Jump to content

22 equal temperament: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Hyacinth (talk | contribs)
{{reflist}}
m Interval size: Spelling and grammar fixes
 
(43 intermediate revisions by 16 users not shown)
Line 1: Line 1:
In music, '''22 equal temperament''', called 22-tet, [[equal division of the octave|22-edo]], or 22-et, is the [[musical temperament|tempered]] scale derived by dividing the octave into 22 equal steps (equal frequency ratios). {{audio|22-tet scale on C.mid|Play}} Each step represents a frequency ratio of {{radic|2|22}}, or 54.55 [[cent (music)|cents]] ({{Audio|1 step in 22-et on C.mid|Play}}).
In music, '''22 equal temperament''', called 22-TET, 22-[[equal division of the octave|EDO]], or 22-ET, is the [[musical temperament|tempered]] scale derived by dividing the octave into 22 equal steps (equal frequency ratios). {{audio|22-tet scale on C.mid|Play}} Each step represents a frequency ratio of {{radic|2|22}}, or 54.55 [[cent (music)|cents]] ({{Audio|1 step in 22-et on C.mid|Play}}).


When composing with 22-ET, one needs to take into account a variety of considerations. Considering the [[Five-limit tuning|5-limit]], there is a difference between 3 fifths and the sum of 1 fourth and 1 major third. It means that, starting from C, there are two A's—one 16 steps and one 17 steps away. There is also a difference between a major tone and a minor tone. In C major, the second note (D) will be 4 steps away. However, in A minor, where A is 6 steps below C, the fourth note (D) will be 9 steps above A, so 3 steps above C. So when switching from C major to A minor, one needs to slightly change the D note. These discrepancies arise because, unlike [[Equal temperament|12-ET]], 22-ET does not temper out the [[syntonic comma]] of 81/80, but instead exaggerates its size by mapping it to one step.
The idea of dividing the octave into 22 steps of equal size seems to have originated with nineteenth-century music theorist [[RHM Bosanquet]]. Inspired by the division of the octave into 22 unequal parts in the [[music of India|music theory of India]], Bosanquet noted that an equal division was capable of representing [[limit (music)|5-limit]] music with tolerable accuracy.<ref>Bosanquet, R.H.M. [http://www.geocities.com/threesixesinarow/hindoo.htm "On the Hindoo division of the octave, with additions to the theory of higher orders"] ([https://www.webcitation.org/5kjJcrhEx Archived] 2009-10-22), ''Proceedings of the Royal Society of London'' vol. 26 (March 1, 1877, to December 20, 1877) Taylor & Francis, London 1878, pp.&nbsp;372–384. (Reproduced in Tagore, Sourindro Mohun, ''Hindu Music from Various Authors'', Chowkhamba Sanskrit Series, Varanasi, India, 1965).</ref> In this he was followed in the twentieth century by theorist [[José Würschmidt]], who noted it as a possible next step after [[19 equal temperament]], and [[J. Murray Barbour]] in his survey of tuning history, ''Tuning and Temperament''.<ref>Barbour, James Murray, ''Tuning and temperament, a historical survey'', East Lansing, Michigan State College Press, 1953 [c1951].</ref> Contemporary advocates of 22 equal temperament include music theorist [[Paul Erlich]].


In the [[7-limit tuning|7-limit]], the septimal minor seventh (7/4) can be distinguished from the sum of a fifth (3/2) and a minor third (6/5), and the septimal subminor third (7/6) is different from the minor third (6/5). This mapping tempers out the [[septimal comma]] of 64/63, which allows 22-ET to function as a "Superpythagorean" system where four stacked fifths are equated with the [[septimal major third]] (9/7) rather than the usual pental third of 5/4. This system is a "mirror image" of [[Septimal meantone temperament|septimal meantone]] in many ways: meantone systems tune the fifth flat so that intervals of 5 are simple while intervals of 7 are complex, superpythagorean systems have the fifth tuned sharp so that intervals of 7 are simple while intervals of 5 are complex. The enharmonic structure is also reversed: sharps are sharper than flats, similar to Pythagorean tuning (and by extension [[53 equal temperament]]), but to a greater degree.
==Practical aspects==

When composing with 22-ET, one needs to take into account different facts. Considering the [[Five-limit tuning|5-limit]], there is a difference between 3 fifths and the sum of 1 fourth + 1 major third. It means that, starting from C, there are two A's - one 16 steps and one 17 steps away. There is also a difference between a major tone and a minor tone. In C major, the second note (D) will be 4 steps away. However, in A minor, where A is 6 steps below C, the fourth note (D) will be 9 steps above A, so 3 steps above C. So when switching from C major to A minor, one need to slightly change the note D. These discrepancies arise because, unlike [[Equal temperament|12-ET]], 22-ET does not temper out the [[syntonic comma]] of 81/80, and in fact exaggerates its size by mapping it to one step.

