Jump to content

Julyan Cartwright: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
still no source for place of birth or nationality
OAbot (talk | contribs)
m Open access bot: hdl updated in citation with #oabot.
 
(11 intermediate revisions by 4 users not shown)
Line 6: Line 6:
| caption=
| caption=
| birth_date =
| birth_date =
| birth_place = [[Manchester]], [[England]]{{Citation needed|date=May 2022}}
| birth_place = [[Manchester]], [[UK]]<ref>{{Cite web | url=http://www.iact.ugr-csic.es/personal/julyan_cartwright/cv.html|title = Julyan Cartwright - Personal history}}</ref>
| death_date =
| death_date =
| death_place =
| death_place =
| citizenship = British{{Citation needed|date=May 2022}}
| citizenship = British
| known_for =
| known_for =
|fields = [[dynamical systems]], [[nonlinear science]], [[complexity]], [[pattern formation]]
|fields = [[dynamical systems]], [[nonlinear science]], [[complexity]], [[pattern formation]]
Line 15: Line 15:
| alma_mater = [[University of Newcastle upon Tyne]], <br> [[Queen Mary College]], [[University of London]]
| alma_mater = [[University of Newcastle upon Tyne]], <br> [[Queen Mary College]], [[University of London]]
| doctoral_advisor = David Arrowsmith<ref name=mathgene>{{MathGenealogy|id=99020|name=Julyan Cartwright}}</ref>
| doctoral_advisor = David Arrowsmith<ref name=mathgene>{{MathGenealogy|id=99020|name=Julyan Cartwright}}</ref>
|academic_advisors = [[David Tritton]], <br> [[Ian C. Percival]]
|academic_advisors = [[Ian C. Percival]], <br> [[Keith Runcorn]], <br> [[David Tritton]]
| doctoral_students =
| doctoral_students =
| notable_students =
| notable_students =
Line 24: Line 24:
'''Julyan Cartwright''' is an interdisciplinary [[physicist]] working in [[Granada]], [[Spain]] at the Andalusian Earth Sciences Institute<ref>{{Cite web|url=https://www.iact.ugr-csic.es/personal/perfil/julyan-cartwright/|title = IACT Staff - Julyan Cartwright}}</ref> of the CSIC ([[Spanish National Research Council]]) and affiliated with the Carlos I Institute of Theoretical and Computational Physics<ref>{{Cite web|url=https://ic1.es/index.php/en/members/|title = List of members of the iC1}}</ref> at the [[University of Granada]].
'''Julyan Cartwright''' is an interdisciplinary [[physicist]] working in [[Granada]], [[Spain]] at the Andalusian Earth Sciences Institute<ref>{{Cite web|url=https://www.iact.ugr-csic.es/personal/perfil/julyan-cartwright/|title = IACT Staff - Julyan Cartwright}}</ref> of the CSIC ([[Spanish National Research Council]]) and affiliated with the Carlos I Institute of Theoretical and Computational Physics<ref>{{Cite web|url=https://ic1.es/index.php/en/members/|title = List of members of the iC1}}</ref> at the [[University of Granada]].


He is known for his research<ref>{{Cite web|url=https://scholar.google.com/citations?hl=en&user=V78-fnAAAAAJ|title = Julyan Cartwright - Google Scholar}}</ref> in [[dynamical systems]], [[nonlinear science]], [[complexity]] and [[pattern formation]], across many fields
He is known for his research<ref>{{Cite web|url=https://scholar.google.com/citations?hl=en&user=V78-fnAAAAAJ|title = Julyan Cartwright - Google Scholar}}</ref>
including his studies of the dynamics of passive scalars in [[chaotic mixing|chaotic advection]] of fluids,<ref>{{cite journal | last1=Cartwright | first1=Julyan H. E. | last2=Feingold | first2=Mario | last3=Piro | first3=Oreste | title=Chaotic advection in three-dimensional unsteady incompressible laminar flow | journal=Journal of Fluid Mechanics | publisher=Cambridge University Press (CUP) | volume=316 | date=1996-06-10 | issn=0022-1120 | doi=10.1017/s0022112096000535 | pages=259–284|arxiv=chao-dyn/9504012| s2cid=930710 }}</ref><ref>{{cite journal | last1=Babiano | first1=Armando | last2=Cartwright | first2=Julyan H. E. | last3=Piro | first3=Oreste | last4=Provenzale | first4=Antonello | title=Dynamics of a Small Neutrally Buoyant Sphere in a Fluid and Targeting in Hamiltonian Systems | journal=Physical Review Letters | publisher=American Physical Society (APS) | volume=84 | issue=25 | date=2000-06-19 | issn=0031-9007 | doi=10.1103/physrevlett.84.5764 | pages=5764–5767| pmid=10991049 |arxiv=nlin/0007033| bibcode=2000PhRvL..84.5764B | s2cid=35884368 }}</ref> [[bailout embedding]]s,<ref>{{cite journal | last1=Cartwright | first1=Julyan H. E. | last2=Magnasco | first2=Marcelo O. | last3=Piro | first3=Oreste | title=Bailout embeddings, targeting of invariant tori, and the control of Hamiltonian chaos | journal=Physical Review E | publisher=American Physical Society (APS) | volume=65 | issue=4 | date=2002-04-03 | issn=1063-651X | doi=10.1103/physreve.65.045203 | page=045203(R)| pmid=12005907 |arxiv=nlin/0111005| bibcode=2002PhRvE..65d5203C | s2cid=23498762 }}</ref> the [[Bogdanov map]],<ref>
