Jump to content

Douady–Earle extension: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
OAbot (talk | contribs)
m Open access bot: hdl, doi added to citation with #oabot.
m clean up, typo(s) fixed: On the other hand → On the other hand, (2)
 
(18 intermediate revisions by 6 users not shown)
Line 1: Line 1:
In [[mathematics]], the '''Douady–Earle extension''', named after [[Adrien Douady]] and Clifford Earle, is a way of extending homeomorphisms of the unit circle in the complex plane to homeomorphisms of the closed unit disk, such that the extension is a diffeomorphism of the open disk. The extension is analytic on the open disk. The extension has an important equivariance property: if the homeomorphism is composed on either side with a Möbius transformation preserving the unit circle the extension is also obtained by composition with the same Möbius transformation. If the homeomorphism is [[quasisymmetric map|quasisymmetric]], the diffeomorphism is [[quasiconformal mapping|quasiconformal]]. An extension for quasisymmetric homeomorphisms had previously been given by [[Lars Ahlfors|Ahlfors]] and [[Arne Beurling]]; a different equivariant construction had been given in 1985 by Pekka Tukia. Equivariant extensions have important applications in [[Teichmüller theory]], for example they lead to a quick proof of the contractibility of the [[Teichmüller space]] of a [[Fuchsian group]].
In [[mathematics]], the '''Douady–Earle extension''', named after [[Adrien Douady]] and [[Clifford John Earle Jr.|Clifford Earle]], is a way of extending homeomorphisms of the unit circle in the complex plane to homeomorphisms of the closed unit disk, such that the extension is a diffeomorphism of the open disk. The extension is analytic on the open disk. The extension has an important equivariance property: if the homeomorphism is composed on either side with a Möbius transformation preserving the unit circle the extension is also obtained by composition with the same Möbius transformation. If the homeomorphism is [[quasisymmetric map|quasisymmetric]], the diffeomorphism is [[quasiconformal mapping|quasiconformal]]. An extension for quasisymmetric homeomorphisms had previously been given by [[Lars Ahlfors]] and [[Arne Beurling]]; a different equivariant construction had been given in 1985 by Pekka Tukia. Equivariant extensions have important applications in [[Teichmüller theory]]; for example, they lead to a quick proof of the contractibility of the [[Teichmüller space]] of a [[Fuchsian group]].


==Definition==
==Definition==
By the [[Radó–Kneser–Choquet theorem]], the [[Poisson integral]]
By the [[Radó–Kneser–Choquet theorem]], the [[Poisson integral]]


:<math>\displaystyle{F_f(re^{i\theta}) ={1\over 2\pi} \int_0^{2\pi} f(\varphi)\cdot {1- r^2\over 1 - 2r\cos (\theta -\varphi) + r^2}\,d\varphi,}</math>
:<math> F_f(re^{i\theta}) ={1\over 2\pi} \int_0^{2\pi} f(\varphi)\cdot {1- r^2\over 1 - 2r\cos (\theta -\varphi) + r^2}\,d\varphi, </math>


of a homeomorphism ''f'' of the circle defines a [[harmonic function|harmonic]] diffeomorphism of the unit disk extending ''f''. If ''f'' is [[quasisymmetric map|quasisymmetric]], the extension is not necessarily quasiconformal, i.e. the complex dilatation
of a homeomorphism ''f'' of the circle defines a [[harmonic function|harmonic]] diffeomorphism of the unit disk extending ''f''. If ''f'' is [[quasisymmetric map|quasisymmetric]], the extension is not necessarily quasiconformal, i.e. the complex dilatation


:<math>\displaystyle{\mu(z)={\partial_{\overline{z}}F_f\over \partial_z F_f},}</math>
:<math> \mu(z)={\partial_{\overline{z}}F_f\over \partial_z F_f}, </math>


does not necessarily satisfy
does not necessarily satisfy


:<math>\displaystyle{\sup_{|z|<1} |\mu(z)| < 1.}</math>
:<math> \sup_{|z|<1} |\mu(z)| < 1. </math>


However ''F'' can be used to define another analytic extension ''H''<sub>''f''</sub> of ''f''<sup>−1</sup> which does satisfy this condition. It follows that
However ''F'' can be used to define another analytic extension ''H''<sub>''f''</sub> of ''f''<sup>−1</sup> which does satisfy this condition. It follows that


:<math>\displaystyle{E(f)=H_{f^{-1}}}</math>
:<math> E(f)=H_{f^{-1}} </math>


is the required extension.
is the required extension.
Line 22: Line 22:
For |''a''| < 1 define the Möbius transformation
For |''a''| < 1 define the Möbius transformation


:<math>\displaystyle{g_a(z)= {z-a\over 1- \overline{a}z}.}</math>
:<math> g_a(z)= {z-a\over 1- \overline{a}z}. </math>


It preserves the unit circle and unit disk sending ''a'' to 0.
It preserves the unit circle and unit disk sending ''a'' to 0.
Line 28: Line 28:
If ''g'' is any Möbius transformation preserving the unit circle and disk, then
If ''g'' is any Möbius transformation preserving the unit circle and disk, then


:<math>\displaystyle{F_{f\circ g} = F_f\circ g.}</math>
:<math> F_{f\circ g} = F_f\circ g. </math>


For |''a''| < 1 define
For |''a''| < 1 define


:<math>\displaystyle{w=H_f(a)}</math>
:<math> w=H_f(a) </math>


to be the unique ''w'' with |''w''| < 1 and
to be the unique ''w'' with |''w''| < 1 and


:<math>\displaystyle{F_{g_a\circ f}(w) =0.}</math>
:<math> F_{g_a\circ f}(w) =0. </math>


For |''a''| =1 set
For |''a''| =1 set


:<math>\displaystyle{H_f(a)=f^{-1}(a).}</math>
:<math> H_f(a)=f^{-1}(a). </math>


==Properties==
==Properties==
*'''Compatibility with Möbius transformations.''' By construction
*'''Compatibility with Möbius transformations.''' By construction


::<math>\displaystyle{H_{g\circ f \circ h} = h^{-1}\circ H_f \circ g^{-1}}</math>
::<math> H_{g\circ f \circ h} = h^{-1}\circ H_f \circ g^{-1} </math>


:for any Möbius transformations ''g'' and ''h'' preserving the unit circle and disk.
:for any Möbius transformations ''g'' and ''h'' preserving the unit circle and disk.

