Jump to content

Ernest Duchesne: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
BG19bot (talk | contribs)
m WP:CHECKWIKI error fix for #48. Remove link to the title inside the text. Do general fixes if a problem exists. - using AWB (10361)
Consistent dates
 
(45 intermediate revisions by 34 users not shown)
Line 1: Line 1:
{{multiple issues|
{{multiple issues|
{{cleanup-rewrite|date=August 2014}}
{{cleanup rewrite|date=August 2014}}
{{Refimprove|date=November 2011}}
{{More citations needed|date=November 2011}}
}}
{{Use dmy dates|date=December 2020}}
'''Ernest Duchesne''' (30 May 1874 – 12 April 1912) was a French [[physician]] who noted that certain molds kill [[bacterium|bacteria]]. He made this discovery 32 years before [[Alexander Fleming]] discovered the [[antibiotic]] properties of [[penicillin]], a substance derived from those molds, but his research went unnoticed.
{{Infobox person
| name = Ernest Duchesne
| image = Duchesne.jpg
| alt =
| caption =
| birth_name =
| birth_date = {{birth date|1874|5|30|df=y}}
| birth_place =
| death_date = {{death date and age|1912|4|12|1874|5|30|df=y}}
| death_place = [[Amélie-les-Bains-Palalda]], [[Pyrénées-Orientales]], France
| nationality = French
| other_names =
| occupation = Physician
| years_active =
| known_for =
| notable_works =
| spouse = Rosa Lassalas (1901-1903)
| burial_place = [[Cimetière du Grand Jas]]
}}
}}


==Life and work==
{{Use dmy dates|date=September 2011}}
Duchesne entered ''l'Ecole du Service de Santé Militaire de Lyon'' (the Military Health Service School of Lyons) in 1894. Duchesne's thesis,<ref>Ernest Duchesne, [https://books.google.com/books?id=5L8UAAAAYAAJ&pg=PA1 ''Contribution à l'étude de la concurrence vitale chez les micro-organismes : antagonisme entre les moisissures et les microbes''] [Contribution to the study of the vital competition in microorganisms: antagonism between molds and microbes], (Lyon, France: Alexandre Rey, 1897).</ref><ref name="Duchesne 1897">[https://www.amazon.com/dp/B00DZVXPIK Duchesne 1897], Antagonism between molds and bacteria. An English translation by Michael Witty. Fort Myers, 2013. ASIN B00E0KRZ0E and B00DZVXPIK.</ref> ''"Contribution à l’étude de la concurrence vitale chez les micro-organismes: antagonisme entre les moisissures et les microbes"'' (Contribution to the study of vital competition in micro-organisms: antagonism between molds and microbes), that he submitted in 1897 to get his doctorate degree, was the first study to consider the therapeutic capabilities of molds resulting from their anti-microbial activity.
[[File:Duchesne.jpg|thumb|200px|Duchesne]]


In his landmark thesis, Duchesne proposed that bacteria and molds engage in a perpetual battle for survival.<ref>(Duchesne, 1897), p. 37: ''"Dans toutes les expériences qui précèdent, ce que nous constatons c'est le résultat brutal de la lutte; …"'' (In all of the preceding experiments, what we see is the brutal result of the battle; … )</ref> In one experiment, he treated cultures of ''Penicillium glaucum'' with media containing either bacteria that cause [[typhoid fever]] (''Salmonella enterica subsp. enterica'', formerly: ''Bacillus typhosus'' (Eberth)) or ''[[Escherichia coli]]'' (formerly: ''Bacterium coli communis'') ; the ''Penicillium'' succumbed to the bacteria.<ref>(Duchesne, 1897), pp. 35–36.</ref> Nevertheless, he wondered whether the ''Penicillium'' might have weakened the bacteria before the mold perished.<ref>(Duchesne, 1897), p. 37: ''" … mais rien ne dit qu'avant de périr elles n'aient porté une atteinte quelconque à la virulence des microbes et peut-être à leurs propriétés pathogènes."'' ( … but nothing says that before perishing, they [i.e., the molds] hadn't struck some blow at the microbes' virulence and perhaps at their pathological properties.)</ref> So he injected [[guinea pigs]] with media containing bacteria (either typhoid or ''E. coli'') and media containing ''Penicillium glaucum''. The animals survived and were rendered immune to the bacteria.<ref>(Duchesne, 1897), pp. 38–40.</ref> He speculated that molds might release toxins, as some bacteria do.<ref>(Duchesne, 1897), p. 47: ''"Nous avon vu (chapitre 1er) que, dans l'antagonisme qui existe entre les bacilles du pus bleu et la bactéridie charbonneuse, ce sont les toxines de la premiere espèce microbienne qui ont tué la seconde ; en est-il de même pour les moisissures?"'' (We saw (chapter 1) that, in the antagonism that exists between bacilli of blue pus [i.e., ''Pseudomonas aeruginosa''] and ''Bacillus anthracis'' [i.e., anthrax], it is the toxins of the former microbial species which killed the second [species] ; is it likewise for molds?)</ref> To treat diseases, he proposed using media in which either bacteria or molds had been cultured.<ref>(Duchesne, 1897), p. 51.</ref> Duchesne concluded that:
'''Ernest Duchesne''' (30&nbsp;May 1874 – 12&nbsp;April 1912) was a French [[physician]] who noted that certain molds kill [[bacterium|bacteria]]. He made this discovery 32&nbsp;years before [[Alexander Fleming]] discovered the [[antibiotic]] properties of [[penicillin]], a substance derived from those molds, but his research went unnoticed.