on how form and pattern emerge in nature,<ref>{{Cite journal|url=https://chemistry-europe.onlinelibrary.wiley.com/doi/full/10.1002/syst.202200002|title =Guest Editorial - Chemobrionics and Systems Chemistry|journal =ChemSystemsChem|date =May 2022|volume =4|issue =3|doi =10.1002/syst.202200002|last1 =Čejková|first1 =Jitka|last2 =Cartwright|first2 =Julyan H. E.|s2cid =246779143|doi-access =free|hdl =10261/355623|hdl-access =free}}</ref> the dynamics of natural systems,<ref>{{Cite web|url=http://www.iact.csic.es/personal/julyan_cartwright/cartwright/research.html|title = The dynamics of natural systems}}</ref> across disciplinary boundaries, including his studies of the dynamics of passive scalars in [[chaotic mixing|chaotic advection]] of fluids,<ref>{{cite journal | last1=Cartwright | first1=Julyan H. E. | last2=Feingold | first2=Mario | last3=Piro | first3=Oreste | title=Chaotic advection in three-dimensional unsteady incompressible laminar flow | journal=Journal of Fluid Mechanics | publisher=Cambridge University Press (CUP) | volume=316 | date=1996-06-10 | issn=0022-1120 | doi=10.1017/s0022112096000535 | pages=259–284|arxiv=chao-dyn/9504012| s2cid=930710 }}</ref><ref>{{cite journal | last1=Babiano | first1=Armando | last2=Cartwright | first2=Julyan H. E. | last3=Piro | first3=Oreste | last4=Provenzale | first4=Antonello | title=Dynamics of a Small Neutrally Buoyant Sphere in a Fluid and Targeting in Hamiltonian Systems | journal=Physical Review Letters | publisher=American Physical Society (APS) | volume=84 | issue=25 | date=2000-06-19 | issn=0031-9007 | doi=10.1103/physrevlett.84.5764 | pages=5764–5767| pmid=10991049 |arxiv=nlin/0007033| bibcode=2000PhRvL..84.5764B | s2cid=35884368 }}</ref> [[bailout embedding]]s,<ref>{{cite journal | last1=Cartwright | first1=Julyan H. E. | last2=Magnasco | first2=Marcelo O. | last3=Piro | first3=Oreste | title=Bailout embeddings, targeting of invariant tori, and the control of Hamiltonian chaos | journal=Physical Review E | publisher=American Physical Society (APS) | volume=65 | issue=4 | date=2002-04-03 | issn=1063-651X | doi=10.1103/physreve.65.045203 | page=045203(R)| pmid=12005907 |arxiv=nlin/0111005| bibcode=2002PhRvE..65d5203C | s2cid=23498762 }}</ref> the [[Bogdanov map]],<ref>
Arrowsmith, D. K.; Cartwright, J. H. E.; Lansbury, A. N.; and Place, C. M. "The Bogdanov Map: Bifurcations, Mode Locking, and Chaos in a Dissipative System." Int. J. Bifurcation Chaos 3, 803–842, 1993.</ref> the influence of [[fluid mechanics]] on the development of vertebrate [[left-right asymmetry (biology)|left-right asymmetry]],<ref>{{cite journal | last1=Cartwright | first1=J. H. E. | last2=Piro | first2=O. | last3=Tuval | first3=I. | title=Fluid-dynamical basis of the embryonic development of left-right asymmetry in vertebrates | journal=Proceedings of the National Academy of Sciences | volume=101 | issue=19 | date=2004-04-26 | issn=0027-8424 | doi=10.1073/pnas.0402001101 | pages=7234–7239|pmid=15118088| pmc=409902 | bibcode=2004PNAS..101.7234C | doi-access=free }}</ref> [[biomineralization]] structures of molluscs including mother of pearl ([[nacre]])<ref name='Checa2011'>{{cite journal|doi=10.1016/j.jsb.2011.09.011|pmid=21982842|title=Mineral bridges in nacre|year=2011|last1=Checa|first1=Antonio|last2=Cartwright|first2=Julyan|last3=Willinger|first3=Marc-Georg|journal=Journal of Structural Biology|volume=176|issue=3|pages=330–339}}</ref><ref>Cartwright, J. H. E., Checa, A. G., Escribano, B., & Sainz-Díaz, C. I. (2009). Spiral and target patterns in bivalve nacre manifest a natural excitable medium from layer growth of a biological liquid crystal. Proceedings of the National Academy of Sciences, 106(26), 10499-10504.</ref><ref>
Arrowsmith, D. K.; Cartwright, J. H. E.; Lansbury, A. N.; and Place, C. M. "The Bogdanov Map: Bifurcations, Mode Locking, and Chaos in a Dissipative System." Int. J. Bifurcation Chaos 3, 803–842, 1993.</ref> the influence of [[fluid mechanics]] on the development of vertebrate [[left-right asymmetry (biology)|left-right asymmetry]],<ref>{{cite journal | last1=Cartwright | first1=J. H. E. | last2=Piro | first2=O. | last3=Tuval | first3=I. | title=Fluid-dynamical basis of the embryonic development of left-right asymmetry in vertebrates | journal=Proceedings of the National Academy of Sciences | volume=101 | issue=19 | date=2004-04-26 | issn=0027-8424 | doi=10.1073/pnas.0402001101 | pages=7234–7239|pmid=15118088| pmc=409902 | bibcode=2004PNAS..101.7234C | doi-access=free }}</ref> [[self-organization]] of [[biomineralization]] structures of [[mollusc shell]] including mother of pearl ([[nacre]])<ref name='Checa2011'>{{cite journal|doi=10.1016/j.jsb.2011.09.011|pmid=21982842|title=Mineral bridges in nacre|year=2011|last1=Checa|first1=Antonio|last2=Cartwright|first2=Julyan|last3=Willinger|first3=Marc-Georg|journal=Journal of Structural Biology|volume=176|issue=3|pages=330–339}}</ref><ref>Cartwright, J. H. E., Checa, A. G., Escribano, B., & Sainz-Díaz, C. I. (2009). Spiral and target patterns in bivalve nacre manifest a natural excitable medium from layer growth of a biological liquid crystal. Proceedings of the National Academy of Sciences, 106(26), 10499-10504.</ref><ref>Cartwright, J. H. E., & Checa, A. G. (2007). The dynamics of nacre self-assembly. Journal of the Royal Society Interface, 4(14), 491-504.