Jump to content

Hua's identity: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
No edit summary
rm redundant unreliable source
 
(20 intermediate revisions by 14 users not shown)
Line 1: Line 1:
{{short description|Formula relating pairs of elements in a division ring}}
{{for|Hua's identity in [[Jordan algebra]]s|Hua's identity (Jordan algebra)}}
{{for|Hua's identity in [[Jordan algebra]]s|Hua's identity (Jordan algebra)}}
In algebra, '''Hua's identity'''<ref>{{harvnb|Cohn|2003|loc=§9.1}}</ref> <!-- named after --> states that for any elements ''a'', ''b'' in a [[division ring]],
In algebra, '''[[Hua Luogeng|Hua]]'s identity'''<ref>{{harvnb|Cohn|2003|loc=§9.1}}</ref> named after Hua Luogeng, states that for any elements ''a'', ''b'' in a [[division ring]],
:<math>a - (a^{-1} + (b^{-1} - a)^{-1})^{-1} = aba</math>
<math display="block">a - \left(a^{-1} + \left(b^{-1} - a\right)^{-1}\right)^{-1} = aba</math>
whenever <math>ab \ne 0, 1</math>. Replacing <math>b</math> with <math>-b^{-1}</math> gives another equivalent form of the identity:
whenever <math>ab \ne 0, 1</math>. Replacing <math>b</math> with <math>-b^{-1}</math> gives another equivalent form of the identity:
:<math>(a+ab^{-1}a)^{-1} + (a+b)^{-1} =a^{-1}.</math>
<math display="block">\left(a + ab^{-1}a\right)^{-1} + (a + b)^{-1} = a^{-1}.</math>


==Hua's theorem==
An important application of the identity is a proof of '''Hua's theorem'''.<ref>{{harvnb|Cohn|2003|loc=Theorem 9.1.3}}</ref><ref>http://math.stackexchange.com/questions/161301/is-this-map-of-domains-a-jordan-homomorphism</ref> The theorem says that if <math>\sigma: K \to L</math> is a [[function (mathematics)|function]] between division rings and if <math>\sigma</math> satisfies:
The identity is used in a proof of '''Hua's theorem''',<ref>{{harvnb|Cohn|2003|loc=Theorem 9.1.3}}</ref> which states that if <math>\sigma</math> is a [[function (mathematics)|function]] between division rings satisfying
:<math>\sigma(a + b) = \sigma(a) + \sigma(b), \quad \sigma(1) = 1, \quad \sigma(a^{-1}) = \sigma(a)^{-1},</math>
<math display="block">\sigma(a + b) = \sigma(a) + \sigma(b), \quad \sigma(1) = 1, \quad \sigma(a^{-1}) = \sigma(a)^{-1},</math>
then <math>\sigma</math> is either a [[Ring homomorphism|homomorphism]] or an antihomomorphism. The theorem is important because of the connection to the [[fundamental theorem of projective geometry]].
then <math>\sigma</math> is a [[Ring homomorphism|homomorphism]] or an [[antihomomorphism]]. This theorem is connected to the [[fundamental theorem of projective geometry]].


== Proof ==
== Proof of the identity==
One has
<math display="block">(a - aba)\left(a^{-1} + \left(b^{-1} - a\right)^{-1}\right) = 1 - ab + ab\left(b^{-1} - a\right)\left(b^{-1} - a\right)^{-1} = 1.</math>


The proof is valid in any ring as long as <math>a, b, ab - 1</math> are [[unit (ring theory)|unit]]s.<ref>{{harvnb|Jacobson|2009|loc=§ 2.2. Exercise 9.}}</ref>
: <math>(a - aba)(a^{-1} + (b^{-1} - a)^{-1}) = ab(b^{-1} - a)(a^{-1} + (b^{-1} - a)^{-1}) = 1.</math>


== References ==
== References ==
{{reflist}}
{{reflist}}
{{refbegin}}
* {{cite book | first=Paul M. | last=Cohn | authorlink=Paul Cohn | edition=Revised ed. of Algebra, 2nd | title=Further algebra and applications | year=2003 | location=London | publisher=[[Springer-Verlag]] | isbn=1-85233-667-6 | zbl=1006.00001 }}
* {{cite book | first=Paul M. | last=Cohn | authorlink=Paul Cohn | edition=Revised ed. of Algebra, 2nd | title=Further algebra and applications | year=2003 | location=London | publisher=[[Springer-Verlag]] | isbn=1-85233-667-6 | zbl=1006.00001 }}
* {{cite book | last=Jacobson | first=Nathan | title=Basic algebra | publisher=Dover Publications | publication-place=Mineola, N.Y. | date=2009 | isbn=978-0-486-47189-1 | oclc=294885194 }}
{{refend}}


[[Category:Theorems in algebra]]
[[Category:Theorems in algebra]]
[[Category:Hua Luogeng]]



{{algebra-stub}}
{{algebra-stub}}

Latest revision as of 05:27, 15 May 2024

In algebra, Hua's identity[1] named after Hua Luogeng, states that for any elements a, b in a division ring, whenever . Replacing with gives another equivalent form of the identity:

Hua's theorem

[edit]

The identity is used in a proof of Hua's theorem,[2] which states that if is a function between division rings satisfying then is a homomorphism or an antihomomorphism. This theorem is connected to the fundamental theorem of projective geometry.

Proof of the identity

[edit]

One has

The proof is valid in any ring as long as are units.[3]

References

[edit]
  1. ^ Cohn 2003, §9.1
  2. ^ Cohn 2003, Theorem 9.1.3
  3. ^ Jacobson 2009, § 2.2. Exercise 9.
  • Cohn, Paul M. (2003). Further algebra and applications (Revised ed. of Algebra, 2nd ed.). London: Springer-Verlag. ISBN 1-85233-667-6. Zbl 1006.00001.
  • Jacobson, Nathan (2009). Basic algebra. Mineola, N.Y.: Dover Publications. ISBN 978-0-486-47189-1. OCLC 294885194.