume=94|pages=143–144|bibcode=1941ApJ....94..143.|doi=10.1086/144322|doi-access=free}}</ref>
| isbn =
| isbn =
| oclc =
| oclc =
Line 24: Line 24:
| followed_by =
| followed_by =
}}
}}
The '''''Utrecht Atlas''''' of the solar spectrum is a detailed inventory in graphical form of spectral lines observed in sunlight at the [[Sonnenborgh Observatory]]. The [[visible spectrum]] is about 390 to 700 [[Nanometer|nm]] and the atlas covers from 361.2 to 877.1&nbsp;nm (plus an appendix) so that the atlas has some converage of the [[infrared]] and [[ultraviolet]] spectrum of sunlight. The atlas, compiled by Minnaert and his students Mulders and Houtgast, was published in 1940 shortly before the WWII invasion of the Netherlands.<ref name=MinnaertRef/>
The '''''Utrecht Atlas''''' of the solar spectrum is a detailed inventory in graphical form of spectral lines observed in sunlight at the [[Sonnenborgh Observatory]]. The [[visible spectrum]] is about 390 to 700 [[Nanometer|nm]] and the atlas covers from 361.2 to 877.1&nbsp;nm (plus an appendix) so that the atlas has some coverage of the [[infrared]] and [[ultraviolet]] spectrum of sunlight. The atlas, compiled by Minnaert and his students Mulders and Houtgast, was published in 1940 shortly before the WWII invasion of the Netherlands.<ref name=MinnaertRef/>


{{blockquote|The ''Atlas'' contains intensity curves covering the complete solar spectrum from λ 3612 to λ 8771 based on photographs taken at the [[Mount Wilson Observatory]] together with an appendix covering the region λ 3332 to λ 3637 as derived from plates secured at [[Utrecht]]. The scale in wave length is about 20 millimeters per [[angstrom]] so that the spectrum is represented on a map about 360 feet long. The curves are printed in black on millimeter paper with blue lines. The intensity scale is such that a vertical range of 100 millimeters corresponds to the difference between zero intensity and the continuous background.<ref>{{cite journal|title=Reviewed Work: ''Photometric Atlas of the Solar Spectrum'' by M. Minnaert, G. F. W. Mulders, J. Houtgast|author=Shane, C. D.|authorlink=C. Donald Shane|journal=Publications of the Astronomical Society of the Pacific|volume=53|issue=313|date=June 1941|pages=200–203|jstor=40669589|url=http://iopscience.iop.org/article/10.1086/125310/pdf}}</ref>}}
{{blockquote|The ''Atlas'' contains intensity curves covering the complete solar spectrum from λ 3612 to λ 8771 based on photographs taken at the [[Mount Wilson Observatory]] together with an appendix covering the region λ 3332 to λ 3637 as derived from plates secured at [[Utrecht]]. The scale in wave length is about 20 millimeters per [[angstrom]] so that the spectrum is represented on a map about 360 feet long. The curves are printed in black on millimeter paper with blue lines. The intensity scale is such that a vertical range of 100 millimeters corresponds to the difference between zero intensity and the continuous background.<ref>{{cite journal|title=Reviewed Work: ''Photometric Atlas of the Solar Spectrum'' by M. Minnaert, G. F. W. Mulders, J. Houtgast|author=Shane, C. D.|authorlink=C. Donald Shane|journal=Publications of the Astronomical Society of the Pacific|volume=53|issue=313|date=June 1941|pages=200–203|jstor=40669589|bibcode=1941PASP...53..200.|doi=10.1086/125310|s2cid=233360287 }}</ref>}}


{{blockquote|The atlas had a huge influence on solar and stellar high resolution spectroscopy after World War II.<ref>{{cite journal|author=Hearnshaw, John|title=Auguste Comte's blunder: an account of the first century of stellar spectroscopy and how it took one hundred years to prove that Comte was wrong!|journal=Journal of Astronomical History and Heritage|volume=13|year=2010|pages=90–104|bibcode=2010JAHH...13...90H}} (quote from p. 98)</ref>}}
{{blockquote|The atlas had a huge influence on solar and stellar high resolution spectroscopy after World War II.<ref>{{cite journal|author=Hearnshaw, John|title=Auguste Comte's blunder: an account of the first century of stellar spectroscopy and how it took one hundred years to prove that Comte was wrong!|journal=Journal of Astronomical History and Heritage|volume=13|issue=2|year=2010|pages=90–104|doi=10.3724/SP.J.1440-2807.2010.02.04 |bibcode=2010JAHH...13...90H|s2cid=118069681 }} (quote from p. 98)</ref>}}


