Szpiro's conjecture: Difference between revisions
→Original statement: section name change to original statement, since there are two here Tags: Mobile edit Mobile web edit Advanced mobile edit |
m Moving Category:Abc Conjecture to Category:Abc conjecture per Wikipedia:Categories for discussion/Speedy |
||
(29 intermediate revisions by 14 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Conjecture in number theory}} |
|||
{{Infobox mathematical statement |
{{Infobox mathematical statement |
||
| name = Modified Szpiro conjecture |
| name = Modified Szpiro conjecture |
||
Line 10: | Line 11: | ||
| open problem = |
| open problem = |
||
| known cases = |
| known cases = |
||
| implied by |
| implied by = |
||
| equivalent to = [[abc conjecture]] |
| equivalent to = [[abc conjecture]] |
||
| generalizations = |
| generalizations = |
||
Line 22: | Line 23: | ||
}} |
}} |
||
In [[number theory]], '''Szpiro's conjecture''' relates to the [[conductor of an elliptic curve|conductor]] and the discriminant of an [[elliptic curve]]. In a slightly modified form, it is equivalent to the well-known [[abc conjecture|''abc'' conjecture]]. It is named for [[Lucien Szpiro]], who formulated it in the 1980s. Szpiro's conjecture and its equivalent forms have been described as "the most important unsolved problem in [[Diophantine analysis]]" by [[Dorian Goldfeld]],<ref name="Goldfeld-1996">{{cite journal |last=Goldfeld |first=Dorian | author-link=Dorian M. Goldfeld |year=1996 |title=Beyond the last theorem |journal=[[Math Horizons]] |volume=4 |issue=September |pages=26–34 |jstor= 25678079 |doi=10.1080/10724117.1996.11974985 }}</ref> in part to its large number of consequences in number theory including [[Roth's theorem]], the [[Faltings's theorem|Mordell conjecture]], the [[Fermat–Catalan conjecture]], and [[Brocard's problem]].<ref>{{cite journal | first1=Enrico | last1=Bombieri|author-link=Enrico Bombieri | title=Roth's theorem and the abc-conjecture | journal=Preprint | year=1994 | publisher=ETH Zürich }}</ref><ref>{{Cite journal |last=Elkies |first=N. D. |author-link=Noam Elkies |title=ABC implies Mordell |journal= International Mathematics Research Notices|volume=1991 |year=1991 |pages=99–109 |doi=10.1155/S1073792891000144 |issue=7 |doi-access=free }}</ref><ref>{{Cite book |last=Pomerance |first=Carl |author-link=Carl Pomerance |chapter=Computational Number Theory |title=The Princeton Companion to Mathematics |publisher=[[Princeton University Press]] |year=2008 |pages=361–362 }}</ref><ref>{{Cite journal |first=Andrzej |last=Dąbrowski |title=On the diophantine equation ''x''! + ''A'' = ''y''<sup>2</sup> | journal=Nieuw Archief voor Wiskunde, IV. |volume=14 |pages=321–324 |year=1996 | zbl=0876.11015 }}</ref> |
|||
In [[number theory]], '''Szpiro's conjecture''' relates the [[conductor of an elliptic curve|conductor]] and the discriminant of an [[elliptic curve]]. In a slightly modified form, it is equivalent to the well-known [[abc conjecture]]. It is named for [[Lucien Szpiro]] who formulated it in the 1980s. |
|||
==Original statement== |
==Original statement== |
||
The conjecture states that: given ε > 0, there exists a constant ''C''(ε) such that for any elliptic curve ''E'' defined over '''Q''' with minimal discriminant Δ and conductor ''f'', |
The conjecture states that: given ε > 0, there exists a constant ''C''(ε) such that for any elliptic curve ''E'' defined over '''Q''' with minimal discriminant Δ and conductor ''f'', |
