Jump to content

Polynomial differential form: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
No edit summary
 
(5 intermediate revisions by 5 users not shown)
Line 1: Line 1:
In [[algebra]], the ring of '''polynomial differential forms''' on the standard [[Simplex|''n''-simplex]] is the [[differential graded algebra]]:<ref>{{harvnb|Hinich|1997|loc=§ 4.8.1.}}</ref>
{{Underlinked|date=October 2019}}

In algebra, the ring of '''polynomial differential forms''' on the standard ''n''-simplex is the [[differential graded algebra]]:<ref>{{harvnb|Hinich|loc=§ 4.8.1.}}</ref>
:<math>\Omega^*_{\text{poly}}([n])= \mathbb{Q}[t_0, ..., t_n, dt_0, ..., dt_n]/(\sum t_i - 1, \sum dt_i).</math>
:<math>\Omega^*_{\text{poly}}([n])= \mathbb{Q}[t_0, ..., t_n, dt_0, ..., dt_n]/(\sum t_i - 1, \sum dt_i).</math>
Varing ''n'', it determines the [[simplicial commutative ring|simplicial commutative dg algebra]]:
Varying ''n'', it determines the [[simplicial commutative ring|simplicial commutative dg algebra]]:
:<math>\Omega^*_{\text{poly}}</math>
:<math>\Omega^*_{\text{poly}}</math>
(each <math>u: [n] \to [m]</math> induces the map <math>\Omega^*_{\text{poly}}([m]) \to \Omega^*_{\text{poly}}([n]), t_i \mapsto \sum_{u(j)=i} t_j</math>).
(each <math>u: [n] \to [m]</math> induces the map <math>\Omega^*_{\text{poly}}([m]) \to \Omega^*_{\text{poly}}([n]), t_i \mapsto \sum_{u(j)=i} t_j</math>).
Line 9: Line 7:
== References ==
== References ==
{{reflist}}
{{reflist}}
* Aldridge Bousfield and V. K. A. M. Gugenheim, §1 and §2 of: On PL De Rham Theory and Rational Homotopy Type, Memoirs of the A. M. S., vol. 179, 1976.
* Aldridge Bousfield and V. K. A. M. Gugenheim, §1 and §2 of: On PL [[De Rham theorem|De Rham Theory]] and [[Rational homotopy type|Rational Homotopy Type]], Memoirs of the A. M. S., vol. 179, 1976.
* {{cite arxiv|last=Hinich|first=Vladimir|date=1997-02-11|title=Homological algebra of homotopy algebras|eprint=q-alg/9702015}}
* {{cite arXiv|last=Hinich|first=Vladimir|date=1997-02-11|title=Homological algebra of homotopy algebras|arxiv=q-alg/9702015}}


== External links ==
== External links ==

Latest revision as of 05:23, 13 May 2024

In algebra, the ring of polynomial differential forms on the standard n-simplex is the differential graded algebra:[1]

Varying n, it determines the simplicial commutative dg algebra:

(each induces the map ).

References

[edit]
  1. ^ Hinich 1997, § 4.8.1.
  • Aldridge Bousfield and V. K. A. M. Gugenheim, §1 and §2 of: On PL De Rham Theory and Rational Homotopy Type, Memoirs of the A. M. S., vol. 179, 1976.
  • Hinich, Vladimir (1997-02-11). "Homological algebra of homotopy algebras". arXiv:q-alg/9702015.
[edit]