*'''Functional equation.''' If |''a''|, |''b''| < 1 and

::<math> \Phi(a,b)={1\over 2\pi} \int_0^{2\pi} \left( {f(e^{i\theta}) -b\over 1-\overline{b}f(e^{i\theta})} \right) {1-|a|^2\over |a-e^{i\theta}|^2}\, d\theta ,</math>

:then <math> \Phi(a,b) =0 .</math>


*'''Continuity.''' If |''a''|, |''b''| < 1, define
*'''Continuity.''' If |''a''|, |''b''| < 1, define


::<math>\displaystyle{\Phi(a,b)= F_{g_a\circ f}(b)={1\over 2\pi}\int_0^{2\pi} g_a\circ f\circ g_{-b}(e^{i\theta})\, d\theta={1\over 2\pi}\int_0^{2\pi} \left({f(e^{i\theta}) -b\over 1-\overline{b}f(e^{i\theta})}\right) {1-|a|^2\over |a-e^{i\theta}|^2}\, d\theta}</math>
::<math> \Phi(a,b)= F_{g_a\circ f}(b)={1\over 2\pi} \int_0^{2\pi} g_a\circ f\circ g_{-b} (e^{i\theta})\, d\theta = {1\over 2\pi} \int_0^{2\pi} \left( {f(e^{i\theta}) -b\over 1-\overline{b} f(e^{i\theta})} \right) {1-|a|^2\over |a-e^{i\theta}|^2} \, d\theta </math>


:If ''z''<sub>''n''</sub> and ''w''<sub>''n''</sub> lie in the unit disk and tend to ''z'' and ''w'' and homeomorphisms of the circle are defined by
:If ''z''<sub>''n''</sub> and ''w''<sub>''n''</sub> lie in the unit disk and tend to ''z'' and ''w'' and homeomorphisms of the circle are defined by


::<math>\displaystyle{f_n=g_{z_n}\circ f \circ g_{-w_n},}</math>
::<math> f_n=g_{z_n}\circ f \circ g_{-w_n}, </math>


:then ''f''<sub>''n''</sub> tends almost everywhere to
:then ''f''<sub>''n''</sub> tends almost everywhere to


**''g''<sub>''z''</sub> ∘ ''f'' ∘ ''g''<sub>−''w''</sub> if |''z''|, |''w''| < 1;
:*''g''<sub>''z''</sub> ∘ ''f'' ∘ ''g''<sub>−''w''</sub> if |''z''|, |''w''| < 1;
**''g''<sub>''z''</sub> ∘ ''f'' (''w'') if |''z''| < 1 and |''w''| = 1;
:*''g''<sub>''z''</sub> ∘ ''f'' (''w'') if |''z''| < 1 and |''w''| = 1;
**−''z'' if |''z''| =1 and |''w''| ≤ 1 with ''w'' ≠ ''f''<sup>−1</sup>(''z'').
:*−''z'' if |''z''| = 1 and |''w''| ≤ 1 with ''w'' ≠ ''f''<sup>−1</sup>(''z'').


:By the dominated convergence theorem, it follows that Φ(''z''<sub>''n''</sub>,''w''<sub>''n''</sub>) has a non-zero limit if ''w'' ≠ ''H''<sub>''f''</sub>(''z''). This implies that ''H''<sub>''f''</sub> is continuous on the closed unit disk. Indeed otherwise, by compactness, there would be a sequence ''z''<sub>''n''</sub> tending to ''z'' in the closed disk, with ''w''<sub>''n''</sub> = ''H''<sub>''f''</sub>(''z''<sub>''n''</sub>) tending to a limit ''w'' ≠ ''H''<sub>''f''</sub>(''z''). But then Φ(''z''<sub>''n''</sub>,''w''<sub>''n''</sub>) = 0 so has limit zero, a contradiction, since ''w'' ≠ ''H''<sub>''f''</sub>(''z'').
:By the dominated convergence theorem, it follows that Φ(''z''<sub>''n''</sub>,''w''<sub>''n''</sub>) has a non-zero limit if ''w'' ≠ ''H''<sub>''f''</sub>(''z''). This implies that ''H''<sub>''f''</sub> is continuous on the closed unit disk. Indeed otherwise, by compactness, there would be a sequence ''z''<sub>''n''</sub> tending to ''z'' in the closed disk, with ''w''<sub>''n''</sub> = ''H''<sub>''f''</sub>(''z''<sub>''n''</sub>) tending to a limit ''w'' ≠ ''H''<sub>''f''</sub>(''z''). But then Φ(''z''<sub>''n''</sub>,''w''<sub>''n''</sub>) = 0 so has limit zero, a contradiction, since ''w'' ≠ ''H''<sub>''f''</sub>(''z'').
Line 69: Line 75:
:If ''f'' has Fourier series
:If ''f'' has Fourier series


::<math>\displaystyle{f(e^{i\theta}) = \sum_m a_m e^{im\theta},}</math>
::<math> f(e^{i\theta}) = \sum_m a_m e^{im\theta}, </math>


:then the derivatives of ''F''<sub>''f''</sub> at 0 are given by
:then the derivatives of ''F''<sub>''f''</sub> at 0 are given by