||
:<math> \vert\Delta\vert \leq C(\varepsilon ) \cdot f^{6+\varepsilon }. </math> |
:<math> \vert\Delta\vert \leq C(\varepsilon ) \cdot f^{6+\varepsilon }. </math> |
||
==Modified Szpiro conjecture== |
==Modified Szpiro conjecture== |
||
The '''modified Szpiro conjecture''' states that: given ε > 0, there exists a constant ''C''(ε) such that for any elliptic curve ''E'' defined over '''Q''' with invariants ''c''<sub>4</sub>, ''c''<sub>6</sub> and conductor ''f'' (using [[Tate's algorithm#Notation|notation from Tate's algorithm]]), |
The '''modified Szpiro conjecture''' states that: given ε > 0, there exists a constant ''C''(ε) such that for any elliptic curve ''E'' defined over '''Q''' with invariants ''c''<sub>4</sub>, ''c''<sub>6</sub> and conductor ''f'' (using [[Tate's algorithm#Notation|notation from Tate's algorithm]]), |
||
:<math> \max\{\vert c_4\vert^3,\vert c_6\vert^2\} \leq C(\varepsilon )\cdot f^{6+\varepsilon }. </math> |
:<math> \max\{\vert c_4\vert^3,\vert c_6\vert^2\} \leq C(\varepsilon )\cdot f^{6+\varepsilon }. </math> |
||
===''abc'' conjecture=== |
|||
The [[Abc conjecture|''abc'' conjecture]] originated as the outcome of attempts by [[Joseph Oesterlé]] and [[David Masser]] to understand Szpiro's conjecture,<ref>{{citation|title=Arithmetic deformation theory via arithmetic fundamental groups and nonarchimedean theta functions, notes on the work of Shinichi Mochizuki|journal= European Journal of Mathematics|first=Ivan|last=Fesenko|volume=1 |issue=3| pages=405–440 | year=2015 |url=https://www.maths.nottingham.ac.uk/personal/ibf/notesoniut.pdf |doi=10.1007/s40879-015-0066-0|doi-access=free}}.</ref> and was then shown to be equivalent to the modified Szpiro's conjecture.<ref>{{Citation | last1=Oesterlé | first1=Joseph | author-link=Joseph Oesterlé | title=Nouvelles approches du "théorème" de Fermat | url= http://www.numdam.org/item?id=SB_1987-1988__30__165_0 | series=Séminaire Bourbaki exp 694 |mr=992208 | year=1988 | journal=Astérisque | issn=0303-1179 | issue=161 | pages=165–186}}</ref> |
|||
==Consequences== |
|||
{{further|abc conjecture#Some consequences}} |
|||
Szpiro's conjecture and its modified form are known to imply several important mathematical results and conjectures, including [[Roth's theorem]],<ref>{{cite book |doi=10.1007/978-3-0348-0859-0_13|chapter=Lecture on the abc Conjecture and Some of Its Consequences|title=Mathematics in the 21st Century|series=Springer Proceedings in Mathematics & Statistics|year=2015|last1=Waldschmidt|first1=Michel|volume=98|pages=211–230|isbn=978-3-0348-0858-3|chapter-url=https://webusers.imj-prg.fr/~michel.waldschmidt/articles/pdf/abcLahoreProceedings.pdf}}</ref> [[Faltings's theorem]],<ref>{{Cite journal |last=Elkies |first=N. D. |author-link=Noam Elkies |title=ABC implies Mordell |journal= International Mathematics Research Notices|volume=1991 |year=1991 |pages=99–109 |doi=10.1155/S1073792891000144 |issue=7 |doi-access= free}}</ref> [[Fermat–Catalan conjecture]],<ref>{{Cite book |last=Pomerance |first=Carl |author-link=Carl Pomerance |chapter=Computational Number Theory |title=The Princeton Companion to Mathematics |publisher=Princeton University Press |year=2008 |pages=361–362 }}</ref> and a negative solution to the [[Erdős–Ulam problem]].<ref> |
|||
{{citation |
|||
| last1 = Pasten | first1 = Hector |
|||
| doi = 10.1007/s00605-016-0973-2 |
|||
| issue = 1 |
|||
| journal = [[Monatshefte für Mathematik]] |
