Étale algebra: Difference between revisions
Adding/improving reference(s) |
Dedhert.Jr (talk | contribs) not a stub |
||
(32 intermediate revisions by 19 users not shown) | |||
Line 1: | Line 1: | ||
In [[commutative algebra]], an '''étale algebra''' over a field is a special type of [[algebra (ring theory)|algebra]], one that is [[isomorphism|isomorphic]] to a finite product of finite separable field extensions. An étale algebra is a special sort of commutative [[separable algebra]]. |
|||
{{unreferenced|date=September 2009}} |
|||
In [[mathematics]], more specifically in [[algebra]], an '''étale''' or '''separable''' [[algebra (ring theory)|algebra]] is a special type of algebra. |
|||
== |
== Definitions == |
||
Let <math>K</math> be a [[field (mathematics)|field]] and <math>\mathfrak{R}</math> be a <math>K</math>-algebra. Then <math>\mathfrak{R}</math> is called '''étale''' or '''[[separable algebra|separable]]''' if <math>\mathfrak{R}\otimes _{K}\bar{K}\cong\bar{K}\times ...\times\bar{K}</math> or equivalently if <math>\mathrm{Spec}\,\mathfrak{R} \to \mathrm{Spec}\,K</math> is an [[étale morphism]]. |
|||
Let {{mvar|K}} be a [[field (mathematics)|field]]. Let {{mvar|L}} be a [[commutative]] [[unital algebra|unital]] [[associative]] {{mvar|K}}-algebra. Then {{mvar|L}} is called an ''étale {{mvar|K}}-algebra'' if any one of the following equivalent conditions holds:<ref>{{harv|Bourbaki|1990|loc=page A.V.28-30}}</ref> |
|||
{{bulleted list |
|||
|<math>L\otimes_{K} E\simeq E^n</math> for some field extension {{mvar|E}} of {{mvar|K}} and some nonnegative integer {{mvar|n}}. |
|||
|<math>L\otimes_{K} \overline{K} \simeq \overline{K}^n</math> for any algebraic closure <math>\overline{K}</math> of {{mvar|K}} and some nonnegative integer {{mvar|n}}. |
|||
|{{mvar|L}} is isomorphic to a finite product of finite separable field extensions of {{mvar|K}}. |
|||
|{{mvar|L}} is finite-dimensional over {{mvar|K}}, and the trace form {{math|Tr(''xy'')}} is nondegenerate. |
|||
|The morphism of schemes <math>\operatorname{Spec} L \to \operatorname{Spec} K</math> is an [[étale morphism]]. |
|||
}} |
|||
==Examples== |
|||
The <math>\mathbb{Q}</math>-algebra <math>\mathbb{Q}(i)</math> is étale because it is a finite separable field extension. |
|||
The <math>\mathbb{R}</math>-algebra <math>\mathbb{R}[x]/(x^2)</math> is not étale, since <math>\mathbb{R}[x]/(x^2)\otimes_\mathbb{R}\mathbb{C} \simeq \mathbb{C}[x]/(x^2)</math>. |
|||
==Properties== |
|||
Let {{mvar|G}} denote the [[absolute Galois group]] of {{mvar|K}}. Then the category of étale {{mvar|K}}-algebras is equivalent to the category of finite {{mvar|G}}-sets with continuous {{mvar|G}}-action. In particular, étale algebras of dimension {{mvar|n}} are classified by [[conjugacy class]]es of continuous [[homomorphism]]s from {{mvar|G}} to the symmetric group {{math|''S''<sub>''n''</sub>}}. These globalize to e.g. the definition of [[Étale fundamental group|étale fundamental groups]] and categorify to [[Grothendieck's Galois theory]]. |
|||
== Notes == |
|||
{{Reflist}} |
|||
==References== |
==References== |
||
*{{citation| |
*{{citation|mr=1080964 |
||
| |
|last=Bourbaki|first= N. |
||
|title=Algebra. II. Chapters 4–7. |
|title=Algebra. II. Chapters 4–7. |
||
|series= Elements of Mathematics |place=Berlin|publisher= Springer-Verlag|year= 1990| isbn=3-540-19375-8 }} |
|series= Elements of Mathematics |place=Berlin|publisher= Springer-Verlag|year= 1990| isbn=3-540-19375-8 }} |
||
*{{citation|last=Milne|first=James|title=Field Theory}} http://www.jmilne.org/math/CourseNotes/FT.pdf |
|||
{{DEFAULTSORT:Etale Algebra}} |
{{DEFAULTSORT:Etale Algebra}} |
||
[[Category: |
[[Category:Commutative algebra]] |
Latest revision as of 04:24, 10 May 2024
In commutative algebra, an étale algebra over a field is a special type of algebra, one that is isomorphic to a finite product of finite separable field extensions. An étale algebra is a special sort of commutative separable algebra.
Definitions
[edit]Let K be a field. Let L be a commutative unital associative K-algebra. Then L is called an étale K-algebra if any one of the following equivalent conditions holds:[1]
- for some field extension E of K and some nonnegative integer n.
- for any algebraic closure of K and some nonnegative integer n.
- L is isomorphic to a finite product of finite separable field extensions of K.
- L is finite-dimensional over K, and the trace form Tr(xy) is nondegenerate.
- The morphism of schemes is an étale morphism.
Examples
[edit]The -algebra is étale because it is a finite separable field extension.
The -algebra is not étale, since .
Properties
[edit]Let G denote the absolute Galois group of K. Then the category of étale K-algebras is equivalent to the category of finite G-sets with continuous G-action. In particular, étale algebras of dimension n are classified by conjugacy classes of continuous homomorphisms from G to the symmetric group Sn. These globalize to e.g. the definition of étale fundamental groups and categorify to Grothendieck's Galois theory.
Notes
[edit]- ^ (Bourbaki 1990, page A.V.28-30)
References
[edit]- Bourbaki, N. (1990), Algebra. II. Chapters 4–7., Elements of Mathematics, Berlin: Springer-Verlag, ISBN 3-540-19375-8, MR 1080964
- Milne, James, Field Theory http://www.jmilne.org/math/CourseNotes/FT.pdf