</ref> and [[cuttlebone]],<ref>{{Cite journal|last1=Checa|first1=Antonio G.|last2=Cartwright|first2=Julyan H. E.|last3=Sánchez-Almazo|first3=Isabel|last4=Andrade|first4=José P.|last5=Ruiz-Raya|first5=Francisco|date=September 2015|title=The cuttlefish Sepia officinalis (Sepiidae, Cephalopoda) constructs cuttlebone from a liquid-crystal precursor|url= |journal=Scientific Reports|language=en|volume=5|issue=1|pages=11513|doi=10.1038/srep11513|issn=2045-2322|pmc=4471886|pmid=26086668| arxiv=1506.08290 | bibcode=2015NatSR...511513C }}</ref> [[excitable media]],<ref>{{cite journal | last1=Cartwright | first1=Julyan H. E. | last2=Eguíluz | first2=Víctor M. | last3=Hernández-García | first3=Emilio | last4=Piro | first4=Oreste | title=Dynamics of Elastic Excitable Media | journal=International Journal of Bifurcation and Chaos | volume=09 | issue=11 | year=1999 | issn=0218-1274 | doi=10.1142/s0218127499001620|arxiv=chao-dyn/9905035 | pages=2197–2202| bibcode=1999IJBC....9.2197C | s2cid=9120223 }}</ref> and chemobrionics:<ref>Silvana S. S. Cardoso, Julyan H. E. Cartwright, Jitka Čejková, Leroy Cronin, Anne De Wit, Simone Giannerini, Dezső Horváth, Alírio Rodrigues, Michael J. Russell, C. Ignacio Sainz-Díaz, Ágota Tóth; Chemobrionics: From Self-Assembled Material Architectures to the Origin of Life. Artif Life 2020; 26 (3): 315–326. doi: https://doi.org/10.1162/artl_a_00323</ref> [[self-assembly|self-assembling]] porous precipitate structures, such as [[chemical gardens]],<ref>{{Cite journal|last1=Barge|first1=Laura M.|last2=Cardoso|first2=Silvana S. S.|last3=Cartwright|first3=Julyan H. E.|last4=Cooper|first4=Geoffrey J. T.|last5=Cronin|first5=Leroy|last6=De Wit|first6=Anne|last7=Doloboff|first7=Ivria J.|last8=Escribano|first8=Bruno|last9=Goldstein|first9=Raymond E.|date=2015-08-26|title=From Chemical Gardens to Chemobrionics|journal=Chemical Reviews|volume=115|issue=16|pages=8652–8703|doi=10.1021/acs.chemrev.5b00014|pmid=26176351|issn=0009-2665|doi-access=free|hdl=20.500.11824/172|hdl-access=free}}</ref> [[brinicle]]s,<ref>{{Cite journal|last=Cartwright J H E, B Escribano, D L González, C I Sainz-Díaz & I Tuval|date=2013|title=Brinicles as a case of inverse chemical gardens|journal=Langmuir|volume=29|issue=25|pages=7655–7660|doi=10.1021/la4009703|pmid=23551166|arxiv=1304.1774|s2cid=207727184}}</ref> and submarine [[hydrothermal vent]]s.<ref>{{Cite journal |url=https://royalsocietypublishing.org/doi/10.1098/rsfs.2019.0104 |title = The origin of life: the submarine alkaline vent theory at 30| year=2019 | doi=10.1098/rsfs.2019.0104 | last1=Cartwright | first1=Julyan H. E. | last2=Russell | first2=Michael J. | journal=Interface Focus | volume=9 | issue=6 | s2cid=204753957 | doi-access=free | hdl=10261/205389 | hdl-access=free }}</ref>
Cartwright, J. H. E., & Checa, A. G. (2007). The dynamics of nacre self-assembly. Journal of the Royal Society Interface, 4(14), 491-504.</ref> and [[cuttlebone]],<ref>{{Cite journal|last1=Checa|first1=Antonio G.|last2=Cartwright|first2=Julyan H. E.|last3=Sánchez-Almazo|first3=Isabel|last4=Andrade|first4=José P.|last5=Ruiz-Raya|first5=Francisco|date=September 2015|title=The cuttlefish Sepia officinalis (Sepiidae, Cephalopoda) constructs cuttlebone from a liquid-crystal precursor|url= |journal=Scientific Reports|language=en|volume=5|issue=1|pages=11513|doi=10.1038/srep11513|issn=2045-2322|pmc=4471886|pmid=26086668| arxiv=1506.08290 | bibcode=2015NatSR...511513C }}</ref> [[excitable media]],<ref>{{cite journal | last1=Cartwright | first1=Julyan H. E. | last2=Eguíluz | first2=Víctor M. | last3=Hernández-García | first3=Emilio | last4=Piro | first4=Oreste | title=Dynamics of Elastic Excitable Media | journal=International Journal of Bifurcation and Chaos | volume=09 | issue=11 | year=1999 | issn=0218-1274 | doi=10.1142/s0218127499001620|arxiv=chao-dyn/9905035 | pages=2197–2202| bibcode=1999IJBC....9.2197C | s2cid=9120223 }}</ref> and chemobrionics<ref>Silvana S. S. Cardoso, Julyan H. E. Cartwright, Jitka Čejková, Leroy Cronin, Anne De Wit, Simone Giannerini, Dezső Horváth, Alírio Rodrigues, Michael J. Russell, C. Ignacio Sainz-Díaz, Ágota Tóth; Chemobrionics: From Self-Assembled Material Architectures to the Origin of Life. Artif Life 2020; 26 (3): 315–326. doi: https://doi.org/10.1162/artl_a_00323</ref>: [[self-assembly|self-assembling]] porous precipitate structures, such as [[chemical gardens]]<ref>{{Cite journal|last1=Barge|first1=Laura M.|last2=Cardoso|first2=Silvana S. S.|last3=Cartwright|first3=Julyan H. E.|last4=Cooper|first4=Geoffrey J. T.|last5=Cronin|first5=Leroy|last6=De Wit|first6=Anne|last7=Doloboff|first7=Ivria J.|last8=Escribano|first8=Bruno|last9=Goldstein|first9=Raymond E.|date=2015-08-26|title=From Chemical Gardens to Chemobrionics|journal=Chemical Reviews|volume=115|issue=16|pages=8652–8703|doi=10.1021/acs.chemrev.5b00014|pmid=26176351|issn=0009-2665|doi-access=free}}</ref>, [[brinicle|brinicles]]<ref>{{Cite journal|last=Cartwright J H E, B Escribano, D L González, C I Sainz-Díaz & I Tuval|date=2013|title=Brinicles as a case of inverse chemical gardens|journal=Langmuir|volume=29|issue=25|pages=7655–7660|doi=10.1021/la4009703|pmid=23551166|arxiv=1304.1774|s2cid=207727184}}</ref>, and submarine [[hydrothermal vent]]s.<ref>{{Cite journal |url=https://royalsocietypublishing.org/doi/10.1098/rsfs.2019.0104 |title = The origin of life: the submarine alkaline vent theory at 30| year=2019 | doi=10.1098/rsfs.2019.0104 | last1=Cartwright | first1=Julyan H. E. | last2=Russell | first2=Michael J. | journal=Interface Focus | volume=9 | issue=6 | s2cid=204753957 }}</ref>


