Jump to content

Antimony(III) sulfate: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m LaundryPizza03 moved page Antimony sulfate to Antimony(III) sulfate: Element with multiple common oxidation states
Citation bot (talk | contribs)
Altered pages. Formatted dashes. | Use this bot. Report bugs. | Suggested by Whoop whoop pull up | Category:Antimony(III) compounds | #UCB_Category 3/17
 
(15 intermediate revisions by 9 users not shown)
Line 5: Line 5:
| Name = Antimony sulfate
| Name = Antimony sulfate
| ImageFile = Antimony sulfate.svg
| ImageFile = Antimony sulfate.svg
| IUPACName = Antimony(3+) trisulfate
| IUPACName = Antimony(III) sulfate
| OtherNames = Antimony(III) sulfate<br/>Antimonous sulfate<br/>Antimony trisulfate<br/>Diantimony trisulfate<br/>Diantimony tris(sulphate)
| OtherNames = Antimonous sulfate<br />Antimony trisulfate<br />Diantimony trisulfate<br />Diantimony tris(sulphate)
|Section1={{Chembox Identifiers
|Section1={{Chembox Identifiers
| ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}}
| ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}}
Line 28: Line 28:
| MolarMass = 531.7078 g/mol
| MolarMass = 531.7078 g/mol
| Appearance =
| Appearance =
| Density = 3.94 g/cm<sup>3</sup><ref name="stru" />
| Density = 3.6246 g/cm<sup>3</sup><ref name=ul>Herbst, Karl Albert ''et al.'' (1985) Antimony and antimony compounds in ''Ullmann's Encyclopedia of Industrial Chemistry'' 5th ed., vol. A3, p. 70. {{ISBN|3-527-20103-3}}.</ref>
| Solubility = soluble
| Solubility = Hydrolysis<ref name="stru" />
| SolubleOther =
| SolubleOther =
| MeltingPtC =
| MeltingPtC =
Line 37: Line 37:
}}
}}
|Section3={{Chembox Structure
|Section3={{Chembox Structure
| Structure_ref = <ref name="stru" />
| CrystalStruct = [[monoclinic crystal system|monoclinic]]
| SpaceGroup = P2<sub>1</sub>/''c''
| PointGroup =
| LattConst_a = 13.12 Å
| LattConst_b = 4.75 Å
| LattConst_c = 17.55 Å
| LattConst_alpha =
| LattConst_beta = 126.3
| LattConst_gamma =
| LattConst_ref =
| LattConst_Comment =
| UnitCellVolume = 881 Å<sup>3</sup>
| UnitCellFormulas =
| Coordination =
| MolShape =
| MolShape =
| OrbitalHybridisation =
| Dipole =
| Dipole =
}}
}}
Line 48: Line 64:
| NFPA-S =
| NFPA-S =
| FlashPt =
| FlashPt =
| RPhrases =
| SPhrases =
| REL = TWA 0.5 mg/m<sup>3</sup> (as Sb)<ref name=PGCH>{{PGCH|0036}}</ref>
| REL = TWA 0.5 mg/m<sup>3</sup> (as Sb)<ref name=PGCH>{{PGCH|0036}}</ref>
| PEL = TWA 0.5 mg/m<sup>3</sup> (as Sb)<ref name=PGCH/>
| PEL = TWA 0.5 mg/m<sup>3</sup> (as Sb)<ref name=PGCH/>
Line 58: Line 72:
}}
}}
}}
}}
'''Antimony sulfate''', Sb<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>, is a hygroscopic salt formed by reacting antimony or its compounds with hot [[sulfuric acid]]. It is used in [[doping (semiconductor)|doping]] of [[semiconductors]] and in the production of explosives and fireworks.<ref name=ul/>
'''Antimony sulfate''', Sb<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>, is a hygroscopic salt formed by reacting antimony or its compounds with hot [[sulfuric acid]]. It is used in [[doping (semiconductor)|doping]] of [[semiconductors]] and in the production of explosives and fireworks.<ref name=ul>Herbst, Karl Albert ''et al.'' (1985) Antimony and antimony compounds in ''Ullmann's Encyclopedia of Industrial Chemistry'' 5th ed., vol. A3, p. 70. {{ISBN|3-527-20103-3}}.</ref>