|||
| mr = 3592123 |
|||
| pages = 99–126 |
|||
| title = Definability of Frobenius orbits and a result on rational distance sets |
|||
| volume = 182 |
|||
| year = 2017| s2cid = 7805117 |
|||
}} |
|||
</ref> |
|||
==Claimed proofs== |
==Claimed proofs== |
||
{{Main| |
{{Main|abc conjecture#Claimed proofs}} |
||
In August 2012, [[Shinichi Mochizuki]] claimed a proof of Szpiro's conjecture by developing a new theory called [[inter-universal Teichmüller theory]] (IUTT).<ref>{{cite journal |last1=Ball |first1=Peter |date= 10 September 2012|title=Proof claimed for deep connection between primes |url=https://www.nature.com/news/proof-claimed-for-deep-connection-between-primes-1.11378 |journal=Nature |
In August 2012, [[Shinichi Mochizuki]] claimed a proof of Szpiro's conjecture by developing a new theory called [[inter-universal Teichmüller theory]] (IUTT).<ref>{{cite journal |last1=Ball |first1=Peter |date= 10 September 2012|title=Proof claimed for deep connection between primes |url=https://www.nature.com/news/proof-claimed-for-deep-connection-between-primes-1.11378 |journal=Nature |doi=10.1038/nature.2012.11378 |access-date=19 April 2020|doi-access=free }}</ref> However, the papers have not been accepted by the mathematical community as providing a proof of the conjecture,<ref>{{cite magazine|magazine=[[New Scientist]]|title=Baffling ABC maths proof now has impenetrable 300-page 'summary'|url=https://www.newscientist.com/article/2146647-baffling-abc-maths-proof-now-has-impenetrable-300-page-summary/|first=Timothy|last=Revell|date=September 7, 2017}}</ref><ref>{{cite web | url=https://mathbabe.org/2015/12/15/notes-on-the-oxford-iut-workshop-by-brian-conrad/ |first = Brian |last=Conrad |author-link=Brian Conrad| date=December 15, 2015 | title=Notes on the Oxford IUT workshop by Brian Conrad | access-date=March 18, 2018}}</ref><ref>{{cite journal |last1=Castelvecchi |first1=Davide |date=8 October 2015 |title=The biggest mystery in mathematics: Shinichi Mochizuki and the impenetrable proof |journal=Nature |volume=526 |issue= 7572|pages=178–181 |doi=10.1038/526178a |bibcode=2015Natur.526..178C |pmid=26450038|doi-access=free }}</ref> with [[Peter Scholze]] and [[Jakob Stix]] concluding in March 2018 that the gap was "so severe that … small modifications will not rescue the proof strategy".<ref> |
||
{{ cite web | url=http://www.kurims.kyoto-u.ac.jp/~motizuki/SS2018-08. |
{{ cite web | url=http://www.kurims.kyoto-u.ac.jp/~motizuki/SS2018-08.pd | title=Why abc is still a conjecture |
||
|first1= Peter |last1= Scholze | |
|first1= Peter |last1= Scholze |author-link1= Peter Scholze |
||
|first2= Jakob |last2= Stix | |
|first2= Jakob |last2= Stix |author-link2= Jakob Stix |
||
| |
|archive-url=https://web.archive.org/web/20200208075321/http://www.kurims.kyoto-u.ac.jp/~motizuki/SS2018-08.pdf|archive-date=February 8, 2020|url-status=dead}} (updated version of their [http://www.kurims.kyoto-u.ac.jp/~motizuki/SS2018-05.pdf May report]|)</ref><ref>{{cite magazine|url=https://www.quantamagazine.org/titans-of-mathematics-clash-over-epic-proof-of-abc-conjecture-20180920/ |title=Titans of Mathematics Clash Over Epic Proof of ABC Conjecture |magazine= [[Quanta Magazine]] |date=September 20, 2018 |first= Erica |last= Klarreich |author-link= Erica Klarreich }}</ref><ref>{{ cite web | url=http://www.kurims.kyoto-u.ac.jp/~motizuki/IUTch-discussions-2018-03.html | title=March 2018 Discussions on IUTeich | access-date=October 2, 2018 }} Web-page by Mochizuki describing discussions and linking consequent publications and supplementary material</ref> |