He is among the researchers in the Stanford list of the World's top 2% most cited scientists.<ref>{{Cite journal|url=https://elsevier.digitalcommonsdata.com/datasets/btchxktzyw/3|title = August 2021 data-update for "Updated science-wide author databases of standardized citation indicators"| year=2021 | doi=10.17632/btchxktzyw.3 | author1=Jeroen Baas | last2=Boyack | first2=Kevin | last3=Ioannidis | first3=John P. A. | volume=3 | publisher=Elsevier BV }}</ref><ref>{{Cite web|url=
He is among the researchers in the Stanford list of the World's top 2% most cited scientists.<ref>{{Cite journal|url=https://elsevier.digitalcommonsdata.com/datasets/btchxktzyw/3|title = August 2021 data-update for "Updated science-wide author databases of standardized citation indicators"| year=2021 | doi=10.17632/btchxktzyw.3 | author1=Jeroen Baas | last2=Boyack | first2=Kevin | last3=Ioannidis | first3=John P. A. | volume=3 | publisher=Elsevier BV }}</ref><ref>{{Cite web|url=
https://www.granadahoy.com/granada/lista-completa-investigadores-Universidad-Granada_0_1623138968.html | title = La lista completa de los investigadores más destacados de la Universidad de Granada}}</ref> He is chair of the international [[European Cooperation in Science and Technology|COST]] action Chemobionics<ref>{{Cite web|url=https://www.cost.eu/cost-action/chemobrionics/| title = Chemobrionics - COST}}</ref> and chair of the scientific advisory committee to the international conference Dynamics Days Europe.<ref>{{Cite web|url=http://www.dynamicsdays.org |title = European Dynamics Days}}</ref>
https://www.granadahoy.com/granada/lista-completa-investigadores-Universidad-Granada_0_1623138968.html | title = La lista completa de los investigadores más destacados de la Universidad de Granada}}</ref> He is chair of the international [[European Cooperation in Science and Technology|COST]] action Chemobionics<ref>{{Cite web|url=https://www.cost.eu/cost-action/chemobrionics/| title = Chemobrionics - COST}}</ref> and chair of the scientific advisory committee to the international conference Dynamics Days Europe.<ref>{{Cite web|url=http://www.dynamicsdays.org |title = European Dynamics Days}}</ref> He is editor of the [[Cambridge University Press]] journal Elements in Dynamical Systems.<ref>{{Cite web|url=https://cambridge.org/core/what-we-publish/elements/elements-in-dynamical-systems|title =Elements in Dynamical Systems}}</ref>


Press interest in his research has highlighted his work on chemical gardens,<ref>{{Cite web|url=https://www.sciencedaily.com/releases/2015/02/150217122706.htm|title = Recent research provides new data on chemical gardens, whose formation is a mystery for science}}</ref> on how bees construct spiral bee combs,<ref>{{Cite web|url=https://www.smithsonianmag.com/smart-news/stingless-bees-build-spiral-honeycombs-grow-crystals-180975405/|title = Scientists Crack the Mathematical Mystery of Stingless Bees' Spiral Honeycombs}}</ref><ref>{{Cite web|url=https://www.sciencealert.com/scientists-discover-these-incredible-beehives-have-a-lot-in-common-with-crystals|title = Scientists Find These Stunning Spiral Beehives Have a Lot in Common With Crystals}}</ref><ref>{{Cite web|url=https://www.livescience.com/tetragonula-spiral-bee-comb-grow-like-crystals.html|title = Strange, spiral bee combs look like fantastical crystal palaces. Now we know why.}}</ref> on the formation of nacre<ref>{{Cite web|url=https://www.sciencedaily.com/releases/2009/02/090212112741.htm |title = Mother-of-pearl From Shells Could Inspire Regeneration of Human Bones}}</ref> and pearls,<ref>{{Cite web|url=https://www.technologyreview.com/2013/04/18/178984/pearls-and-the-puzzle-of-how-they-form-perfect-spheres/|title = Pearls and the Puzzle of How They Form Perfect Spheres}}</ref><ref>{{Cite web|url=https://phys.org/news/2013-06-pearly.html|title =Pearly perfection}}</ref><ref>{{Cite web|url=https://www.newscientist.com/article/mg21829155-700-micro-ratchet-spins-pearls-with-perfect-symmetry/|title = Micro-ratchet spins pearls with perfect symmetry}}</ref><ref>{{Cite web|url=http://www.sci-news.com/biology/article01167-how-pearls-form.html|title = Researchers Try to Explain How Perfect Pearls Form}}</ref> on how [[brinicle]] ice tubes grow both on Earth<ref>{{Cite web | url=https://www.wired.com/2013/05/swimming-beneath-the-brinicles-in-antarctica/ |title = Swimming Beneath the Brinicles, in Antarctica}}</ref><ref>{{Cite web|url= https://www.sciencedaily.com/releases/2013/04/130424112316.htm|title = Ice tubes in polar seas -- 'brinicles' or 'sea stalactites' -- provide clues to origin