==Structure==
==Structure==
Solid antimony sulfate contains infinite ladders of SO<sub>4</sub> tetrahedra and SbO<sub>3</sub> pyramids sharing corners. It is often described as a mixed oxide, Sb<sub>2</sub>O<sub>3</sub>.3SO<sub>3</sub>.<ref> Wells A.F. (1984) ''Structural Inorganic Chemistry'' 5th edition Oxford Science Publications {{ISBN|0-19-855370-6}} </ref>
Antimony(III) sulfate consists of interconnected SbO<sub>6</sub> octahedra, which the corners are bonded to the [[sulfate]] ion.<ref name="stru">{{cite journal |author1=R. Mercier |author2=J. Douglade |author3=J. Bernard |title=Structure cristalline de Sb<sub>2</sub>O<sub>3</sub>.3SO<sub>3</sub> |journal=Acta Crystallographica Section B |date=1976 |volume=32 |issue=10 |pages=2787–2791 |doi=10.1107/S0567740876008881 |language=fr}}</ref>

==Production==
Antimony(III) sulfate was first produced in 1827 by the reaction of [[antimony(III) oxide]] and 18 molar [[sulfuric acid]] at 200 °C:<ref name="stru" />
:{{chem2 | Sb2O3 + 3 H2SO4 -> Sb2(SO4)3 + 3 H2O }}
The concentration of the sulfuric acid is important, as a lower concentration will produce basic antimony oxides, while a higher concentration will produce [[antimony(III) pyrosulfate]]. The reaction of elemental antimony and 18 M sulfuric acid will also produce antimony(III) sulfate:<ref name="ul" />
:{{chem2 | 2 Sb + 6 H2SO4 -> Sb2(SO4)3 + 3 SO2 + 6 H2O }}


==Chemical properties==
==Chemical properties==
Antimony sulfate is sometimes called a "salt" as it can be produced from the reaction of antimony and sulfuric acid, but antimony does not form a nitrate when dissolved in nitric acid, (an oxidising acid) but produces a mixture of antimony oxides, and this contrasts with [[bismuth]] which dissolves in both acids to form salts.<ref name = "Norman"/> It is [[deliquescent]], and soluble in [[acid]]s. It can be prepared by dissolving antimony, [[antimony trioxide]], [[antimony trisulfide]] or [[antimony oxychloride]] in hot, concentrated [[sulfuric acid]].<ref name=ul/><ref name = "Norman">{{cite book|author=Nicholas C. Norman|title=Chemistry of arsenic, antimony, and bismuth|date=31 December 1997|url=https://books.google.com/books?id=vVhpurkfeN4C&pg=PA193|publisher=Springer|isbn=978-0-7514-0389-3|pages=193–}}</ref>
Antimony sulfate is [[deliquescent]], hydrolyzing in moist air and water, producing various basic antimony oxides and antimony(III) oxide. It is soluble in [[acid]]s.<ref name="stru" /><ref name=ul/><ref name = "Norman">{{cite book|author=Nicholas C. Norman|title=Chemistry of arsenic, antimony, and bismuth|date=31 December 1997|url=https://books.google.com/books?id=vVhpurkfeN4C&pg=PA193|publisher=Springer|isbn=978-0-7514-0389-3|pages=193–}}</ref>
:2 Sb (s) + 6 H<sub>2</sub>SO<sub>4</sub> → Sb<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> + 3SO<sub>2</sub> + 6 H<sub>2</sub>O


==Uses==
==Uses==
Line 74: Line 93:


==Natural occurrence==
==Natural occurrence==
Natural analogue of the exact compound is yet unknown. However, basic hydrated Sb sulfates are known as the minerals [[klebelsbergite]]<ref>https://www.mindat.org/min-2223.html</ref><ref>https://www.ima-mineralogy.org/Minlist.htm</ref> and [[coquandite]].<ref>https://www.mindat.org/min-1125.html</ref><ref>https://www.ima-mineralogy.org/Minlist.htm</ref>
Natural analogue of the exact compound is yet unknown. However, basic hydrated Sb sulfates are known as the minerals [[klebelsbergite]]<ref>{{Cite web|url=https://www.mindat.org/min-2223.html|title=Klebelsbergite}}</ref><ref name="List of Minerals">{{Cite web|url=https://www.ima-mineralogy.org/Minlist.htm|title=List of Minerals|date=21 March 2011}}</ref> and [[coquandite]].<ref>{{Cite web|url=https://www.mindat.org/min-1125.html|title=Coquandite}}</ref><ref name="List of Minerals"/>


==References==
==References==
Line 84: Line 103:
[[Category:Antimony(III) compounds]]
[[Category:Antimony(III) compounds]]
[[Category:Sulfates]]
[[Category:Sulfates]]