||
==See also== |
|||
* [[Arakelov theory]] |
|||
==References== |
==References== |
||
{{Reflist}} |
|||
{{no footnotes|date=January 2016}} |
|||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
==Bibliography== |
|||
⚫ | * {{citation |first=S. |last=Lang |author-link=Serge Lang |title=Survey of Diophantine geometry |publisher=[[Springer-Verlag]] |location=Berlin |year=1997 |isbn=3-540-61223-8 | zbl=0869.11051 | page=51| url={{Google books|title=Encyclopedia of Mathematical Science vol.60|b9RqCQAAQBAJ|page=51|plainurl=yes}}}} |
||
⚫ | * {{Cite book|first=L. |last=Szpiro |title=Seminaire sur les pinceaux des courbes de genre au moins deux|chapter=Propriétés numériques du faisceau dualisant rélatif|series=Astérisque |volume=86 |issue=3 |year=1981 | zbl=0517.14006 | pages=44–78|url=http://www.numdam.org/item/AST_1981__86__R1_0.pdf }} |
||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
{{numtheory-stub}} |
{{numtheory-stub}} |
Latest revision as of 07:49, 9 June 2024
Field | Number theory |
---|---|
Conjectured by | Lucien Szpiro |
Conjectured in | 1981 |
Equivalent to | abc conjecture |
Consequences |
In number theory, Szpiro's conjecture relates to the conductor and the discriminant of an elliptic curve. In a slightly modified form, it is equivalent to the well-known abc conjecture. It is named for Lucien Szpiro, who formulated it in the 1980s. Szpiro's conjecture and its equivalent forms have been described as "the most important unsolved problem in Diophantine analysis" by Dorian Goldfeld,[1] in part to its large number of consequences in number theory including Roth's theorem, the Mordell conjecture, the Fermat–Catalan conjecture, and Brocard's problem.[2][3][4][5]
Original statement
[edit]The conjecture states that: given ε > 0, there exists a constant C(ε) such that for any elliptic curve E defined over Q with minimal discriminant Δ and conductor f,
Modified Szpiro conjecture
[edit]The modified Szpiro conjecture states that: given ε > 0, there exists a constant C(ε) such that for any elliptic curve E defined over Q with invariants c4, c6 and conductor f (using notation from Tate's algorithm),
abc conjecture
[edit]The abc conjecture originated as the outcome of attempts by Joseph Oesterlé and David Masser to understand Szpiro's conjecture,[6] and was then shown to be equivalent to the modified Szpiro's conjecture.[7]
Consequences
[edit]Szpiro's conjecture and its modified form are known to imply several important mathematical results and conjectures, including Roth's theorem,[8] Faltings's theorem,[9] Fermat–Catalan conjecture,[10] and a negative solution to the Erdős–Ulam problem.[11]
Claimed proofs
[edit]In August 2012, Shinichi Mochizuki claimed a proof of Szpiro's conjecture by developing a new theory called inter-universal Teichmüller theory (IUTT).[12] However, the papers have not been accepted by the mathematical community as providing a proof of the conjecture,[13][14][15] with Peter Scholze and Jakob Stix concluding in March 2018 that the gap was "so severe that … small modifications will not rescue the proof strategy".[16][17][18]
See also
[edit]References
[edit]- ^ Goldfeld, Dorian (1996). "Beyond the last theorem". Math Horizons. 4 (September): 26–34. doi:10.1080/10724117.1996.11974985. JSTOR 25678079.