of life}}</ref> and on [[Jupiter]]'s moon, [[Europa (moon)|Europa]],<ref>{{Cite web | url=http://astrobiology.com/2019/03/self-assembling-ice-membranes-on-europa.html |title = Self-Assembling Ice Membranes on Europa – Astrobiology}}</ref> on the information content of materials<ref>{{Cite web|url= https://www.technologyreview.com/2012/07/19/255574/crystals-information-and-the-origin-of-life/|title = Crystals, Information And The Origin of Life}}</ref><ref>{{Cite journal |url=https://www.nature.com/articles/nmat3437|title =Bringing crystals to life}}</ref><ref>{{Cite journal |url=https://www.nature.com/articles/nphys2393|title =Instructions for assembly}}</ref><ref>{{Cite journal |url=https://www.nature.com/articles/nmat4122|title =Beyond the crystal}}</ref> on the nature of [[Hokusai|Hokusai's]] famous [[the Great Wave off Kanagawa]],<ref>{{Cite web|url=https://blogs.egu.eu/geolog/2019/07/08/imaggeo-on-mondays-recreating-monster-waves-in-art-and-science/|title = Recreating monster waves in art and science}}</ref><ref>{{Cite web | url=https://www.usgs.gov/media/images/hokusai-under-wave-kanagawa |title = Hokusai Under the Wave off Kanagawa}}</ref><ref>{{Cite web | url=https://www.sueddeutsche.de/kultur/serie-am-wasser-der-anstoessige-superstar-1.4123445|title =Der anstößige Superstar}}</ref> on the [[Möbius strip]] before [[August Ferdinand Möbius|Möbius]],<ref>{{Cite web | url= https://auralcrave.com/2021/12/07/escher-il-nastro-di-mobius-e-gli-idiot-savant-fin-dove-si-puo-arrivare-col-pensiero/|title = Escher, il nastro di Möbius e gli idiot savant: fin dove si può arrivare col pensiero?| date=7 December 2021 }}</ref> on the possible melting of oceanic [[methane hydrate]] deposits owing to [[climate change]],<ref>{{Cite web | url=https://phys.org/news/2017-03-percent-global-methane-deposits-due.html |title = 3.5 percent of global methane deposits could be melted by 2100 due to climate change}}</ref> and on the origin of life at alkaline submarine hydrothermal vents and their relevance to [[astrobiology]]<ref>{{Cite web | url=https://www.ideal.es/miugr/expertos-internacionales-debaten-20190312191937-nt.html|title = Expertos internacionales debaten en Granada los últimos avances científicos relacionados con el origen de la vida}}</ref>.
Press interest in his research has highlighted his work on chemical gardens,<ref>{{Cite web|url=https://www.sciencedaily.com/releases/2015/02/150217122706.htm|title = Recent research provides new data on chemical gardens, whose formation is a mystery for science}}</ref><ref>{{Cite web|url=https://www.chemistryworld.com/opinion/column-the-crucible/3005043.article |title =Philip Ball considers the vegetative soul of an inorganic woodland}}</ref> on pitch perception in the auditory system,<ref>{{Cite journal|url=https://www.nature.com/articles/news990708-7|title = Pump up the bass| year=1999 | doi=10.1038/news990708-7 | last1=Ball | first1=Philip | journal=Nature }}</ref><ref>{{Cite web|url=https://www.thefreelibrary.com/A+pitch+for+decoding+frequency+more+simply-a055309025 |title =A pitch for decoding frequency more simply}}</ref> on how symmetry is broken so that the heart is on the left,<ref>{{Cite journal|url=https://rupress.org/jcb/article/165/4/456/34014/Tilt-back-to-turn-left|title = Tilt back to turn left |year = 2004 |doi = 10.1083/jcb1654rr1 |last1 = Wells |first1 = William A. |journal = Journal of Cell Biology |volume = 165 |issue = 4 |page = 456 |pmc = 2249968 }}</ref><ref>{{Cite web|url=https://www.sciencenews.org/article/broken-symmetry |title = Broken Symmetry| date=11 September 2009 }}</ref> on how bees construct spiral bee combs,<ref>{{Cite web|url=https://www.smithsonianmag.com/smart-news/stingless-bees-build-spiral-honeycombs-grow-crystals-180975405/|title = Scientists Crack the Mathematical Mystery of Stingless Bees' Spiral Honeycombs}}</ref><ref>{{Cite web|url=https://www.sciencealert.com/scientists-discover-these-incredible-beehives-have-a-lot-in-common-with-crystals|title = Scientists Find These Stunning Spiral Beehives Have a Lot in Common With Crystals}}</ref><ref>{{Cite web|url=https://www.livescience.com/tetragonula-spiral-bee-comb-grow-like-crystals.html|title = Strange, spiral bee combs look like fantastical crystal palaces. Now we know why.| website=[[Live Science]] | date=22 July 2020 }}</ref> on the formation of nacre<ref>{{Cite web|url=https://www.sciencedaily.com/releases/2009/02/090212112741.htm |title = Mother-of-pearl From Shells Could Inspire Regeneration of Human Bones}}</ref> and pearls,<ref>{{Cite web|url=https://www.technologyreview.com/2013/04/18/178984/pearls-and-the-puzzle-of-how-they-form-perfect-spheres/|title = Pearls and the Puzzle of How They Form Perfect Spheres}}</ref><ref>{{Cite web|url=https://phys.org/news/2013-06-pearly.html|title =Pearly perfection}}</ref><ref>{{Cite web|url=https://www.newscientist.com/article/mg21829155-700-micro-ratchet-spins-pearls-with-perfect-symmetry/|title = Micro-ratchet spins pearls with perfect symmetry}}</ref><ref>{{Cite web|url=http://www.sci-news.com/biology/article01167-how-pearls-form.html|title = Researchers Try to Explain How Perfect Pearls Form}}</ref><ref>{{Cite web|url=https://www.bbc.com/future/article/20130623-how-pearls-get-their-round-shape |title =How pearls get their round shape}}</ref> on how [[brinicle]] ice tubes grow both on Earth<ref>{{Cite magazine | url=https://www.wired.com/2013/05/swimming-beneath-the-brinicles-in-antarctica/ |title = Swimming Beneath the Brinicles, in Antarctica| magazine=Wired | last1=Marlow | first1=Jeffrey }}</ref><ref>{{Cite web|url= https://www.sciencedaily.com/releases/2013/04/130424112316.htm|title = Ice tubes in polar seas -- 'brinicles' or 'sea stalactites' -- provide clues to origin of life}}</ref><ref>{{Cite web | url=https://www.technologyreview.com/2013/04/09/179087/brinicles-and-the-origin-of-life/|title =Brinicles and the Origin of Life}}</ref> and on [[Jupiter]]'s moon, [[Europa (moon)|Europa]],<ref>{{Cite web | url=http://astrobiology.com/2019/03/self-assembling-ice-membranes-on-europa.html |title = Self-Assembling Ice Membranes on Europa – Astrobiology}}</ref> on the information content of complex self-assembled materials<ref>{{Cite web|url= https://www.technologyreview.com/2012/07/19/255574/crystals-information-and-the-origin-of-life/|title = Crystals, Information And The Origin of Life}}</ref><ref>{{Cite journal |url=https://www.nature.com/articles/nmat3437|title =Bringing crystals to life|year =2012|doi =10.1038/nmat3437|last1 =Ball|first1 =Philip|journal =Nature Materials|volume =11|issue =10|page =840|pmid =23001232|doi-access =free}}</ref><ref>{{Cite journal |url=https://www.nature.com/articles/nphys2393|title =Instructions for assembly|year =2012|doi =10.1038/nphys2393|last1 =Buchanan|first1 =Mark|journal =Nature Physics|volume =8|issue =8|page =577|bibcode =2012NatPh...8..577B|s2cid =122568730|doi-access =free}}</ref><ref>{{Cite journal |url=https://www.nature.com/articles/nmat4122|title =Beyond the crystal|year =2014|doi =10.1038/nmat4122|last1 =Ball|first1 =Philip|journal =Nature Materials|volume =13|issue =11|page =1003|pmid =25342529}}</ref> on the [[rogue wave]]<ref>{{Cite web | url=https://nautil.us/when-good-waves-go-rogue-rp-4824/|title = When Good Waves Go Rogue| date=25 June 2014 }}</ref> nature of [[Hokusai|Hokusai's]] famous artwork [[the Great Wave off Kanagawa]],<ref>{{Cite web|url=https://blogs.egu.eu/geolog/2019/07/08/imaggeo-on-mondays-recreating-monster-waves-in-art-and-science/|title = Recreating monster waves in art and science}}</ref><ref>{{Cite web | url=https://www.usgs.gov/media/images/hokusai-under-wave-kanagawa |title = Hokusai Under the Wave off Kanagawa}}</ref><ref>{{Cite web | url=https://www.sueddeutsche.de/kultur/serie-am-wasser-der-anstoessige-superstar-1.4123445|title =Der anstößige Superstar}}</ref> on the [[Möbius strip]] before [[August Ferdinand Möbius|Möbius]],<ref>{{Cite web | url=https://www.cnr.it/en/news/6973/scoperta-la-piu-antica-raffigurazione-del-nastro-di-moebius|title = Scoperta la più antica raffigurazione del nastro di Moebius}}</ref><ref>{{Cite web | url= https://auralcrave.com/2021/12/07/escher-il-nastro-di-mobius-e-gli-idiot-savant-fin-dove-si-puo-arrivare-col-pensiero/|title = Escher, il nastro di Möbius e gli idiot savant: fin dove si può arrivare col pensiero?| date=7 December 2021 }}</ref> on the possible melting of oceanic [[methane hydrate]] deposits owing to [[climate change]],<ref>{{Cite web | url=https://phys.org/news/2017-03-percent-global-methane-deposits-due.html |title = 3.5 percent of global methane deposits could be melted by 2100 due to climate change}}</ref> and on the origin of life at alkaline submarine hydrothermal vents<ref>{{Cite web | url=https://www.ideal.es/miugr/expertos-internacionales-debaten-20190312191937-nt.html|title = Expertos internacionales debaten en Granada los últimos avances científicos relacionados con el origen de la vida| date=12 March 2019 }}</ref> and their relevance to [[astrobiology]].<ref>{{Cite web | url=https://www.labnews.co.uk/article/2028991/search_for_origin_of_life_reaches_interstellar_dust|title = Search for origin of life reaches interstellar dust}}</ref>


== References ==
== References ==
Line 43: Line 42:
[[Category:British physicists]]
[[Category:British physicists]]
[[Category:Spanish physicists]]
[[Category:Spanish physicists]]
[[Category:Year of birth missing (living people)]]

Latest revision as of 04:34, 17 June 2024

Julyan Cartwright
Born
CitizenshipBritish
Alma materUniversity of Newcastle upon Tyne,
Queen Mary College, University of London
Scientific career
Fieldsdynamical systems, nonlinear science, complexity, pattern formation
InstitutionsCSIC (Spanish National Research Council)
Doctoral advisorDavid Arrowsmith[1]
Other academic advisorsIan C. Percival,
Keith Runcorn,
David Tritton

Julyan Cartwright is an interdisciplinary physicist working in Granada, Spain at the Andalusian Earth Sciences Institute[3] of the CSIC (Spanish National Research Council) and affiliated with the Carlos I Institute of Theoretical and Computational Physics[4] at the University of Granada.