Extending 22-ET to the [[7-limit tuning|7-limit]], we find the septimal minor seventh (7/4) can be distinguished from the sum of a fifth (3/2) and a minor third (6/5). Also the septimal subminor third (7/6) is different from the minor third (6/5). This mapping tempers out the [[septimal comma]] of 64/63, which allows 22-ET to function as a "Superpythagorean" system where four stacked fifths are equated with the [[septimal major third]] (9/7) rather than the usual pental third of 5/4. This system is a "mirror image" of [[Septimal meantone temperament|septimal meantone]] in many ways. Instead of tempering the fifth narrow so that intervals of 5 are simple while intervals of 7 are complex, the fifth is tempered wide so that intervals of 7 are simple while intervals of 5 are complex. The enharmonic structure is also reversed: sharps are sharper than flats, similar to Pythagorean tuning, but to a greater degree.


Finally, 22-ET has a good approximation of the 11th harmonic, and is in fact the smallest equal temperament to be consistent in the [[11-limit interval|11-limit]].
Finally, 22-ET has a good approximation of the 11th harmonic, and is in fact the smallest equal temperament to be consistent in the [[11-limit interval|11-limit]].
Line 13: Line 9:
The net effect is that 22-ET allows (and to some extent even forces) the exploration of new musical territory, while still having excellent approximations of common practice consonances.
The net effect is that 22-ET allows (and to some extent even forces) the exploration of new musical territory, while still having excellent approximations of common practice consonances.


== History and use ==
==Interval size==
The idea of dividing the octave into 22 steps of equal size seems to have originated with nineteenth-century music theorist [[RHM Bosanquet]]. Inspired by the use of a 22-tone unequal division of the octave in the [[music of India|music theory of India]], Bosanquet noted that a 22-tone equal division was capable of representing [[limit (music)|5-limit]] music with tolerable accuracy.<ref>Bosanquet, R.H.M. [http://www.geocities.com/threesixesinarow/hindoo.htm "On the Hindoo division of the octave, with additions to the theory of higher orders"] ([https://archive.today/20091023033312/http://www.geocities.com/threesixesinarow/hindoo.htm Archived] 2009-10-22), ''Proceedings of the Royal Society of London'' vol. 26 (March 1, 1877, to December 20, 1877) Taylor & Francis, London 1878, pp.&nbsp;372–384. (Reproduced in Tagore, Sourindro Mohun, ''Hindu Music from Various Authors'', Chowkhamba Sanskrit Series, Varanasi, India, 1965).</ref> In this he was followed in the twentieth century by theorist [[José Würschmidt]], who noted it as a possible next step after [[19 equal temperament]], and [[J. Murray Barbour]] in his survey of tuning history, ''Tuning and Temperament''.<ref>Barbour, James Murray, ''Tuning and temperament, a historical survey'', East Lansing, Michigan State College Press, 1953 [c1951].</ref> Contemporary advocates of 22 equal temperament include music theorist [[Paul Erlich]].


== Notation ==
Here are the sizes of some common intervals in this system (intervals that are more than 1/4 of a step, in this case, more than ≈13.5 cents, out of tune):
[[File:22-TET circle of fifths.png|220px|thumb|right|[[Circle of fifths]] in 22&nbsp;tone equal temperament, "ups and downs" notation]]
[[File:22-TET circle of fifths A.png|thumb|Circle of edosteps in 22&nbsp;tone equal temperament, "ups and downs" notation]]


22-EDO can be notated several ways. The first, '''Ups And Downs Notation''',<ref name=xenwiki>{{Xenharmonic wiki|Ups_and_downs_notation}} Accessed 2023-8-12.</ref> uses up and down arrows, written as a caret and a lower-case "v", usually in a sans-serif font. One arrow equals one edostep. In note names, the arrows come first, to facilitate chord naming. This yields the following chromatic scale:
{| class="wikitable sortable"

!interval name
C, ^C/D{{music|b}}, vC{{music|#}}/^D{{music|b}}, C{{music|#}}/vD,
!size (steps)