- ^ Bombieri, Enrico (1994). "Roth's theorem and the abc-conjecture". Preprint. ETH Zürich.
- ^ Elkies, N. D. (1991). "ABC implies Mordell". International Mathematics Research Notices. 1991 (7): 99–109. doi:10.1155/S1073792891000144.
- ^ Pomerance, Carl (2008). "Computational Number Theory". The Princeton Companion to Mathematics. Princeton University Press. pp. 361–362.
- ^ Dąbrowski, Andrzej (1996). "On the diophantine equation x! + A = y2". Nieuw Archief voor Wiskunde, IV. 14: 321–324. Zbl 0876.11015.
- ^ Fesenko, Ivan (2015), "Arithmetic deformation theory via arithmetic fundamental groups and nonarchimedean theta functions, notes on the work of Shinichi Mochizuki" (PDF), European Journal of Mathematics, 1 (3): 405–440, doi:10.1007/s40879-015-0066-0.
- ^ Oesterlé, Joseph (1988), "Nouvelles approches du "théorème" de Fermat", Astérisque, Séminaire Bourbaki exp 694 (161): 165–186, ISSN 0303-1179, MR 0992208
- ^ Waldschmidt, Michel (2015). "Lecture on the abc Conjecture and Some of Its Consequences" (PDF). Mathematics in the 21st Century. Springer Proceedings in Mathematics & Statistics. Vol. 98. pp. 211–230. doi:10.1007/978-3-0348-0859-0_13. ISBN 978-3-0348-0858-3.
- ^ Elkies, N. D. (1991). "ABC implies Mordell". International Mathematics Research Notices. 1991 (7): 99–109. doi:10.1155/S1073792891000144.
- ^ Pomerance, Carl (2008). "Computational Number Theory". The Princeton Companion to Mathematics. Princeton University Press. pp. 361–362.
- ^ Pasten, Hector (2017), "Definability of Frobenius orbits and a result on rational distance sets", Monatshefte für Mathematik, 182 (1): 99–126, doi:10.1007/s00605-016-0973-2, MR 3592123, S2CID 7805117
- ^ Ball, Peter (10 September 2012). "Proof claimed for deep connection between primes". Nature. doi:10.1038/nature.2012.11378. Retrieved 19 April 2020.
- ^ Revell, Timothy (September 7, 2017). "Baffling ABC maths proof now has impenetrable 300-page 'summary'". New Scientist.
- ^ Conrad, Brian (December 15, 2015). "Notes on the Oxford IUT workshop by Brian Conrad". Retrieved March 18, 2018.
- ^ Castelvecchi, Davide (8 October 2015). "The biggest mystery in mathematics: Shinichi Mochizuki and the impenetrable proof". Nature. 526 (7572): 178–181. Bibcode:2015Natur.526..178C. doi:10.1038/526178a. PMID 26450038.
- ^ Scholze, Peter; Stix, Jakob. "Why abc is still a conjecture" (PDF). Archived from the original on February 8, 2020. (updated version of their May report|)
- ^ Klarreich, Erica (September 20, 2018). "Titans of Mathematics Clash Over Epic Proof of ABC Conjecture". Quanta Magazine.
- ^ "March 2018 Discussions on IUTeich". Retrieved October 2, 2018. Web-page by Mochizuki describing discussions and linking consequent publications and supplementary material
Bibliography
[edit]- Lang, S. (1997), Survey of Diophantine geometry, Berlin: Springer-Verlag, p. 51, ISBN 3-540-61223-8, Zbl 0869.11051
- Szpiro, L. (1981). "Propriétés numériques du faisceau dualisant rélatif". Seminaire sur les pinceaux des courbes de genre au moins deux (PDF). Astérisque. Vol. 86. pp. 44–78. Zbl 0517.14006.
- Szpiro, L. (1987), "Présentation de la théorie d'Arakelov", Contemp. Math., Contemporary Mathematics, 67: 279–293, doi:10.1090/conm/067/902599, ISBN 9780821850749, Zbl 0634.14012