==History==
==History==
In the early nineteenth century, [[Joseph von Fraunhofer]] made the first systematic inventory of spectral lines in sunlight. Full understanding of the significance of [[Fraunhofer lines]] required a huge amount of pioneering research in astrophysics and quantum theory. [[Cecilia Payne]] (1925) demonstrated that variations in stellar line strengths can be explained by the [[Saha ionization equation]]. Payne's work lead to a major study of the chemical abundances in the solar atmosphere undertaken by [[Henry Norris Russell|H. N. Russell]], [[Walter Sydney Adams|Walter S. Adams]], and [[Charlotte Moore Sitterly|Charlotte Moore]]. Around 1930, the procedures developed by Russell, Adams, and Moore were adapted by Minnaert and Mulders for determining chemical abundances in stellar [[photosphere]]s.<ref>{{cite book|editor=Lorenzano, P.|editor2=Rheinberger, H.-J.|editor3=Ortiz, E.|editor4=Delfino Galles, C.|title=History and Philosophy of Science and Technology|volume=vol. II|year=2010|page=209|url=https://books.google.com/books?id=b5_EDAAAQBAJ&pg=PA209}}</ref> Houtgast invented a modification of Moll's microphotometer that Minnaert, Mulders, and Houtgast employed to make direct registrations of the solar line intensities.<ref>{{cite book|author=Hentschel, Klaus|authorlink=Klaus Hentschel|title=Mapping the Spectrum|year=2002|publisher=[[Oxford University Press]]|page=284|url=https://books.google.com/books?id=WceRw3sr-rQC&pg=PA284}}</ref><ref>{{cite journal|author=Moll, W. J. H.|title=A new registering microphotometer|journal=Proceedings of the Physical Society of London|volume=33|issue=1|pages=207–216|year=1920|url=https://babel.hathitrust.org/cgi/pt?id=njp.32101044940219;view=1up;seq=237}}</ref>
In the early nineteenth century, [[Joseph von Fraunhofer]] made the first systematic inventory of spectral lines in sunlight. Full understanding of the significance of [[Fraunhofer lines]] required a huge amount of pioneering research in astrophysics and quantum theory. [[Cecilia Payne]] (1925) demonstrated that variations in stellar line strengths can be explained by the [[Saha ionization equation]]. Payne's work lead to a major study of the chemical abundances in the solar atmosphere undertaken by [[Henry Norris Russell|H. N. Russell]], [[Walter Sydney Adams|Walter S. Adams]], and [[Charlotte Moore Sitterly|Charlotte Moore]]. Around 1930, the procedures developed by Russell, Adams, and Moore were adapted by Minnaert and Mulders for determining chemical abundances in stellar [[photosphere]]s.<ref>{{cite book|editor=Lorenzano, P.|editor2=Rheinberger, H.-J.|editor3=Ortiz, E.|editor4=Delfino Galles, C.|title=History and Philosophy of Science and Technology|volume=II|year=2010|page=209|url=https://books.google.com/books?id=b5_EDAAAQBAJ&pg=PA209|isbn=9781848263246}}</ref> Houtgast invented a modification of Moll's microphotometer that Minnaert, Mulders, and Houtgast employed to make direct registrations of the solar line intensities.<ref>{{cite book|author=Hentschel, Klaus|authorlink=Klaus Hentschel|title=Mapping the Spectrum|year=2002|publisher=[[Oxford University Press]]|page=284|url=https://books.google.com/books?id=WceRw3sr-rQC&pg=PA284|isbn=9780198509530}}</ref><ref>{{cite journal|author=Moll, W. J. H.|title=A new registering microphotometer|journal=Proceedings of the Physical Society of London|volume=33|issue=1|pages=207–216|year=1920|url=https://babel.hathitrust.org/cgi/pt?id=njp.32101044940219;view=1up;seq=237|bibcode=1920PPSL...33..207M|doi=10.1088/1478-7814/33/1/319}}</ref>