!size (cents)
D, ^D/E{{music|b}}, vD{{music|#}}/^E{{music|b}}, D{{music|#}}/vE, E,
!midi

!just ratio
F, ^F/G{{music|b}}, vF{{music|#}}/^G{{music|b}}, F{{music|#}}/vG,
!just (cents)

!midi
G, ^G/A{{music|b}}, vG{{music|#}}/^A{{music|b}}, G{{music|#}}/vA,
!error

A, ^A/B{{music|b}}, vA{{music|#}}/^B{{music|b}}, A{{music|#}}/vB, B, C

The Pythagorean minor chord with [[Minor third#Pythagorean minor third|32/27]] on C is still named Cm and still spelled C&ndash;E{{music|b}}&ndash;G. But the [[5-limit]] ''up''minor chord uses the upminor 3rd 6/5 and is spelled C&ndash;^E{{music|b}}&ndash;G. This chord is named C^m. Compare with ^Cm (^C&ndash;^E{{music|b}}&ndash;^G).

The second, '''Quarter Tone Notation''', uses half-sharps and half-flats instead of up and down arrows:

C, C{{music|t}}, C{{music|#}}/D{{music|b}}, D{{music|d}},

D, D{{music|t}}, D{{music|#}}/E{{music|b}}, E{{music|d}}, E,

F, F{{music|t}}, F{{music|#}}/G{{music|b}}, G{{music|d}},

G, G{{music|t}}, G{{music|#}}/A{{music|b}}, A{{music|d}},

A, A{{music|t}}, A{{music|#}}/B{{music|b}}, B{{music|d}}, B, C

However, chords and some enharmonic equivalences are much different than they are in 12-EDO. For example, even though a 5-limit C minor triad is notated as {{nowrap|C&ndash;E{{music|b}}&ndash;G}}, C major triads are now {{nowrap|C&ndash;E{{music|d}}&ndash;G}} instead of {{nowrap|C&ndash;E&ndash;G}}, and an A minor triad is now {{nowrap|A&ndash;C{{music|t}}&ndash;E}} even though an A major triad is still {{nowrap|A&ndash;C{{music|#}}&ndash;E}}. Additionally, while major seconds such as {{nowrap|C&ndash;D}} are divided as expected into 4 quarter tones, minor seconds such as {{nowrap|E&ndash;F}} and {{nowrap|B&ndash;C}} are 1 quarter tone, not 2. Thus {{nowrap|E{{music|#}}}} is now equivalent to {{nowrap|F{{music|t}}}} instead of F, {{nowrap|F{{music|b}}}} is equivalent to {{nowrap|E{{music|d}}}} instead of E, F is equivalent to {{nowrap|E{{music|t}}}}, and E is equivalent to {{nowrap|F{{music|d}}}}. Furthermore, the note a fifth above B is not the expected {{nowrap|F{{music|#}}}} but rather {{nowrap|F{{music|#t}}}} or {{nowrap|G{{music|d}}}}, and the note that is a fifth below F is now {{nowrap|B{{music|db}}}} instead of {{nowrap|B{{music|b}}}}.

The third, '''Porcupine Notation,''' introduces no new accidentals, but significantly changes chord spellings (e.g. the 5-limit major triad is now C&ndash;E{{music|#}}&ndash;G{{music|#}}). In addition, enharmonic equivalences from 12-EDO are no longer valid. This yields the following chromatic scale:

C, C{{music|#}}, D{{music|b}},
D, D{{music|#}}, E{{music|b}},
E, E{{music|#}}, F{{music|b}},
F, F{{music|#}}, G{{music|b}},
G, G{{music|#}}, G{{music|x}}/A{{music|bb}}, A{{music|b}},
A, A{{music|#}}, B{{music|b}},
B, B{{music|#}}, C{{music|b}}, C

== Interval size ==
[[File:22ed2.svg|250px|thumb|Just intervals approximated in 22 equal temperament]]
The table below gives the sizes of some common intervals in 22 equal temperament. Intervals shown with a shaded background&mdash;such as the septimal tritones&mdash;are more than 1/4 of a step (approximately 13.6 cents) out of tune, when compared to the just ratios they approximate.

