Jump to content

Ribbon Hopf algebra: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Adding short description: "Algebraic structure"
 
(18 intermediate revisions by 16 users not shown)
Line 1: Line 1:
{{Short description|Algebraic structure}}
A '''Ribbon Hopf algebra''' <math>(A,m,\Delta,u,\varepsilon,\mathcal{R},\nu)</math> is a [[Quasi-triangular Hopf algebra]]
which possess an invertible central element <math>\nu</math> more commonly known as the ribbon element, such that the following conditions hold:
A '''ribbon Hopf algebra''' <math>(A,\nabla, \eta,\Delta,\varepsilon,S,\mathcal{R},\nu)</math> is a [[quasitriangular Hopf algebra]] which possess an invertible central element <math>\nu</math> more commonly known as the ribbon element, such that the following conditions hold:


:<math>\nu^{2}=uS(u), \; S(\nu)=\nu, \; \varepsilon (\nu)=1</math>
:<math>\nu^{2}=uS(u), \; S(\nu)=\nu, \; \varepsilon (\nu)=1</math>
:<math>\Delta (\nu)=(\mathcal{R}_{21}\mathcal{R}_{12})^{-1}(\nu \otimes \nu )</math>
:<math>\Delta (\nu)=(\mathcal{R}_{21}\mathcal{R}_{12})^{-1}(\nu \otimes \nu )</math>


such that <math>u=m(S\otimes id)(\mathcal{R}_{21})</math>.
where <math>u=\nabla(S\otimes \text{id})(\mathcal{R}_{21})</math>. Note that the element ''u'' exists for any quasitriangular Hopf algebra, and
<math>uS(u)</math> must always be central and satisfies <math>S(uS(u))=uS(u), \varepsilon(uS(u))=1, \Delta(uS(u)) =
(\mathcal{R}_{21}\mathcal{R}_{12})^{-2}(uS(u) \otimes uS(u))</math>, so that all that is required is that it have a central square root with the above properties.


Here
Where
:<math> A </math> is a vector space
:<math> A </math> is a vector space
:<math> m </math> is the multiplication map <math>m:A \otimes A \rightarrow A</math>
:<math> \nabla </math> is the multiplication map <math>\nabla:A \otimes A \rightarrow A</math>
:<math> \Delta </math> is the co-product map <math>\Delta: A \rightarrow A \otimes A</math>
:<math> \Delta </math> is the co-product map <math>\Delta: A \rightarrow A \otimes A</math>
:<math> u </math> is the unit operator <math>u:\mathbb{C} \rightarrow A</math>
:<math> \eta </math> is the unit operator <math>\eta:\mathbb{C} \rightarrow A</math>
:<math> \varepsilon </math> is the co-unit opertor <math>\varepsilon: A \rightarrow \mathbb{C}</math>
:<math> \varepsilon </math> is the co-unit operator <math>\varepsilon: A \rightarrow \mathbb{C}</math>
:<math> S </math> is the antipode <math>S: A\rightarrow A</math>
:<math>\mathcal{R}</math> is a universal R matrix
:<math>\mathcal{R}</math> is a universal R matrix


We assume that the underlying field <math>K</math> is <math>\mathbb{C}</math>
We assume that the underlying field <math>K</math> is <math>\mathbb{C}</math>

If <math> A </math> is finite-dimensional, one could equivalently call it ''ribbon Hopf'' if and only if its category of (say, left) modules is ribbon; if <math> A </math> is finite-dimensional and quasi-triangular, then it is ribbon if and only if its category of (say, left) modules is pivotal.


== See also ==
== See also ==
*[[Quasitriangular Hopf algebra]]
*[[Quasitriangular Hopf algebra]]
*[[Quasi-triangular Quasi-Hopf algebra]]
*[[Quasi-triangular quasi-Hopf algebra]]


== References ==
== References ==
* Altschuler, D., Coste, A.: Quasi-quantum groups, knots, three-manifolds and topological field theory. Commun. Math. Phys. 150 1992 83-107 http://arxiv.org/pdf/hep-th/9202047
*{{cite journal |last1=Altschuler |first1=D. |last2=Coste |first2=A. |title=Quasi-quantum groups, knots, three-manifolds and topological field theory |journal=[[Communications in Mathematical Physics|Commun. Math. Phys.]] |volume=150 |year=1992 |issue=1 |pages=83–107 |arxiv=hep-th/9202047 |doi=10.1007/bf02096567|bibcode=1992CMaPh.150...83A }}
* Chari, V.C., Pressley, A.: ''A Guide to Quantum Groups'' Cambridge University Press, 1994 ISBN 0-521-55884-0.
*{{cite book |last1=Chari |first1=V. C. |last2=Pressley |first2=A. |title=A Guide to Quantum Groups |url=https://archive.org/details/guidetoquantumgr0000char |url-access=registration |publisher=Cambridge University Press |year=1994 |isbn=0-521-55884-0 }}
* [[Vladimir Drinfeld]], ''Quasi-Hopf algebras'', Leningrad Math J. 1 (1989), 1419-1457
*{{cite journal |author-link=Vladimir Drinfeld |first=Vladimir |last=Drinfeld |title=Quasi-Hopf algebras |journal=Leningrad Math J. |volume=1 |year=1989 |pages=1419–1457 }}
* Majid, S.: ''Foundations of Quantum Group Theory'' Cambridge University Press, 1995
*{{cite book |first=Shahn |last=Majid |title=Foundations of Quantum Group Theory |publisher=Cambridge University Press |year=1995 }}


[[Category:Hopf algebras]]
[[Category:Hopf algebras]]

Latest revision as of 08:38, 5 June 2024

A ribbon Hopf algebra is a quasitriangular Hopf algebra which possess an invertible central element more commonly known as the ribbon element, such that the following conditions hold:

where . Note that the element u exists for any quasitriangular Hopf algebra, and must always be central and satisfies , so that all that is required is that it have a central square root with the above properties.

Here

is a vector space
is the multiplication map
is the co-product map
is the unit operator
is the co-unit operator
is the antipode
is a universal R matrix

We assume that the underlying field is

If is finite-dimensional, one could equivalently call it ribbon Hopf if and only if its category of (say, left) modules is ribbon; if is finite-dimensional and quasi-triangular, then it is ribbon if and only if its category of (say, left) modules is pivotal.

See also

[edit]

References

[edit]
  • Altschuler, D.; Coste, A. (1992). "Quasi-quantum groups, knots, three-manifolds and topological field theory". Commun. Math. Phys. 150 (1): 83–107. arXiv:hep-th/9202047. Bibcode:1992CMaPh.150...83A. doi:10.1007/bf02096567.
  • Chari, V. C.; Pressley, A. (1994). A Guide to Quantum Groups. Cambridge University Press. ISBN 0-521-55884-0.
  • Drinfeld, Vladimir (1989). "Quasi-Hopf algebras". Leningrad Math J. 1: 1419–1457.
  • Majid, Shahn (1995). Foundations of Quantum Group Theory. Cambridge University Press.