::<math>\displaystyle{\partial_z F_f (0)= a_{1},\,\,\, \partial_{\overline{z}} F_f(0) =a_{-1}.}</math>
::<math> \partial_z F_f (0)= a_1,\qquad \partial_{\overline{z}} F_f(0) =a_{-1}. </math>


:Thus the Jacobian of ''F''<sub>''f''</sub> at 0 is given by
:Thus the Jacobian of ''F''<sub>''f''</sub> at 0 is given by


::<math> \displaystyle{|\partial_z F_f(0)|^2 - |\partial_{\overline{z}} F_f(0)|^2 = |a_{1}|^2 - |a_{-1}|^2.}</math>
::<math> |\partial_z F_f(0)|^2 - |\partial_{\overline{z}} F_f(0)|^2 = |a_1|^2 - |a_{-1}|^2. </math>


:Since ''F''<sub>''f''</sub> is an orientation-preserving diffeomorphism, its Jacobian is positive:
:Since ''F''<sub>''f''</sub> is an orientation-preserving diffeomorphism, its Jacobian is positive:


::<math>\displaystyle{|a_{1}|^2 - |a_{-1}|^2 >0.}</math>
::<math> |a_{1}|^2 - |a_{-1}|^2 >0. </math>


:The function Φ(''z'',''w'') is analytic and so smooth. Its derivatives at (0,0) are given by
:The function Φ(''z'',''w'') is analytic and so smooth. Its derivatives at (0,0) are given by


::<math>\displaystyle{\Phi_z(0,0)=a_{-1},\,\,\Phi_{\overline{z}}(0,0)=a_{1},\,\, \Phi_{w}(0,0) = -1,\,\, \Phi_{\overline{w}}(0,0) = {1\over 2\pi} \int_0^{2\pi} f(e^{i\theta})^2\, d\theta=b.}</math>
::<math> \Phi_z(0,0)=a_{-1},\quad \Phi_{\overline{z}}(0,0)=a_{1},\quad \Phi_w(0,0) = -1,\quad \Phi_{\overline{w}}(0,0) = {1\over 2\pi} \int_0^{2\pi} f(e^{i\theta})^2\, d\theta=b. </math>


:Direct calculation shows that
:Direct calculation shows that


::<math>\displaystyle{|\Phi_{w}(0,0)|^2 - |\Phi_{\overline{w}}(0,0)|^2=1-\left|{1\over 2\pi}\int_0^{2\pi} f(e^{i\theta})^2 \, d\theta\right|^2 \ge 0.}</math>
::<math> |\Phi_{w}(0,0)|^2 - |\Phi_{\overline{w}}(0,0)|^2=1-\left|{1\over 2\pi}\int_0^{2\pi} f(e^{i\theta})^2 \, d\theta\right|^2 \ge 0. </math>


:by the [[Cauchy–Schwarz inequality]]. If the right hand side vanished, then equality would occur in the Cauchy-Schwarz inequality forcing
:by the [[Cauchy–Schwarz inequality]]. If the right hand side vanished, then equality would occur in the Cauchy-Schwarz inequality forcing


::<math>\displaystyle{f(e^{i\theta}) =\zeta \overline{f(e^{i\theta})}}</math>
::<math> f(e^{i\theta}) =\zeta \overline{f(e^{i\theta})} </math>


:for some ζ in '''T''' and for all θ, a contradiction since ''f'' assumes all values in '''T'''. The left hand side is therefore strictly positive and |''b''| < 1.
:for some ζ in '''T''' and for all θ, a contradiction since ''f'' assumes all values in '''T'''. The left hand side is therefore strictly positive and |''b''| < 1.
Line 99: Line 105:
:Consequently the [[implicit function theorem]] can be applied. It implies that ''H''<sub>''f''</sub>(''z'') is smooth near o. Its Jacobian can be computed by implicit differentiation:
:Consequently the [[implicit function theorem]] can be applied. It implies that ''H''<sub>''f''</sub>(''z'') is smooth near o. Its Jacobian can be computed by implicit differentiation:


::<math>\displaystyle{|\partial_z H_f(0)|^2 - |\partial_{\overline{z}}H_f(0)|^2 = {|\Phi_z(0,0)|^2 - |\Phi_{\overline{z}}(0,0)|^2 \over |\Phi_w(0,0)|^2 -|\Phi_{\overline{w}}(0,0)|^2} >0.}</math>
::<math> |\partial_z H_f(0)|^2 - |\partial_{\overline{z}}H_f(0)|^2 = {|\Phi_z(0,0)|^2 - |\Phi_{\overline{z}}(0,0)|^2 \over |\Phi_w(0,0)|^2 -|\Phi_{\overline{w}}(0,0)|^2} >0. </math>


:Moreover
:Moreover


::<math>\displaystyle{{\partial_{\overline{z}}H_f (0)\over \partial_{z} H_f(0)}=g_b\left(-{a_{-1}\over \overline{a_{1}}}\right).}</math>
::<math> {\partial_{\overline{z}}H_f (0)\over \partial_z H_f(0)}=g_b\left(-{a_{-1}\over \overline{a}_1}\right). </math>