{{inorganic-compound-stub}}

Latest revision as of 22:13, 12 May 2024

Antimony sulfate
Names
IUPAC name
Antimony(III) sulfate
Other names
Antimonous sulfate
Antimony trisulfate
Diantimony trisulfate
Diantimony tris(sulphate)
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.028.370 Edit this at Wikidata
EC Number
  • 231-207-6
UNII
  • InChI=1S/3H2O4S.2Sb/c3*1-5(2,3)4;;/h3*(H2,1,2,3,4);;/q;;;2*+3/p-6 checkY
    Key: MVMLTMBYNXHXFI-UHFFFAOYSA-H checkY
  • [SbH3+3].[SbH3+3].[O-]S(=O)(=O)[O-].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O
Properties[2]
Sb2(SO4)3
Molar mass 531.7078 g/mol
Density 3.94 g/cm3[1]
Hydrolysis[1]
Structure[1]
monoclinic
P21/c
a = 13.12 Å, b = 4.75 Å, c = 17.55 Å
α = 90°, β = 126.3°, γ = 90°
881 Å3
Hazards
NIOSH (US health exposure limits):
PEL (Permissible)
TWA 0.5 mg/m3 (as Sb)[3]
REL (Recommended)
TWA 0.5 mg/m3 (as Sb)[3]
Safety data sheet (SDS) MSDS
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N (what is checkY☒N ?)

Antimony sulfate, Sb2(SO4)3, is a hygroscopic salt formed by reacting antimony or its compounds with hot sulfuric acid. It is used in doping of semiconductors and in the production of explosives and fireworks.[4]

Structure

[edit]

Antimony(III) sulfate consists of interconnected SbO6 octahedra, which the corners are bonded to the sulfate ion.[1]

Production

[edit]

Antimony(III) sulfate was first produced in 1827 by the reaction of antimony(III) oxide and 18 molar sulfuric acid at 200 °C:[1]

Sb2O3 + 3 H2SO4 → Sb2(SO4)3 + 3 H2O

The concentration of the sulfuric acid is important, as a lower concentration will produce basic antimony oxides, while a higher concentration will produce antimony(III) pyrosulfate. The reaction of elemental antimony and 18 M sulfuric acid will also produce antimony(III) sulfate:[4]

2 Sb + 6 H2SO4 → Sb2(SO4)3 + 3 SO2 + 6 H2O

Chemical properties

[edit]

Antimony sulfate is deliquescent, hydrolyzing in moist air and water, producing various basic antimony oxides and antimony(III) oxide. It is soluble in acids.[1][4][5]

Uses

[edit]

Owing to its solubility, antimony sulfate has uses in the doping of semiconductors.[6] It is also used for coating anodes in electrolysis and in the production of explosives and fireworks.[4]

Safety

[edit]

Antimony(III) sulfate causes irritation to the skin and mucous membranes.[7]

Natural occurrence

[edit]

Natural analogue of the exact compound is yet unknown. However, basic hydrated Sb sulfates are known as the minerals klebelsbergite[8][9] and coquandite.[10][9]

References

[edit]
  1. ^ a b c d e f R. Mercier; J. Douglade; J. Bernard (1976). "Structure cristalline de Sb2O3.3SO3". Acta Crystallographica Section B (in French). 32 (10): 2787–2791. doi:10.1107/S0567740876008881.
  2. ^ Lide, D. R., ed. (2005). CRC Handbook of Chemistry and Physics (86th ed.). Boca Raton, Florida: CRC Press. p. 4.64. ISBN 0-8493-0486-5.
  3. ^ a b NIOSH Pocket Guide to Chemical Hazards. "#0036". National Institute for Occupational Safety and Health (NIOSH).
  4. ^ a b c d Herbst, Karl Albert et al. (1985) Antimony and antimony compounds in Ullmann's Encyclopedia of Industrial Chemistry 5th ed., vol. A3, p. 70. ISBN 3-527-20103-3.
  5. ^ Nicholas C. Norman (31 December 1997). Chemistry of arsenic, antimony, and bismuth. Springer. pp. 193–. ISBN 978-0-7514-0389-3.
  6. ^ Method of forming phase change layer, method of manufacturing a storage node using the same, and method of manufacturing phase change memory device using the same – Samsung Electronics Co., Ltd. Freepatentsonline.com (2007-01-02). Retrieved on 2011-12-23.
  7. ^ Antimony(III) Sulfate Material Safety Data Sheet Archived 2012-04-26 at the Wayback Machine. Prochemonline.
  8. ^ "Klebelsbergite".
  9. ^ a b "List of Minerals". 21 March 2011.
  10. ^ "Coquandite".