{{Blockquote|text=''V. Il semble, d'autre part, résulter de quelques-unes de nos expériences, malheureusement trop peu nombreuses et qu'il importera de répéter à nouveau et de contrôler, que certaines moisissures (Penicillum glaucum), inoculées à un animal en même temps que des cultures très virulentes de quelques microbes pathogènes (B. coli et B. typhosus d'Eberth), sont capables d'atténuer dans de très notables proportions la virulence de ces cultures bactériennes.''<br><br>
==Life and work==
''Translation'': V. It seems, on the other hand, to follow from some of our experiments – unfortunately too few and which it will be important to repeat anew and to check – that certain molds (''Penicillum glaucum''), inoculated into an animal at the same time as very virulent cultures of some pathogenic microbes (''E. coli'' and typhoid), are capable of reducing to a very considerable degree the virulence of these bacterial cultures.|sign=Ernest Duchesne|source=''Contribution à l’étude de la concurrence vitale chez les micro-organismes: antagonisme entre les moisissures et les microbes'', p. 54.}}
Duchesne entered ''l'Ecole du Service de Santé Militaire de Lyon'' (the Military Health Service School of Lyons) in 1894. Duchesne's thesis,<ref name="Duchesne 1897">[http://www.amazon.com/dp/B00DZVXPIK Duchesne 1897], Antagonism between molds and bacteria. An English translation by Michael Witty. Fort Myers, 2013. ASIN B00E0KRZ0E and B00DZVXPIK.</ref> "Contribution à l’étude de la concurrence vitale chez les micro-organismes: antagonisme entre les moisissures et les microbes" (Contribution to the study of vital competition in micro-organisms: antagonism between molds and microbes), that he submitted in 1897 to get his doctorate degree, was the first study to consider the therapeutic capabilities of molds resulting from their anti-microbial activity.