*'''Homeomorphism on closed disk and diffeomorphism on open disk.''' It is enough to show that ''H''<sub>''f''</sub> is a homeomorphism. By continuity its image is compact so closed. The non-vanishing of the Jacobian, implies that ''H''<sub>''f''</sub> is an open mapping on the unit disk, so that the image of the open disk is open. Hence the image of the closed disk is an open and closed subset of the closed disk. By connectivity, it must be the whole disk. For |''w''| < 1, the inverse image of ''w'' is closed, so compact, and entirely contained in the open disk. Since ''H''<sub>''f''</sub> is locally a homeomorphism, it must be a finite set. The set of points ''w'' in the open disk with exactly ''n'' preimages is open. By connectivity every point has the same number ''N'' of preimages. Since the open disk is [[simply connected]], ''N'' = 1. (In fact taking any preimage of the origin, every radial line has a unique lifting to a preimage, and so there is an open subset of the unit disk mapping homeomorphically onto the open disc. If ''N'' > 1, its complement would also have to be open, contradicting connectivity.)
*'''Homeomorphism on closed disk and diffeomorphism on open disk.''' It is enough to show that ''H''<sub>''f''</sub> is a homeomorphism. By continuity its image is compact so closed. The non-vanishing of the Jacobian, implies that ''H''<sub>''f''</sub> is an open mapping on the unit disk, so that the image of the open disk is open. Hence the image of the closed disk is an open and closed subset of the closed disk. By connectivity, it must be the whole disk. For |''w''| < 1, the inverse image of ''w'' is closed, so compact, and entirely contained in the open disk. Since ''H''<sub>''f''</sub> is locally a homeomorphism, it must be a finite set. The set of points ''w'' in the open disk with exactly ''n'' preimages is open. By connectivity every point has the same number ''N'' of preimages. Since the open disk is [[simply connected]], ''N'' = 1. (In fact taking any preimage of the origin, every radial line has a unique lifting to a preimage, and so there is an open subset of the unit disk mapping homeomorphically onto the open disc. If ''N'' > 1, its complement would also have to be open, contradicting connectivity.)
Line 112: Line 118:
A homeomorphism ''f'' of the circle is [[quasisymmetric map|''quasisymmetric'']] if there are constants ''a'', ''b'' > 0 such that
A homeomorphism ''f'' of the circle is [[quasisymmetric map|''quasisymmetric'']] if there are constants ''a'', ''b'' > 0 such that


:<math>\displaystyle{{|f(z_1)-f(z_2)|\over |f(z_1)-f(z_3)|} \le a {|z_1-z_2|^b\over |z_1-z_3|^b}.}</math>
:<math> {|f(z_1)-f(z_2)|\over |f(z_1)-f(z_3)|} \le a {|z_1-z_2|^b\over |z_1-z_3|^b}. </math>


It is ''quasi-Möbius'' is there are constants ''c'', ''d'' > 0 such that
It is ''quasi-Möbius'' is there are constants ''c'', ''d'' > 0 such that


:<math>\displaystyle{|(f(z_1),f(z_2);f(z_3),f(z_4))| \le c |(z_1,z_2;z_3,z_4)|^d,}</math>
:<math> |(f(z_1),f(z_2);f(z_3),f(z_4))| \le c |(z_1,z_2;z_3,z_4)|^d, </math>


where
where


:<math>\displaystyle{ (z_1,z_2;z_3,z_4)={(z_1-z_3)(z_2-z_4)\over(z_2-z_3)(z_1-z_4)}}</math>
:<math> (z_1,z_2;z_3,z_4)={(z_1-z_3)(z_2-z_4)\over(z_2-z_3)(z_1-z_4)} </math>


denotes the [[cross-ratio]].
denotes the [[cross-ratio]].


If ''f'' is quasisymmetric then it is also quasi-Möbius, with ''c'' = ''a''<sup>2</sup> and ''d'' = ''b'': this follows by multiplying the first inequality for (''z''<sub>1</sub>,''z''<sub>3</sub>,''z''<sub>4</sub>) and (''z''<sub>2</sub>,''z''<sub>4</sub>,''z''<sub>3</sub>).
If ''f'' is quasisymmetric then it is also quasi-Möbius, with ''c'' = ''a''<sup>2</sup> and ''d'' = ''b'': this follows by multiplying the first inequality for (''z''<sub>1</sub>,''z''<sub>3</sub>,''z''<sub>4</sub>) and (''z''<sub>2</sub>,''z''<sub>4</sub>,''z''<sub>3</sub>).


It is immediate that the quasi-Möbius homeomorphisms are closed under the operations of inversion and composition.
It is immediate that the quasi-Möbius homeomorphisms are closed under the operations of inversion and composition.
Line 130: Line 136:
The [[Beltrami equation|complex dilatation]] μ of a diffeomorphism ''F'' of the unit disk is defined by
The [[Beltrami equation|complex dilatation]] μ of a diffeomorphism ''F'' of the unit disk is defined by


:<math>\displaystyle{\mu_F(z)={\partial_{\overline{z}}F(z)\over \partial_z F(z)}.}</math>
:<math> \mu_F(z)={\partial_{\overline{z}}F(z)\over \partial_z F(z)}. </math>


If ''F'' and ''G'' are diffeomorphisms of the disk, then
If ''F'' and ''G'' are diffeomorphisms of the disk, then


:<math>\displaystyle{\mu_{G\circ F^{-1}}\circ F={F_z\over \overline{F_z}} {\mu_G-\mu_F\over 1 -\overline{\mu_F}\mu_G}.}</math>
:<math> \mu_{G\circ F^{-1}}\circ F={F_z\over \overline{F}_z} {\mu_G-\mu_F\over 1 -\overline{\mu}_F\mu_G}. </math>


In particular if ''G'' is holomorphic, then
In particular if ''G'' is holomorphic, then


:<math>\displaystyle{\mu_{F\circ G^{-1}} \circ G = {G_z\over \overline{G_z}} \mu_F,\,\,\, \mu_{G^{-1}\circ F}=\mu_F.}</math>
:<math> \mu_{F\circ G^{-1}} \circ G = {G_z\over \overline{G}_z} \mu_F,\,\,\, \mu_{G^{-1}\circ F}=\mu_F. </math>


