Jump to content

Étale algebra: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Definition: Expanding article
not a stub
 
(31 intermediate revisions by 19 users not shown)
Line 1: Line 1:
In [[commutative algebra]], an '''étale algebra''' over a field is a special type of [[algebra (ring theory)|algebra]], one that is [[isomorphism|isomorphic]] to a finite product of finite separable field extensions. An étale algebra is a special sort of commutative [[separable algebra]].
{{unreferenced|date=September 2009}}
In [[mathematics]], more specifically in [[algebra]], an '''étale''' or '''separable''' [[algebra (ring theory)|algebra]] is a special type of algebra.


== Definition ==
== Definitions ==


Let <math>K</math> be a [[field (mathematics)|field]] and <math>\mathfrak{R}</math> be a <math>K</math>-algebra. Then <math>\mathfrak{R}</math> is called '''étale''' or '''[[separable algebra|separable]]''' if <math>\mathfrak{R}\otimes _{K}\bar{K}\cong\bar{K}\times ...\times\bar{K}</math>.
Let {{mvar|K}} be a [[field (mathematics)|field]]. Let {{mvar|L}} be a [[commutative]] [[unital algebra|unital]] [[associative]] {{mvar|K}}-algebra. Then {{mvar|L}} is called an ''étale {{mvar|K}}-algebra'' if any one of the following equivalent conditions holds:<ref>{{harv|Bourbaki|1990|loc=page A.V.28-30}}</ref>
{{bulleted list
|<math>L\otimes_{K} E\simeq E^n</math> for some field extension {{mvar|E}} of {{mvar|K}} and some nonnegative integer {{mvar|n}}.
|<math>L\otimes_{K} \overline{K} \simeq \overline{K}^n</math> for any algebraic closure <math>\overline{K}</math> of {{mvar|K}} and some nonnegative integer {{mvar|n}}.
|{{mvar|L}} is isomorphic to a finite product of finite separable field extensions of {{mvar|K}}.
|{{mvar|L}} is finite-dimensional over {{mvar|K}}, and the trace form {{math|Tr(''xy'')}} is nondegenerate.
|The morphism of schemes <math>\operatorname{Spec} L \to \operatorname{Spec} K</math> is an [[étale morphism]].
}}


==Examples==
The name "étale algebra" comes from the fact that a finite dimensional commutative algebra over a field algebra is étale if and only if <math>\mathrm{Spec}\,\mathfrak{R} \to \mathrm{Spec}\,K</math> is an [[étale morphism]].
The <math>\mathbb{Q}</math>-algebra <math>\mathbb{Q}(i)</math> is étale because it is a finite separable field extension.

The <math>\mathbb{R}</math>-algebra <math>\mathbb{R}[x]/(x^2)</math> is not étale, since <math>\mathbb{R}[x]/(x^2)\otimes_\mathbb{R}\mathbb{C} \simeq \mathbb{C}[x]/(x^2)</math>.

==Properties==

Let {{mvar|G}} denote the [[absolute Galois group]] of {{mvar|K}}. Then the category of étale {{mvar|K}}-algebras is equivalent to the category of finite {{mvar|G}}-sets with continuous {{mvar|G}}-action. In particular, étale algebras of dimension {{mvar|n}} are classified by [[conjugacy class]]es of continuous [[homomorphism]]s from {{mvar|G}} to the symmetric group {{math|''S''<sub>''n''</sub>}}. These globalize to e.g. the definition of [[Étale fundamental group|étale fundamental groups]] and categorify to [[Grothendieck's Galois theory]].

== Notes ==
{{Reflist}}


==References==
==References==


*{{citation|MR=1080964
*{{citation|mr=1080964
|first=Bourbaki|last= N.
|last=Bourbaki|first= N.
|title=Algebra. II. Chapters 4–7.
|title=Algebra. II. Chapters 4–7.
|series= Elements of Mathematics |place=Berlin|publisher= Springer-Verlag|year= 1990| isbn=3-540-19375-8 }}
|series= Elements of Mathematics |place=Berlin|publisher= Springer-Verlag|year= 1990| isbn=3-540-19375-8 }}
*{{citation|last=Milne|first=James|title=Field Theory}} http://www.jmilne.org/math/CourseNotes/FT.pdf


{{DEFAULTSORT:Etale Algebra}}
{{DEFAULTSORT:Etale Algebra}}
[[Category:Algebra]]
[[Category:Commutative algebra]]

Latest revision as of 04:24, 10 May 2024

In commutative algebra, an étale algebra over a field is a special type of algebra, one that is isomorphic to a finite product of finite separable field extensions. An étale algebra is a special sort of commutative separable algebra.

Definitions

[edit]

Let K be a field. Let L be a commutative unital associative K-algebra. Then L is called an étale K-algebra if any one of the following equivalent conditions holds:[1]

  • for some field extension E of K and some nonnegative integer n.
  • for any algebraic closure of K and some nonnegative integer n.
  • L is isomorphic to a finite product of finite separable field extensions of K.
  • L is finite-dimensional over K, and the trace form Tr(xy) is nondegenerate.
  • The morphism of schemes is an étale morphism.

Examples

[edit]

The -algebra is étale because it is a finite separable field extension.

The -algebra is not étale, since .

Properties

[edit]

Let G denote the absolute Galois group of K. Then the category of étale K-algebras is equivalent to the category of finite G-sets with continuous G-action. In particular, étale algebras of dimension n are classified by conjugacy classes of continuous homomorphisms from G to the symmetric group Sn. These globalize to e.g. the definition of étale fundamental groups and categorify to Grothendieck's Galois theory.

Notes

[edit]
  1. ^ (Bourbaki 1990, page A.V.28-30)

References

[edit]
  • Bourbaki, N. (1990), Algebra. II. Chapters 4–7., Elements of Mathematics, Berlin: Springer-Verlag, ISBN 3-540-19375-8, MR 1080964
  • Milne, James, Field Theory http://www.jmilne.org/math/CourseNotes/FT.pdf