While only weakly conclusive given the number of the experimental trials, this proves Duchesne understood, concluded, and published information about the effect of the ''[[Penicillium|Penicillium glaucum]]'' mold as a therapeutic agent in animals. Because he was 23 and unknown, the [[Pasteur Institute|Institut Pasteur]] did not even acknowledge receipt of his dissertation.<ref>{{cite book|last1=Schaefer|first1=Bernd|title=Natural Products in the Chemical Industry|date=2015|publisher=Springer|isbn=9783642544613|page=231|url=https://books.google.com/books?id=DbO4CQAAQBAJ&pg=PA231}}</ref>
In Duchesne's landmark thesis, Duchesne begins testing the effect of tap water on mold finding mold is significantly diminished when exposed to French tap water. After detailing 19 different experiments, Duchesne concludes the presence of ''[[Penicillium|Penicillium glaucum]]'' inhibits bacterial growth:
{{Quote|text=Toutes ces expériences aboutissent aux mêmes résul tats: la présence de bactéries dans un milieu où l'on cultive des moisissures est pour ces dernières une cause de destruction rapide, quand bien même ces moisissures auraient eu le temps de s'accoutumer au milieu nutritif avant l'apport de microbes.|sign=Ernest Duchesne|source=''Contribution à l’étude de la concurrence vitale chez les micro-organismes: antagonisme entre les moisissures et les microbes''}}
Immediately thereafter, Duchesne makes a tremendous leap and begins testing the response of [[guinea pigs]], ''[[Cavia porcellus]]'', to highly virulent bacteria. In four experiments, Duchesne shows that administering ''[[Penicillium|Penicillium glaucum]]'' prevents the guinea pigs from dying. It is in Duchesne's fifth major conclusion, where he calls out this tremendous success using mold to combat bacteria and suggests additional study:
{{Quote|text=V. Il semble, d'autre part, résulter de quelques-unes de nos expériences, malheureusement trop peu nombreuses et qu'il importera de répéter à nouveau et de contrôler, que certaines moisissures (Penicillumglaucum), inoculées à un animal en même temps que des cultures très virulentes de quelques microbes pathogènes (B. coli et B. typhosus d'Eberth), sont capables d'atténuer dans de très notables proportions la virulence de ces cultures bactériennes.|sign=Ernest Duchesne|source=''Contribution à l’étude de la concurrence vitale chez les micro-organismes: antagonisme entre les moisissures et les microbes''}}


Duchesne served a one-year internship at [[Val-de-Grâce]] before he was appointed a 2nd class Major of Medicine in the 2nd Regiment de Hussards de Senlis. In 1901, he married Rosa Lassalas from [[Cannes]]. She died 2&nbsp;years later of [[tuberculosis]]. In 1904, Duchesne also contracted a serious chest disease, probably tuberculosis. Three years later, he was discharged from the army and sent to a sanatorium in [[Amélie-les-Bains]]. He died on 12 April 1912, at age 37. Duchesne is buried next to his wife in the [[Cimetière du Grand Jas]] in Cannes.
This, while only weakly conclusive given the size of the experiments, proves Duchesne understood, concluded, and published information about the effect of the ''[[Penicillium|Penicillium glaucum]]'' mold as a therapeutic agent in animals. Because he was 23 and unknown, the [[Pasteur Institute|Institut Pasteur]] did not even acknowledge receipt of his dissertation. {{Citation needed|date=August 2014}} He urged more research but unfortunately his army service after getting his degree prevented him from doing any further work. {{Citation needed|date=August 2014}} Therefore, Duchesne nor the [[Pasteur Institute|Institut Pasteur]] capitalized on Duchesne's tremendous discovery and years later, Fleming received credit for his work with, ''Penicillium notatum'' and his isolation of [[Penicillin]].

Duchesne served a one year internship at [[Val-de-Grâce]] before he was appointed a 2nd class Major of Medicine in the 2nd Regiment de Hussards de Senlis. In 1901, he married Rosa Lassalas from [[Cannes]]. She died 2&nbsp;years later of [[tuberculosis]]. In 1904, Duchesne also contracted a serious chest disease, probably tuberculosis. Three years later, he was discharged from the army and sent to a sanatorium in [[Amélie-les-Bains]]. He died 12&nbsp;April 1912, at age 37. Duchesne is buried next to his wife in the [[Cimetière du Grand Jas]] in Cannes.


==Recognition==
==Recognition==
Duchesne was posthumously honoured in 1949, 5&nbsp;years after [[Alexander Fleming]] had received the Nobel Prize.
Duchesne was posthumously honored in 1949, 5&nbsp;years after [[Alexander Fleming]] had received the Nobel Prize.