When ''F'' = ''H''<sub>''f''</sub>,
When ''F'' = ''H''<sub>''f''</sub>,


:<math>\displaystyle{\mu_F(0)=g_b\left( -{a_{-1}\over \overline{a_{1}}}\right),}</math>
:<math> \mu_F(0)=g_b\left( -{a_{-1}\over \overline{a}_1}\right), </math>


where
where


:<math>\displaystyle{a_{\pm 1}={1\over 2\pi} \int_0^{2\pi} f(e^{i\theta})e^{\mp i\theta} \, d\theta,\,\,\, b={1\over 2\pi} \int_0^{2\pi} f(e^{i\theta})^2 \, d\theta.}</math>
:<math> a_{\pm 1}={1\over 2\pi} \int_0^{2\pi} f(e^{i\theta})e^{\mp i\theta} \, d\theta,\qquad b={1\over 2\pi} \int_0^{2\pi} f(e^{i\theta})^2 \, d\theta. </math>


To prove that ''F'' = ''H''<sub>''f''</sub> is quasiconformal amounts to showing that
To prove that ''F'' = ''H''<sub>''f''</sub> is quasiconformal amounts to showing that


:<math>\displaystyle{\|\mu_F\|_\infty < 1.}</math>
:<math> \|\mu_F\|_\infty < 1. </math>


Since ''f'' ia a quasi-Möbius homeomorphism the compositions ''g''<sub>1</sub> ∘ ''f'' ∘ ''g''<sub>2</sub> with ''g''<sub>''i''</sub> Möbius transformations satisfy exactly the same estimates, since Möbius transformations preserve the cross ratio. So to prove that ''H''<sub>''f''</sub> is quasiconformal it suffices to show that if ''f'' is any quasi-Möbius homeomorphism fixing 1, ''i'' and −''i'', with fixed ''c'' and ''d'', then the quantities
Since ''f'' is a quasi-Möbius homeomorphism the compositions ''g''<sub>1</sub> ∘ ''f'' ∘ ''g''<sub>2</sub> with ''g''<sub>''i''</sub> Möbius transformations satisfy exactly the same estimates, since Möbius transformations preserve the cross ratio. So to prove that ''H''<sub>''f''</sub> is quasiconformal it suffices to show that if ''f'' is any quasi-Möbius homeomorphism fixing 1, ''i'' and −''i'', with fixed ''c'' and ''d'', then the quantities


:<math>\displaystyle{\Lambda(f)=\left|g_b\left( -{a_{-1}\over \overline{a_{1}}}\right)\right|}</math>
:<math> \Lambda(f)=\left|g_b\left( -{a_{-1}\over \overline{a}_1}\right)\right| </math>


have an upper bound strictly less than one.
have an upper bound strictly less than one.


On the other hand if ''f'' is quasi-Möbius and fixes 1, ''i'' and −''i'', then ''f'' satisfies a [[Hölder continuity]] condition:
On the other hand, if ''f'' is quasi-Möbius and fixes 1, ''i'' and −''i'', then ''f'' satisfies a [[Hölder continuity]] condition:


:<math>\displaystyle{|f(z)-f(w)|\le C |z-w|^d,}</math>
:<math> |f(z)-f(w)|\le C |z-w|^d, </math>


for another positive constant ''C'' independent of ''f''. The same is true for the ''f''<sup>−1</sup>'s. But then the [[Arzelà–Ascoli theorem]] implies these homeomorphisms form a compact subset in C('''T'''). The non-linear functional Λ is continuous on this subset and therefore attains its upper bound at some ''f''<sub>0</sub>. On the other hand Λ(''f''<sub>0</sub>) < 1, so the upper bound is strictly less than 1.
for another positive constant ''C'' independent of ''f''. The same is true for the ''f''<sup>−1</sup>'s. But then the [[Arzelà–Ascoli theorem]] implies these homeomorphisms form a compact subset in C('''T'''). The non-linear functional Λ is continuous on this subset and therefore attains its upper bound at some ''f''<sub>0</sub>. On the other hand, Λ(''f''<sub>0</sub>) < 1, so the upper bound is strictly less than 1.


The uniform Hölder estimate for ''f'' is established in {{harvtxt|Väisälä|1984}} as follows. Take ''z'', ''w'' in '''T'''.
The uniform Hölder estimate for ''f'' is established in {{harvtxt|Väisälä|1984}} as follows. Take ''z'', ''w'' in '''T'''.


*If |''z'' − 1| ≤ 1/4 and |''z'' - ''w''| ≤ 1/8, then |''z'' ± ''i''| ≥ 1/4 and |''w'' ± ''i''| ≥ 1/8. But then
*If |''z'' − 1| ≤ 1/4 and |''z'' ''w''| ≤ 1/8, then |''z'' ± ''i''| ≥ 1/4 and |''w'' ± ''i''| ≥ 1/8. But then


::<math>\displaystyle{|(w,i; z,-i)| \le 16|z-w|,\,\,\, |(f(w),i; f(z),-i)| \ge |f(z)-f(w)|/8,}</math>
::<math> |(w,i; z,-i)| \le 16|z-w|,\,\,\, |(f(w),i; f(z),-i)| \ge |f(z)-f(w)|/8, </math>


:so there is a corresponding Hölder estimate.
:so there is a corresponding Hölder estimate.