He is known for his research[5] on how form and pattern emerge in nature,[6] the dynamics of natural systems,[7] across disciplinary boundaries, including his studies of the dynamics of passive scalars in chaotic advection of fluids,[8][9] bailout embeddings,[10] the Bogdanov map,[11] the influence of fluid mechanics on the development of vertebrate left-right asymmetry,[12] self-organization of biomineralization structures of mollusc shell including mother of pearl (nacre)[13][14][15] and cuttlebone,[16] excitable media,[17] and chemobrionics:[18] self-assembling porous precipitate structures, such as chemical gardens,[19] brinicles,[20] and submarine hydrothermal vents.[21]

He is among the researchers in the Stanford list of the World's top 2% most cited scientists.[22][23] He is chair of the international COST action Chemobionics[24] and chair of the scientific advisory committee to the international conference Dynamics Days Europe.[25] He is editor of the Cambridge University Press journal Elements in Dynamical Systems.[26]

Press interest in his research has highlighted his work on chemical gardens,[27][28] on pitch perception in the auditory system,[29][30] on how symmetry is broken so that the heart is on the left,[31][32] on how bees construct spiral bee combs,[33][34][35] on the formation of nacre[36] and pearls,[37][38][39][40][41] on how brinicle ice tubes grow both on Earth[42][43][44] and on Jupiter's moon, Europa,[45] on the information content of complex self-assembled materials[46][47][48][49] on the rogue wave[50] nature of Hokusai's famous artwork the Great Wave off Kanagawa,[51][52][53] on the Möbius strip before Möbius,[54][55] on the possible melting of oceanic methane hydrate deposits owing to climate change,[56] and on the origin of life at alkaline submarine hydrothermal vents[57] and their relevance to astrobiology.[58]

References

[edit]
  1. ^ Julyan Cartwright at the Mathematics Genealogy Project
  2. ^ "Julyan Cartwright - Personal history".
  3. ^ "IACT Staff - Julyan Cartwright".
  4. ^ "List of members of the iC1".
  5. ^ "Julyan Cartwright - Google Scholar".
  6. ^ Čejková, Jitka; Cartwright, Julyan H. E. (May 2022). "Guest Editorial - Chemobrionics and Systems Chemistry". ChemSystemsChem. 4 (3). doi:10.1002/syst.202200002. hdl:10261/355623. S2CID 246779143.
  7. ^ "The dynamics of natural systems".
  8. ^ Cartwright, Julyan H. E.; Feingold, Mario; Piro, Oreste (1996-06-10). "Chaotic advection in three-dimensional unsteady incompressible laminar flow". Journal of Fluid Mechanics. 316. Cambridge University Press (CUP): 259–284. arXiv:chao-dyn/9504012. doi:10.1017/s0022112096000535. ISSN 0022-1120. S2CID 930710.
  9. ^ Babiano, Armando; Cartwright, Julyan H. E.; Piro, Oreste; Provenzale, Antonello (2000-06-19). "Dynamics of a Small Neutrally Buoyant Sphere in a Fluid and Targeting in Hamiltonian Systems". Physical Review Letters. 84 (25). American Physical Society (APS): 5764–5767. arXiv:nlin/0007033. Bibcode:2000PhRvL..84.5764B. doi:10.1103/physrevlett.84.5764. ISSN 0031-9007. PMID 10991049. S2CID 35884368.
  10. ^ Cartwright, Julyan H. E.; Magnasco, Marcelo O.; Piro, Oreste (2002-04-03). "Bailout embeddings, targeting of invariant tori, and the control of Hamiltonian chaos". Physical Review E. 65 (4). American Physical Society (APS): 045203(R). arXiv:nlin/0111005. Bibcode:2002PhRvE..65d5203C. doi:10.1103/physreve.65.045203. ISSN 1063-651X. PMID 12005907. S2CID 23498762.
  11. ^ Arrowsmith, D. K.; Cartwright, J. H. E.; Lansbury, A. N.; and Place, C. M. "The Bogdanov Map: Bifurcations, Mode Locking, and Chaos in a Dissipative System." Int. J. Bifurcation Chaos 3, 803–842, 1993.
  12. ^ Cartwright, J. H. E.; Piro, O.; Tuval, I. (2004-04-26). "Fluid-dynamical basis of the embryonic development of left-right asymmetry in vertebrates". Proceedings of the National Academy of Sciences. 101 (19): 7234–7239. Bibcode:2004PNAS..101.7234C. doi:10.1073/pnas.0402001101. ISSN 0027-8424. PMC 409902. PMID 15118088.
  13. ^ Checa, Antonio; Cartwright, Julyan; Willinger, Marc-Georg (2011). "Mineral bridges in nacre". Journal of Structural Biology. 176 (3): 330–339. doi:10.1016/j.jsb.2011.09.011. PMID 21982842.
  14. ^ Cartwright, J. H. E., Checa, A. G., Escribano, B., & Sainz-Díaz, C. I. (2009). Spiral and target patterns in bivalve nacre manifest a natural excitable medium from layer growth of a biological liquid crystal. Proceedings of the National Academy of Sciences, 106(26), 10499-10504.
  15. ^ Cartwright, J. H. E., & Checa, A. G. (2007). The dynamics of nacre self-assembly. Journal of the Royal Society Interface, 4(14), 491-504.
  16. ^ Checa, Antonio G.; Cartwright, Julyan H. E.; Sánchez-Almazo, Isabel; Andrade, José P.; Ruiz-Raya, Francisco (September 2015). "The cuttlefish Sepia officinalis (Sepiidae, Cephalopoda) constructs cuttlebone from a liquid-crystal precursor". Scientific Reports. 5 (1): 11513. arXiv:1506.08290. Bibcode:2015NatSR...511513C. doi:10.1038/srep11513. ISSN 2045-2322. PMC 4471886. PMID 26086668.