''A history of antibiotics''<ref>{{cite web | first=Pat | last=O'Connor | url=http://antibioticinformation.blogspot.com/2005/11/history-of-antibiotics.html | title=History of Antibiotics | date=27 November 2005 | accessdate=6 June 2013}}</ref> contains a suggestion on why it was forgotten:
''A history of antibiotics''<ref>{{cite web | first=Pat | last=O'Connor | url=http://antibioticinformation.blogspot.com/2005/11/history-of-antibiotics.html | title=History of Antibiotics | date=27 November 2005 | accessdate=6 June 2013}}</ref> contains a suggestion on why it was forgotten:
:While Fleming generally receives credit for discovering penicillin, in fact technically Fleming rediscovered the substance. In 1896, the French medical student Ernest Duchesne originally discovered the antibiotic properties of Penicillium, but failed to report a connection between the fungus and a substance that had antibacterial properties, and Penicillium was forgotten in the scientific community until Fleming's rediscovery.
:While Fleming generally receives credit for discovering penicillin, in fact, technically, Fleming rediscovered the substance. In 1896, the French medical student Ernest Duchesne originally discovered the antibiotic properties of ''Penicillium'' but failed to report a connection between the fungus and a substance that had antibacterial properties, and ''Penicillium'' was forgotten in the scientific community until Fleming's rediscovery.


==See also==
==See also==
Line 31: Line 47:


== References ==
== References ==
{{reflist}}
<references />


==External links==
==External links==
* [http://www1.umn.edu/ships/updates/fleming.htm Duchesne and John Tyndall recognized as preceding Flemings discovery]
* [https://web.archive.org/web/20090528100504/http://www1.umn.edu/ships/updates/fleming.htm Duchesne and John Tyndall recognized as preceding Flemings discovery]


{{Authority control|VIAF=196001498}}
{{Authority control}}


{{Persondata <!-- Metadata: see [[Wikipedia:Persondata]]. -->
| NAME = Duchesne, Ernest
| ALTERNATIVE NAMES =
| SHORT DESCRIPTION = French physician
| DATE OF BIRTH = 30 May 1874
| PLACE OF BIRTH =
| DATE OF DEATH = 12 April 1912
| PLACE OF DEATH =
}}
{{DEFAULTSORT:Duchesne, Ernest}}
{{DEFAULTSORT:Duchesne, Ernest}}
[[Category:1874 births]]
[[Category:1874 births]]
[[Category:1912 deaths]]
[[Category:1912 deaths]]
[[Category:French physicians]]
[[Category:Scientists from Paris]]
[[Category:French military doctors]]
[[Category:Burials at the Cimetière du Grand Jas]]
[[Category:Burials at the Cimetière du Grand Jas]]

Latest revision as of 20:19, 20 June 2024

Ernest Duchesne (30 May 1874 – 12 April 1912) was a French physician who noted that certain molds kill bacteria. He made this discovery 32 years before Alexander Fleming discovered the antibiotic properties of penicillin, a substance derived from those molds, but his research went unnoticed.

Ernest Duchesne
Born(1874-05-30)30 May 1874
Died12 April 1912(1912-04-12) (aged 37)
Burial placeCimetière du Grand Jas
NationalityFrench
OccupationPhysician
SpouseRosa Lassalas (1901-1903)

Life and work

[edit]

Duchesne entered l'Ecole du Service de Santé Militaire de Lyon (the Military Health Service School of Lyons) in 1894. Duchesne's thesis,[1][2] "Contribution à l’étude de la concurrence vitale chez les micro-organismes: antagonisme entre les moisissures et les microbes" (Contribution to the study of vital competition in micro-organisms: antagonism between molds and microbes), that he submitted in 1897 to get his doctorate degree, was the first study to consider the therapeutic capabilities of molds resulting from their anti-microbial activity.

In his landmark thesis, Duchesne proposed that bacteria and molds engage in a perpetual battle for survival.[3] In one experiment, he treated cultures of Penicillium glaucum with media containing either bacteria that cause typhoid fever (Salmonella enterica subsp. enterica, formerly: Bacillus typhosus (Eberth)) or Escherichia coli (formerly: Bacterium coli communis) ; the Penicillium succumbed to the bacteria.[4] Nevertheless, he wondered whether the Penicillium might have weakened the bacteria before the mold perished.[5] So he injected guinea pigs with media containing bacteria (either typhoid or E. coli) and media containing Penicillium glaucum. The animals survived and were rendered immune to the bacteria.[6] He speculated that molds might release toxins, as some bacteria do.[7] To treat diseases, he proposed using media in which either bacteria or molds had been cultured.[8] Duchesne concluded that:

V. Il semble, d'autre part, résulter de quelques-unes de nos expériences, malheureusement trop peu nombreuses et qu'il importera de répéter à nouveau et de contrôler, que certaines moisissures (Penicillum glaucum), inoculées à un animal en même temps que des cultures très virulentes de quelques microbes pathogènes (B. coli et B. typhosus d'Eberth), sont capables d'atténuer dans de très notables proportions la virulence de ces cultures bactériennes.