According to Minnaert at a seminar on the occasion of his 70th birthday:<ref name=MinnaertRef>{{cite book|editor=de Jager, Cornelis|title=''In:'' The Solar Spectrum: Proceedings of the Symposium held at the University of Utrecht 26–31 August 1963|year=1965|pages=3–25|publisher=Springer|chapter=''Fourty'' [sic] ''Years of Solar Spectroscopy'' by M. Minnaert|chapter-url=https://books.google.com/books?id=Vy_4CAAAQBAJ&pg=PA3}} (quote from p. 4)</ref>
According to Minnaert at a seminar on the occasion of his 70th birthday:<ref name=MinnaertRef>{{cite book|editor=de Jager, Cornelis|title=''In:'' The Solar Spectrum: Proceedings of the Symposium held at the University of Utrecht 26–31 August 1963|year=1965|pages=3–25|publisher=Springer|chapter=''Forty<!-- "Fourty" in original --> Years of Solar Spectroscopy'' by M. Minnaert|isbn=9789401763769 |chapter-url=https://books.google.com/books?id=Vy_4CAAAQBAJ&pg=PA3}} (quote from p. 4)</ref>
{{blockquote|In 1936 Mulders went to the Mt Wilson Observatory and took the plates for our ''Photometric Atlas'', while Houtgast developed the modified, home-made instrument, which could be added to the microphotometer and gave direct intensity readings. All microphotometer curves were obtained by direct photographic recording; we worked mostly in the night, because then the microphotometer was free. You were alone in the building, and in the silence of the darkroom, in the dull red light, you were developing your record. There it emerged, slowly emerged, out of nothingness, and as if by magic there appeared on the paper the profile of the cyanogen band, or of the atmospheric oxygen lines, never earlier observed in their true quantitative shape.<ref>{{cite book|author=Hearnshaw, John B.|title=The Analysis of Starlight: Two Centuries of Astronomical Spectroscopy|page=149|year=2014|edition=2nd|publisher=[[Cambridge University Press]]|url=https://books.google.com/books?id=waf6AgAAQBAJ&pg=PA149}}</ref>}}
{{blockquote|In 1936 Mulders went to the Mt Wilson Observatory and took the plates for our ''Photometric Atlas'', while Houtgast developed the modified, home-made instrument, which could be added to the microphotometer and gave direct intensity readings. All microphotometer curves were obtained by direct photographic recording; we worked mostly in the night, because then the microphotometer was free. You were alone in the building, and in the silence of the darkroom, in the dull red light, you were developing your record. There it emerged, slowly emerged, out of nothingness, and as if by magic there appeared on the paper the profile of the cyanogen band, or of the atmospheric oxygen lines, never earlier observed in their true quantitative shape.<ref>{{cite book|author=Hearnshaw, John B.|title=The Analysis of Starlight: Two Centuries of Astronomical Spectroscopy|page=149|year=2014|edition=2nd|publisher=[[Cambridge University Press]]|url=https://books.google.com/books?id=waf6AgAAQBAJ&pg=PA149|isbn=9781107782914}}</ref>}}


== References ==
== References ==
Line 40: Line 40:


==External links==
==External links==
*{{cite book|editor=Sterken, C.|editor2=de Groot, M.|editir2=|chapter=''Instrumental Effects in Stellar Spectroscopy'' by Dainis Dravins|pages=269–289|title=''In: The Impact of Long-Term Monitoring on Variable Star Research: Astrophysics, Instrumentation, Data Handling, Archiving''|year=2012|chapter-url=https://books.google.com/books?id=LhntCAAAQBAJ&pg=PA271}} (Example of ''Utrecht Atlas'' data, p.&nbsp;271)
*{{cite book|editor=Sterken, C.|editor2=de Groot, M.|chapter=''Instrumental Effects in Stellar Spectroscopy'' by Dainis Dravins|pages=269–289|title=''In: The Impact of Long-Term Monitoring on Variable Star Research: Astrophysics, Instrumentation, Data Handling, Archiving''|year=2012|isbn=9789401111645 |chapter-url=https://books.google.com/books?id=LhntCAAAQBAJ&pg=PA271}} (Example of ''Utrecht Atlas'' data, p.&nbsp;271)


{{authority control}}
{{authoritycontrol}}


[[Category:1940 books]]
[[Category:1940 non-fiction books]]
[[Category:1940 in science]]
[[Category:1940 in science]]
[[Category:Astronomy books]]
[[Category:Astronomy books]]

Latest revision as of 00:43, 6 April 2024

Utrecht Atlas
AuthorMarcel Minnaert; Gerard Mulders; Jakob Houtgast
Original titlePhotometric Atlas of the Solar Spectrum from λ3612 to λ8771 with an Appendix from λ3332 to λ3637[1]
SubjectSolar observation; Solar physics
PublisherSterrewacht "Sonnenborgh"
Publication date
1940
Publication placeNetherlands
Pages174 pages of microphotometer tracings with an introduction in English and Esperanto[2]

The Utrecht Atlas of the solar spectrum is a detailed inventory in graphical form of spectral lines observed in sunlight at the Sonnenborgh Observatory. The visible spectrum is about 390 to 700 nm and the atlas covers from 361.2 to 877.1 nm (plus an appendix) so that the atlas has some coverage of the infrared and ultraviolet spectrum of sunlight. The atlas, compiled by Minnaert and his students Mulders and Houtgast, was published in 1940 shortly before the WWII invasion of the Netherlands.[3]