*If |''z'' - ''w''| ≥ 1/8, the Hölder estimate is trivial since |''f''(''z'') - ''f''(''w'')| ≤ 2.
*If |''z'' ''w''| ≥ 1/8, the Hölder estimate is trivial since |''f''(''z'') ''f''(''w'')| ≤ 2.
*If |''z'' - 1| ≥ 1/4, then |''w'' - ζ| ≥ 1/4 for ζ = ''i'' or −''i''. But then
*If |''z'' 1| ≥ 1/4, then |''w'' ''ζ''| ≥ 1/4 for ζ = ''i'' or −''i''. But then


::<math>\displaystyle{ |(z,\zeta;w,1)| \le 8|z-w|,\,\,\, |(f(z),\zeta; f(w),1)|\ge |f(z)-f(w)|/8,}</math>
::<math> |(z,\zeta;w,1)| \le 8|z-w|,\qquad |(f(z),\zeta; f(w),1)|\ge |f(z)-f(w)|/8, </math>


:so there is a corresponding Hölder estimate.
:so there is a corresponding Hölder estimate.
Line 181: Line 187:
'''Comment.''' In fact every quasi-Möbius homeomorphism ''f'' is also quasisymmetric. This follows using the Douady–Earle extension, since every quasiconformal homeomorphism of the unit disk induces a quasisymmetric homeomorphism of the unit circle. It can also be proved directly, following {{harvtxt|Väisälä|1984}}
'''Comment.''' In fact every quasi-Möbius homeomorphism ''f'' is also quasisymmetric. This follows using the Douady–Earle extension, since every quasiconformal homeomorphism of the unit disk induces a quasisymmetric homeomorphism of the unit circle. It can also be proved directly, following {{harvtxt|Väisälä|1984}}


:<small>Indeed it is immediate that if ''f'' is quasi-Möbius so is its inverse. It then follows that ''f'' (and hence ''f''<sup>–1</sup>) is [[Hölder continuous]]. To see this Let ''S'' be the set of cube roots of unity, so that if ''a'' ≠ ''b'' in ''S'', then |''a'' − ''b''| = 2 sin {{pi}}/3 = {{radic|3}}. To prove a Hölder estimate, it can be assumed that ''x'' – ''y'' is uniformly small. Then both ''x'' and ''y'' are greater than a fixed distance away from ''a'', ''b'' in ''S'' with ''a'' ≠ ''b'', so the estimate follows by applying the quasi-Möbius inequality to ''x'', ''a'', ''y'', ''b''. To check that ''f'' is quasisymmetric, it suffices to find a uniform upper bound for |''f''(''x'') − ''f''(''y'')| / |''f''(''x'') − ''f''(''z'')| in the case of a triple with |''x'' − ''z''| = |''x'' − ''y''|, uniformly small. In this case there is a point ''w'' at a distance greater than 1 from ''x'', ''y'' and ''z''. Applying the quasi-Möbius inequality to ''x'', ''w'', ''y'' and ''z'' yields the required upper bound.</small>
:Indeed it is immediate that if ''f'' is quasi-Möbius so is its inverse. It then follows that ''f'' (and hence ''f''<sup>–1</sup>) is [[Hölder continuous]]. To see this, let ''S'' be the set of cube roots of unity, so that if ''a'' ≠ ''b'' in ''S'', then |''a'' − ''b''| = 2 sin {{pi}}/3 = {{radic|3}}. To prove a Hölder estimate, it can be assumed that ''x'' – ''y'' is uniformly small. Then both ''x'' and ''y'' are greater than a fixed distance away from ''a'', ''b'' in ''S'' with ''a'' ≠ ''b'', so the estimate follows by applying the quasi-Möbius inequality to ''x'', ''a'', ''y'', ''b''. To check that ''f'' is quasisymmetric, it suffices to find a uniform upper bound for |''f''(''x'') − ''f''(''y'')| / |''f''(''x'') − ''f''(''z'')| in the case of a triple with |''x'' − ''z''| = |''x'' − ''y''|, uniformly small. In this case there is a point ''w'' at a distance greater than 1 from ''x'', ''y'' and ''z''. Applying the quasi-Möbius inequality to ''x'', ''w'', ''y'' and ''z'' yields the required upper bound.


==References==
==References==
*{{citation|last=Douady|first= Adrien|author1-link=Adrien Douady|last2= Earle|first2 =Clifford J.|title=Conformally natural extension of homeomorphisms of the circle|journal=Acta Math.|volume= 157|year=1986|pages=23–48|doi=10.1007/bf02392590|doi-access=free}}
*{{citation|last=Douady|first= Adrien|author1-link=Adrien Douady|last2= Earle|first2 =Clifford J.|title=Conformally natural extension of homeomorphisms of the circle|journal=Acta Math.|volume= 157|year=1986|pages=23–48|doi=10.1007/bf02392590|doi-access=free|url=https://projecteuclid.org/download/pdf_1/euclid.acta/1485890437| authorlink2=Clifford John Earle Jr.}}
*{{citation|last=Hubbard|first= John Hamal|title= Teichmüller theory and applications to geometry, topology, and dynamics. Vol. 1. Teichmüller theory|publisher= Matrix Editions|year= 2006|isbn= 978-0-9715766-2-9}}
*{{citation|last=Hubbard|first= John Hamal|title= Teichmüller theory and applications to geometry, topology, and dynamics. Vol. 1. Teichmüller theory|publisher= Matrix Editions|year= 2006|isbn= 978-0-9715766-2-9|authorlink=John H. Hubbard}}
*{{citation|last=Kapovich|first= Michael|title= Hyperbolic manifolds and discrete groups|series= Progress in Mathematics|volume= 183| publisher=Birkhäuser|year= 2001|isbn=0-8176-3904-7}}
*{{citation|last=Kapovich|first= Michael|title= Hyperbolic manifolds and discrete groups|series= Progress in Mathematics|volume= 183| publisher=Birkhäuser|year= 2001|isbn=0-8176-3904-7}}
*{{citation|last=Partyka|first= Dariusz|title=The generalized Neumann-Poincaré operator and its spectrum|series=Dissertationes Math|volume= 366|year=1997}}
*{{citation|last=Lecko|first= A.|last2= Partyka|first2= D.|title=An alternative proof of a result due to Douady and Earle|journal=
Ann. Univ. Mariae Curie-Skłodowska Sect. A|volume=42|year= 1988|pages= 59–68| url=http://dlibra.umcs.lublin.pl/Content/31810/czas4050_42_1988_8.pdf}}
*{{citation|last=Partyka|first=Dariusz|last2= Sakan|first2= Ken-Ichi|last3= Zając|first3= Józef|title=The harmonic and quasiconformal extension operators|pages= 141–177|journal=Banach Center Publ.|volume= 48|year= 1999|doi=10.4064/-48-1-141-177|doi-access= free}}
*{{citation|last=Väisälä|first= Jussi|title=Quasi-Möbius maps|journal=J. Analyse Math. |volume=44|year=1984|pages= 218–234|doi=10.1007/bf02790198|hdl= 10338.dmlcz/107793|hdl-access=free}}
*{{citation|last=Partyka|first= Dariusz|title=The generalized Neumann-Poincaré operator and its spectrum|journal=Dissertationes Math.|volume= 366|year=1997|url= http://pldml.icm.edu.pl/pldml/element/bwmeta1.element.zamlynska-7660e1af-389e-4bf7-91a1-fb5f3b08165e/c/rm36601.pdf}}
*{{citation|last=Partyka|first=Dariusz|last2= Sakan|first2= Ken-Ichi|last3= Zając|first3= Józef|title=The harmonic and quasiconformal extension operators |url=http://matwbn.icm.edu.pl/ksiazki/bcp/bcp48/bcp4816.pdf|pages= 141–177|journal=Banach Center Publ.|volume= 48|year= 1999|doi=10.4064/-48-1-141-177|doi-access= free}}
*{{citation|last=Sakan|first= Ken-ichi|last2=Zając|first2= Józef|title=The Douady-Earle extension of quasihomographies|pages= 35–44|volume= 37|journal=Banach Center Publ.|year= 1996|url= http://matwbn.icm.edu.pl/ksiazki/bcp/bcp37/bcp3714.pdf |doi=10.4064/-37-1-35-44 |doi-access=free}}
*{{citation|last=Väisälä|first= Jussi|title=Quasi-Möbius maps|journal=[[Journal d'Analyse Mathématique]] |volume=44|year=1984|pages= 218–234|doi=10.1007/bf02790198|doi-access=|s2cid= 189767039}}


