Dual q-Krawtchouk polynomials: Difference between revisions
Appearance
Content deleted Content added
tag as format footnotes |
|||
(5 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
{{format footnotes |date=May 2024}} |
|||
In mathematics, the '''dual ''q''-Krawtchouk polynomials''' are a family of basic hypergeometric [[orthogonal polynomials]] in the basic [[Askey scheme]]. {{harvs|txt | last1=Koekoek | first1=Roelof | last2=Lesky | first2=Peter A. | last3=Swarttouw | first3=René F. | title=Hypergeometric orthogonal polynomials and their q-analogues | publisher=[[Springer-Verlag]] | location=Berlin, New York | series=Springer Monographs in Mathematics | isbn=978-3-642-05013-8 | doi=10.1007/978-3-642-05014-5 | mr=2656096 | year=2010|loc=14}} give a detailed list of their properties. |
In mathematics, the '''dual ''q''-Krawtchouk polynomials''' are a family of basic hypergeometric [[orthogonal polynomials]] in the basic [[Askey scheme]]. {{harvs|txt | last1=Koekoek | first1=Roelof | last2=Lesky | first2=Peter A. | last3=Swarttouw | first3=René F. | title=Hypergeometric orthogonal polynomials and their q-analogues | publisher=[[Springer-Verlag]] | location=Berlin, New York | series=Springer Monographs in Mathematics | isbn=978-3-642-05013-8 | doi=10.1007/978-3-642-05014-5 | mr=2656096 | year=2010|loc=14}} give a detailed list of their properties. |
||
==Definition== |
==Definition== |
||
The polynomials are given in terms of [[basic hypergeometric function]]s |
The polynomials are given in terms of [[basic hypergeometric function]]s by |
||
:<math>K_n(\lambda(x);c,N|q)=_3\ |
:<math>K_n(\lambda(x);c,N|q)={}_3\phi_2(q^{-n},q^{-x},cq^{x-N};q^{-N},0|q;q),\quad n=0,1,2,...,N,</math> |
||
:where <math>\lambda(x)=q^{-x}+cq^{x-N}.</math> |
|||
==Orthogonality== |
|||
{{Empty section|date=September 2011}} |
|||
==Recurrence and difference relations== |
|||
{{Empty section|date=September 2011}} |
|||
==Rodrigues formula== |
|||
{{Empty section|date=September 2011}} |
|||
==Generating function== |
|||
{{Empty section|date=September 2011}} |
|||
==Relation to other polynomials== |
|||
{{Empty section|date=September 2011}} |
|||
==References== |
==References== |
||
*{{Citation | last1=Gasper | first1=George | last2=Rahman | first2=Mizan | title=Basic hypergeometric series | publisher=[[Cambridge University Press]] | edition=2nd | series=Encyclopedia of Mathematics and its Applications | isbn=978-0-521-83357-8 |
*{{Citation | last1=Gasper | first1=George | last2=Rahman | first2=Mizan | title=Basic hypergeometric series | publisher=[[Cambridge University Press]] | edition=2nd | series=Encyclopedia of Mathematics and its Applications | isbn=978-0-521-83357-8 | mr=2128719 | year=2004 | volume=96}} |
||
*{{Citation | last1=Koekoek | first1=Roelof | last2=Lesky | first2=Peter A. | last3=Swarttouw | first3=René F. | title=Hypergeometric orthogonal polynomials and their q-analogues | publisher=[[Springer-Verlag]] | location=Berlin, New York | series=Springer Monographs in Mathematics | isbn=978-3-642-05013-8 | doi=10.1007/978-3-642-05014-5 | mr=2656096 | year=2010}} |
*{{Citation | last1=Koekoek | first1=Roelof | last2=Lesky | first2=Peter A. | last3=Swarttouw | first3=René F. | title=Hypergeometric orthogonal polynomials and their q-analogues | publisher=[[Springer-Verlag]] | location=Berlin, New York | series=Springer Monographs in Mathematics | isbn=978-3-642-05013-8 | doi=10.1007/978-3-642-05014-5 | mr=2656096 | year=2010}} |
||
*{{dlmf|id=18|title=|first=Tom H. |last=Koornwinder|first2=Roderick S. C.|last2= Wong|first3=Roelof |last3=Koekoek||first4=René F. |last4=Swarttouw}} |
*{{dlmf|id=18|title=Chapter 18: Orthogonal Polynomials|first=Tom H. |last=Koornwinder|first2=Roderick S. C.|last2= Wong|first3=Roelof |last3=Koekoek||first4=René F. |last4=Swarttouw}} |
||
[[Category:Orthogonal polynomials]] |
[[Category:Orthogonal polynomials]] |
||
[[Category:Q-analogs]] |
[[Category:Q-analogs]] |
||
[[Category:Special hypergeometric functions]] |
[[Category:Special hypergeometric functions]] |
||
{{polynomial-stub}} |
Latest revision as of 06:00, 13 May 2024
In mathematics, the dual q-Krawtchouk polynomials are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme. Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties.
Definition
[edit]The polynomials are given in terms of basic hypergeometric functions by
- where
References
[edit]- Gasper, George; Rahman, Mizan (2004), Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, vol. 96 (2nd ed.), Cambridge University Press, ISBN 978-0-521-83357-8, MR 2128719
- Koekoek, Roelof; Lesky, Peter A.; Swarttouw, René F. (2010), Hypergeometric orthogonal polynomials and their q-analogues, Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag, doi:10.1007/978-3-642-05014-5, ISBN 978-3-642-05013-8, MR 2656096
- Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), "Chapter 18: Orthogonal Polynomials", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248.