Translation: V. It seems, on the other hand, to follow from some of our experiments – unfortunately too few and which it will be important to repeat anew and to check – that certain molds (Penicillum glaucum), inoculated into an animal at the same time as very virulent cultures of some pathogenic microbes (E. coli and typhoid), are capable of reducing to a very considerable degree the virulence of these bacterial cultures.

— Ernest Duchesne, Contribution à l’étude de la concurrence vitale chez les micro-organismes: antagonisme entre les moisissures et les microbes, p. 54.

While only weakly conclusive given the number of the experimental trials, this proves Duchesne understood, concluded, and published information about the effect of the Penicillium glaucum mold as a therapeutic agent in animals. Because he was 23 and unknown, the Institut Pasteur did not even acknowledge receipt of his dissertation.[9]

Duchesne served a one-year internship at Val-de-Grâce before he was appointed a 2nd class Major of Medicine in the 2nd Regiment de Hussards de Senlis. In 1901, he married Rosa Lassalas from Cannes. She died 2 years later of tuberculosis. In 1904, Duchesne also contracted a serious chest disease, probably tuberculosis. Three years later, he was discharged from the army and sent to a sanatorium in Amélie-les-Bains. He died on 12 April 1912, at age 37. Duchesne is buried next to his wife in the Cimetière du Grand Jas in Cannes.

Recognition

[edit]

Duchesne was posthumously honored in 1949, 5 years after Alexander Fleming had received the Nobel Prize.

A history of antibiotics[10] contains a suggestion on why it was forgotten:

While Fleming generally receives credit for discovering penicillin, in fact, technically, Fleming rediscovered the substance. In 1896, the French medical student Ernest Duchesne originally discovered the antibiotic properties of Penicillium but failed to report a connection between the fungus and a substance that had antibacterial properties, and Penicillium was forgotten in the scientific community until Fleming's rediscovery.

See also

[edit]

References

[edit]
  1. ^ Ernest Duchesne, Contribution à l'étude de la concurrence vitale chez les micro-organismes : antagonisme entre les moisissures et les microbes [Contribution to the study of the vital competition in microorganisms: antagonism between molds and microbes], (Lyon, France: Alexandre Rey, 1897).
  2. ^ Duchesne 1897, Antagonism between molds and bacteria. An English translation by Michael Witty. Fort Myers, 2013. ASIN B00E0KRZ0E and B00DZVXPIK.
  3. ^ (Duchesne, 1897), p. 37: "Dans toutes les expériences qui précèdent, ce que nous constatons c'est le résultat brutal de la lutte; …" (In all of the preceding experiments, what we see is the brutal result of the battle; … )
  4. ^ (Duchesne, 1897), pp. 35–36.
  5. ^ (Duchesne, 1897), p. 37: " … mais rien ne dit qu'avant de périr elles n'aient porté une atteinte quelconque à la virulence des microbes et peut-être à leurs propriétés pathogènes." ( … but nothing says that before perishing, they [i.e., the molds] hadn't struck some blow at the microbes' virulence and perhaps at their pathological properties.)
  6. ^ (Duchesne, 1897), pp. 38–40.
  7. ^ (Duchesne, 1897), p. 47: "Nous avon vu (chapitre 1er) que, dans l'antagonisme qui existe entre les bacilles du pus bleu et la bactéridie charbonneuse, ce sont les toxines de la premiere espèce microbienne qui ont tué la seconde ; en est-il de même pour les moisissures?" (We saw (chapter 1) that, in the antagonism that exists between bacilli of blue pus [i.e., Pseudomonas aeruginosa] and Bacillus anthracis [i.e., anthrax], it is the toxins of the former microbial species which killed the second [species] ; is it likewise for molds?)
  8. ^ (Duchesne, 1897), p. 51.
  9. ^ Schaefer, Bernd (2015). Natural Products in the Chemical Industry. Springer. p. 231. ISBN 9783642544613.
  10. ^ O'Connor, Pat (27 November 2005). "History of Antibiotics". Retrieved 6 June 2013.
[edit]