{{DEFAULTSORT:Douady-Earle extension}}
{{DEFAULTSORT:Douady-Earle extension}}

Latest revision as of 01:17, 15 June 2024

In mathematics, the Douady–Earle extension, named after Adrien Douady and Clifford Earle, is a way of extending homeomorphisms of the unit circle in the complex plane to homeomorphisms of the closed unit disk, such that the extension is a diffeomorphism of the open disk. The extension is analytic on the open disk. The extension has an important equivariance property: if the homeomorphism is composed on either side with a Möbius transformation preserving the unit circle the extension is also obtained by composition with the same Möbius transformation. If the homeomorphism is quasisymmetric, the diffeomorphism is quasiconformal. An extension for quasisymmetric homeomorphisms had previously been given by Lars Ahlfors and Arne Beurling; a different equivariant construction had been given in 1985 by Pekka Tukia. Equivariant extensions have important applications in Teichmüller theory; for example, they lead to a quick proof of the contractibility of the Teichmüller space of a Fuchsian group.

Definition

[edit]

By the Radó–Kneser–Choquet theorem, the Poisson integral

of a homeomorphism f of the circle defines a harmonic diffeomorphism of the unit disk extending f. If f is quasisymmetric, the extension is not necessarily quasiconformal, i.e. the complex dilatation

does not necessarily satisfy

However F can be used to define another analytic extension Hf of f−1 which does satisfy this condition. It follows that

is the required extension.

For |a| < 1 define the Möbius transformation

It preserves the unit circle and unit disk sending a to 0.

If g is any Möbius transformation preserving the unit circle and disk, then

For |a| < 1 define

to be the unique w with |w| < 1 and

For |a| =1 set

Properties

[edit]
  • Compatibility with Möbius transformations. By construction
for any Möbius transformations g and h preserving the unit circle and disk.
  • Functional equation. If |a|, |b| < 1 and
then
  • Continuity. If |a|, |b| < 1, define
If zn and wn lie in the unit disk and tend to z and w and homeomorphisms of the circle are defined by
then fn tends almost everywhere to
  • gzfgw if |z|, |w| < 1;
  • gzf (w) if |z| < 1 and |w| = 1;
  • z if |z| = 1 and |w| ≤ 1 with wf−1(z).
By the dominated convergence theorem, it follows that Φ(zn,wn) has a non-zero limit if wHf(z). This implies that Hf is continuous on the closed unit disk. Indeed otherwise, by compactness, there would be a sequence zn tending to z in the closed disk, with wn = Hf(zn) tending to a limit wHf(z). But then Φ(zn,wn) = 0 so has limit zero, a contradiction, since wHf(z).
  • Smoothness and non-vanishing Jacobian on open disk. Hf is smooth with nowhere vanishing Jacobian on |z| < 1. In fact, because of the compatibility with Möbius transformations, it suffices to check that Hf is smooth near 0 and has non-vanishing derivative at 0.
If f has Fourier series
then the derivatives of Ff at 0 are given by
Thus the Jacobian of Ff at 0 is given by
Since Ff is an orientation-preserving diffeomorphism, its Jacobian is positive:
The function Φ(z,w) is analytic and so smooth. Its derivatives at (0,0) are given by
Direct calculation shows that
by the Cauchy–Schwarz inequality. If the right hand side vanished, then equality would occur in the Cauchy-Schwarz inequality forcing
for some ζ in T and for all θ, a contradiction since f assumes all values in T. The left hand side is therefore strictly positive and |b| < 1.
Consequently the implicit function theorem can be applied. It implies that Hf(z) is smooth near o. Its Jacobian can be computed by implicit differentiation:
Moreover
  • Homeomorphism on closed disk and diffeomorphism on open disk. It is enough to show that Hf is a homeomorphism. By continuity its image is compact so closed. The non-vanishing of the Jacobian, implies that Hf is an open mapping on the unit disk, so that the image of the open disk is open. Hence the image of the closed disk is an open and closed subset of the closed disk. By connectivity, it must be the whole disk. For |w| < 1, the inverse image of w is closed, so compact, and entirely contained in the open disk. Since Hf is locally a homeomorphism, it must be a finite set. The set of points w in the open disk with exactly n preimages is open. By connectivity every point has the same number N of preimages. Since the open disk is simply connected, N = 1. (In fact taking any preimage of the origin, every radial line has a unique lifting to a preimage, and so there is an open subset of the unit disk mapping homeomorphically onto the open disc. If N > 1, its complement would also have to be open, contradicting connectivity.)