The Atlas contains intensity curves covering the complete solar spectrum from λ 3612 to λ 8771 based on photographs taken at the Mount Wilson Observatory together with an appendix covering the region λ 3332 to λ 3637 as derived from plates secured at Utrecht. The scale in wave length is about 20 millimeters per angstrom so that the spectrum is represented on a map about 360 feet long. The curves are printed in black on millimeter paper with blue lines. The intensity scale is such that a vertical range of 100 millimeters corresponds to the difference between zero intensity and the continuous background.[4]

The atlas had a huge influence on solar and stellar high resolution spectroscopy after World War II.[5]

History

[edit]

In the early nineteenth century, Joseph von Fraunhofer made the first systematic inventory of spectral lines in sunlight. Full understanding of the significance of Fraunhofer lines required a huge amount of pioneering research in astrophysics and quantum theory. Cecilia Payne (1925) demonstrated that variations in stellar line strengths can be explained by the Saha ionization equation. Payne's work lead to a major study of the chemical abundances in the solar atmosphere undertaken by H. N. Russell, Walter S. Adams, and Charlotte Moore. Around 1930, the procedures developed by Russell, Adams, and Moore were adapted by Minnaert and Mulders for determining chemical abundances in stellar photospheres.[6] Houtgast invented a modification of Moll's microphotometer that Minnaert, Mulders, and Houtgast employed to make direct registrations of the solar line intensities.[7][8]

According to Minnaert at a seminar on the occasion of his 70th birthday:[3]

In 1936 Mulders went to the Mt Wilson Observatory and took the plates for our Photometric Atlas, while Houtgast developed the modified, home-made instrument, which could be added to the microphotometer and gave direct intensity readings. All microphotometer curves were obtained by direct photographic recording; we worked mostly in the night, because then the microphotometer was free. You were alone in the building, and in the silence of the darkroom, in the dull red light, you were developing your record. There it emerged, slowly emerged, out of nothingness, and as if by magic there appeared on the paper the profile of the cyanogen band, or of the atmospheric oxygen lines, never earlier observed in their true quantitative shape.[9]

References

[edit]
  1. ^ Minnaert, M.; Houtgast, J.; Mulders, G. F. W. (1940). Photometric Atlas of the Solar Spectrum. Bibcode:1940pass.book.....M.
  2. ^ Williams, Robley C. (1941). "Review of Photometric Atlas of the Solar Spectrum". Astrophysical Journal. 94: 143–144. Bibcode:1941ApJ....94..143.. doi:10.1086/144322.
  3. ^ a b de Jager, Cornelis, ed. (1965). "Forty Years of Solar Spectroscopy by M. Minnaert". In: The Solar Spectrum: Proceedings of the Symposium held at the University of Utrecht 26–31 August 1963. Springer. pp. 3–25. ISBN 9789401763769. (quote from p. 4)
  4. ^ Shane, C. D. (June 1941). "Reviewed Work: Photometric Atlas of the Solar Spectrum by M. Minnaert, G. F. W. Mulders, J. Houtgast". Publications of the Astronomical Society of the Pacific. 53 (313): 200–203. Bibcode:1941PASP...53..200.. doi:10.1086/125310. JSTOR 40669589. S2CID 233360287.
  5. ^ Hearnshaw, John (2010). "Auguste Comte's blunder: an account of the first century of stellar spectroscopy and how it took one hundred years to prove that Comte was wrong!". Journal of Astronomical History and Heritage. 13 (2): 90–104. Bibcode:2010JAHH...13...90H. doi:10.3724/SP.J.1440-2807.2010.02.04. S2CID 118069681. (quote from p. 98)
  6. ^ Lorenzano, P.; Rheinberger, H.-J.; Ortiz, E.; Delfino Galles, C., eds. (2010). History and Philosophy of Science and Technology. Vol. II. p. 209. ISBN 9781848263246.
  7. ^ Hentschel, Klaus (2002). Mapping the Spectrum. Oxford University Press. p. 284. ISBN 9780198509530.
  8. ^ Moll, W. J. H. (1920). "A new registering microphotometer". Proceedings of the Physical Society of London. 33 (1): 207–216. Bibcode:1920PPSL...33..207M. doi:10.1088/1478-7814/33/1/319.
  9. ^ Hearnshaw, John B. (2014). The Analysis of Starlight: Two Centuries of Astronomical Spectroscopy (2nd ed.). Cambridge University Press. p. 149. ISBN 9781107782914.
[edit]