  17. ^ Cartwright, Julyan H. E.; Eguíluz, Víctor M.; Hernández-García, Emilio; Piro, Oreste (1999). "Dynamics of Elastic Excitable Media". International Journal of Bifurcation and Chaos. 09 (11): 2197–2202. arXiv:chao-dyn/9905035. Bibcode:1999IJBC....9.2197C. doi:10.1142/s0218127499001620. ISSN 0218-1274. S2CID 9120223.
  18. ^ Silvana S. S. Cardoso, Julyan H. E. Cartwright, Jitka Čejková, Leroy Cronin, Anne De Wit, Simone Giannerini, Dezső Horváth, Alírio Rodrigues, Michael J. Russell, C. Ignacio Sainz-Díaz, Ágota Tóth; Chemobrionics: From Self-Assembled Material Architectures to the Origin of Life. Artif Life 2020; 26 (3): 315–326. doi: https://doi.org/10.1162/artl_a_00323
  19. ^ Barge, Laura M.; Cardoso, Silvana S. S.; Cartwright, Julyan H. E.; Cooper, Geoffrey J. T.; Cronin, Leroy; De Wit, Anne; Doloboff, Ivria J.; Escribano, Bruno; Goldstein, Raymond E. (2015-08-26). "From Chemical Gardens to Chemobrionics". Chemical Reviews. 115 (16): 8652–8703. doi:10.1021/acs.chemrev.5b00014. hdl:20.500.11824/172. ISSN 0009-2665. PMID 26176351.
  20. ^ Cartwright J H E, B Escribano, D L González, C I Sainz-Díaz & I Tuval (2013). "Brinicles as a case of inverse chemical gardens". Langmuir. 29 (25): 7655–7660. arXiv:1304.1774. doi:10.1021/la4009703. PMID 23551166. S2CID 207727184.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  21. ^ Cartwright, Julyan H. E.; Russell, Michael J. (2019). "The origin of life: the submarine alkaline vent theory at 30". Interface Focus. 9 (6). doi:10.1098/rsfs.2019.0104. hdl:10261/205389. S2CID 204753957.
  22. ^ Jeroen Baas; Boyack, Kevin; Ioannidis, John P. A. (2021). "August 2021 data-update for "Updated science-wide author databases of standardized citation indicators"". 3. Elsevier BV. doi:10.17632/btchxktzyw.3. {{cite journal}}: Cite journal requires |journal= (help)
  23. ^ "La lista completa de los investigadores más destacados de la Universidad de Granada".
  24. ^ "Chemobrionics - COST".
  25. ^ "European Dynamics Days".
  26. ^ "Elements in Dynamical Systems".
  27. ^ "Recent research provides new data on chemical gardens, whose formation is a mystery for science".
  28. ^ "Philip Ball considers the vegetative soul of an inorganic woodland".
  29. ^ Ball, Philip (1999). "Pump up the bass". Nature. doi:10.1038/news990708-7.
  30. ^ "A pitch for decoding frequency more simply".
  31. ^ Wells, William A. (2004). "Tilt back to turn left". Journal of Cell Biology. 165 (4): 456. doi:10.1083/jcb1654rr1. PMC 2249968.
  32. ^ "Broken Symmetry". 11 September 2009.
  33. ^ "Scientists Crack the Mathematical Mystery of Stingless Bees' Spiral Honeycombs".
  34. ^ "Scientists Find These Stunning Spiral Beehives Have a Lot in Common With Crystals".
  35. ^ "Strange, spiral bee combs look like fantastical crystal palaces. Now we know why". Live Science. 22 July 2020.
  36. ^ "Mother-of-pearl From Shells Could Inspire Regeneration of Human Bones".
  37. ^ "Pearls and the Puzzle of How They Form Perfect Spheres".
  38. ^ "Pearly perfection".
  39. ^ "Micro-ratchet spins pearls with perfect symmetry".
  40. ^ "Researchers Try to Explain How Perfect Pearls Form".
  41. ^ "How pearls get their round shape".
  42. ^ Marlow, Jeffrey. "Swimming Beneath the Brinicles, in Antarctica". Wired.
  43. ^ "Ice tubes in polar seas -- 'brinicles' or 'sea stalactites' -- provide clues to origin of life".
  44. ^ "Brinicles and the Origin of Life".
  45. ^ "Self-Assembling Ice Membranes on Europa – Astrobiology".
  46. ^ "Crystals, Information And The Origin of Life".
  47. ^ Ball, Philip (2012). "Bringing crystals to life". Nature Materials. 11 (10): 840. doi:10.1038/nmat3437. PMID 23001232.
  48. ^ Buchanan, Mark (2012). "Instructions for assembly". Nature Physics. 8 (8): 577. Bibcode:2012NatPh...8..577B. doi:10.1038/nphys2393. S2CID 122568730.
  49. ^ Ball, Philip (2014). "Beyond the crystal". Nature Materials. 13 (11): 1003. doi:10.1038/nmat4122. PMID 25342529.
  50. ^ "When Good Waves Go Rogue". 25 June 2014.
  51. ^ "Recreating monster waves in art and science".
  52. ^ "Hokusai Under the Wave off Kanagawa".
  53. ^ "Der anstößige Superstar".
  54. ^ "Scoperta la più antica raffigurazione del nastro di Moebius".
  55. ^ "Escher, il nastro di Möbius e gli idiot savant: fin dove si può arrivare col pensiero?". 7 December 2021.
  56. ^ "3.5 percent of global methane deposits could be melted by 2100 due to climate change".
  57. ^ "Expertos internacionales debaten en Granada los últimos avances científicos relacionados con el origen de la vida". 12 March 2019.
  58. ^ "Search for origin of life reaches interstellar dust".