Extension of quasi-Möbius homeomorphisms

[edit]

In this section it is established that the extension of a quasisymmetric homeomorphism is quasiconformal. Fundamental use is made of the notion of quasi-Möbius homeomorphism.

A homeomorphism f of the circle is quasisymmetric if there are constants a, b > 0 such that

It is quasi-Möbius is there are constants c, d > 0 such that

where

denotes the cross-ratio.

If f is quasisymmetric then it is also quasi-Möbius, with c = a2 and d = b: this follows by multiplying the first inequality for (z1,z3,z4) and (z2,z4,z3).

It is immediate that the quasi-Möbius homeomorphisms are closed under the operations of inversion and composition.

The complex dilatation μ of a diffeomorphism F of the unit disk is defined by

If F and G are diffeomorphisms of the disk, then

In particular if G is holomorphic, then

When F = Hf,

where

To prove that F = Hf is quasiconformal amounts to showing that

Since f is a quasi-Möbius homeomorphism the compositions g1fg2 with gi Möbius transformations satisfy exactly the same estimates, since Möbius transformations preserve the cross ratio. So to prove that Hf is quasiconformal it suffices to show that if f is any quasi-Möbius homeomorphism fixing 1, i and −i, with fixed c and d, then the quantities

have an upper bound strictly less than one.

On the other hand, if f is quasi-Möbius and fixes 1, i and −i, then f satisfies a Hölder continuity condition:

for another positive constant C independent of f. The same is true for the f−1's. But then the Arzelà–Ascoli theorem implies these homeomorphisms form a compact subset in C(T). The non-linear functional Λ is continuous on this subset and therefore attains its upper bound at some f0. On the other hand, Λ(f0) < 1, so the upper bound is strictly less than 1.

The uniform Hölder estimate for f is established in Väisälä (1984) as follows. Take z, w in T.

  • If |z − 1| ≤ 1/4 and |zw| ≤ 1/8, then |z ± i| ≥ 1/4 and |w ± i| ≥ 1/8. But then
so there is a corresponding Hölder estimate.
  • If |zw| ≥ 1/8, the Hölder estimate is trivial since |f(z) − f(w)| ≤ 2.
  • If |z − 1| ≥ 1/4, then |wζ| ≥ 1/4 for ζ = i or −i. But then
so there is a corresponding Hölder estimate.

Comment. In fact every quasi-Möbius homeomorphism f is also quasisymmetric. This follows using the Douady–Earle extension, since every quasiconformal homeomorphism of the unit disk induces a quasisymmetric homeomorphism of the unit circle. It can also be proved directly, following Väisälä (1984)

Indeed it is immediate that if f is quasi-Möbius so is its inverse. It then follows that f (and hence f–1) is Hölder continuous. To see this, let S be the set of cube roots of unity, so that if ab in S, then |ab| = 2 sin π/3 = 3. To prove a Hölder estimate, it can be assumed that xy is uniformly small. Then both x and y are greater than a fixed distance away from a, b in S with ab, so the estimate follows by applying the quasi-Möbius inequality to x, a, y, b. To check that f is quasisymmetric, it suffices to find a uniform upper bound for |f(x) − f(y)| / |f(x) − f(z)| in the case of a triple with |xz| = |xy|, uniformly small. In this case there is a point w at a distance greater than 1 from x, y and z. Applying the quasi-Möbius inequality to x, w, y and z yields the required upper bound.

References

[edit]
  • Douady, Adrien; Earle, Clifford J. (1986), "Conformally natural extension of homeomorphisms of the circle", Acta Math., 157: 23–48, doi:10.1007/bf02392590
  • Hubbard, John Hamal (2006), Teichmüller theory and applications to geometry, topology, and dynamics. Vol. 1. Teichmüller theory, Matrix Editions, ISBN 978-0-9715766-2-9
  • Kapovich, Michael (2001), Hyperbolic manifolds and discrete groups, Progress in Mathematics, vol. 183, Birkhäuser, ISBN 0-8176-3904-7
  • Lecko, A.; Partyka, D. (1988), "An alternative proof of a result due to Douady and Earle" (PDF), Ann. Univ. Mariae Curie-Skłodowska Sect. A, 42: 59–68
  • Partyka, Dariusz (1997), "The generalized Neumann-Poincaré operator and its spectrum" (PDF), Dissertationes Math., 366
  • Partyka, Dariusz; Sakan, Ken-Ichi; Zając, Józef (1999), "The harmonic and quasiconformal extension operators" (PDF), Banach Center Publ., 48: 141–177, doi:10.4064/-48-1-141-177
  • Sakan, Ken-ichi; Zając, Józef (1996), "The Douady-Earle extension of quasihomographies" (PDF), Banach Center Publ., 37: 35–44, doi:10.4064/-37-1-35-44
  • Väisälä, Jussi (1984), "Quasi-Möbius maps", Journal d'Analyse Mathématique, 44: 218–234, doi:10.1007/bf02790198, S2CID 189767039