{| class="wikitable sortable center-all"
! Interval name
! Size (steps)
! Size (cents)
! MIDI
! Just ratio
! Just (cents)
! MIDI
! Error (cents)
|-
|-
| [[octave]]
|align=center|17:10 wide major sixth
| 22
|align=center|17
| 1200
|align=center|927.27
|
|align=center|{{audio|17 steps in 22-et on C.mid|Play<br/>}}
| 2:1
|align=center|17:10
| 1200
|align=center|920.64
|
|align=center|
| 0
|align=center|−{{0}}8.63
|-
|-
|align=center|[[major sixth]]
| [[major seventh]]
| 20
|align=center|16
| 1090.91
|align=center|872.73
|align=center|{{audio|8 steps in 11-et on C.mid|Play<br/>}}
| {{audio| 10 steps in 11-et on C.mid| Play}}
| 15:8
|align=center|5:3
| 1088.27
|align=center|884.36
|align=center|{{audio|Just major sixth on C.mid|Play<br/>}}
| {{audio| Just major seventh on C.mid| Play}}
| +{{0}}2.64
|align=center|−11.63
|-
|-
| [[septimal minor seventh]]
|align=center|[[perfect fifth]]
| 18
|align=center|13
| 981.818
|align=center|709.09
|
|align=center|{{audio|13 steps in 22-et on C.mid|Play<br/>}}
| 7:4
|align=center|3:2
| 968.82591
|align=center|701.95
|
|align=center|{{audio|Just perfect fifth on C.mid|Play<br/>}}
|align=center|+{{0}}7.14
| +{{0}}12.99
|-
|-
| 17:10 wide major sixth
|align=center|septendecimal tritone
| 17
|align=center|11
| 927.27
|align=center|600.00
|align=center|{{audio|Tritone on C.mid|Play<br/>}}
| {{audio| 17 steps in 22-et on C.mid| Play}}
|align=center|17:12
| 17:10
| 918.64
|align=center|603.00
|
|align=center|
|align=center|−{{0}}3.00
| +{{0}}8.63
|- align=center bgcolor="#D4D4D4"
|[[septimal tritone]] ||11 ||600.00 || ||7:5 ||582.51 || {{audio|Lesser septimal tritone on C.mid|Play<br/>}} ||+17.49
|-
|-
| [[major sixth]]
|align=center|11:8 wide fourth
| 16
|align=center|10
| 872.73
|align=center|545.45
|align=center|{{audio|5 steps in 11-et on C.mid|Play<br/>}}
| {{audio| 8 steps in 11-et on C.mid| Play}}
| 5:3
|align=center|11:8{{0}}
| 884.36
|align=center|551.32
|align=center|{{audio|Eleventh harmonic on C.mid|Play<br/>}}
| {{audio| Just major sixth on C.mid| Play}}
| −11.63
|align=center|−{{0}}5.87
|-
|-
| [[perfect fifth]]
|align=center|15:11 wide fourth
| 13
|align=center|10
| 709.09
|align=center|545.45
| {{audio| 13 steps in 22-et on C.mid| Play}}
|align=center|
| 3:2
|align=center|15:11
| 701.95
|align=center|536.95
|align=center|{{audio|Undecimal augmented fourth on C.mid|Play<br/>}}
| {{audio| Just perfect fifth on C.mid| Play}}
|align=center|+{{0}}8.50
| +{{0}}7.14
|-
|-
| septendecimal tritone
|align=center|[[perfect fourth]]
| 11
|align=center|{{0}}9
| 600.00
|align=center|490.91
|align=center|{{audio|9 steps in 22-et on C.mid|Play<br/>}}
| {{audio| Tritone on C.mid| Play}}
| 17:12
|align=center|4:3
| 603.00
|align=center|498.05
|
|align=center|{{audio|Just perfect fourth on C.mid|Play<br/>}}
|align=center|−{{0}}7.14
| −{{0}}3.00
|-
|-
| [[tritone]]
|align=center|septendecimal supermajor third
| 11
|align=center|{{0}}8
| 600.00
|align=center|436.36
|
|align=center|{{audio|4 steps in 11-et on C.mid|Play<br/>}}
| 45:32
|align=center|22:17
| 590.22
|align=center|446.36
| {{audio| Just_augmented_fourth_on_C.mid| Play}}
|align=center|
| +{{0}}9.78
|align=center|−10.00
|- style="background-color: #D4D4D4"
| [[septimal tritone]]
| 11
| 600.00
|
| 7:5
| 582.51
| {{audio| Lesser septimal tritone on C.mid| Play}}
| +17.49
|-
|-
| 11:8 wide fourth
|align=center|[[septimal major third]]
| 10
|align=center|{{0}}8
| 545.45
|align=center|436.36
| {{audio| 5 steps in 11-et on C.mid| Play}}
|align=center|
| 11:8{{0}}
|align=center|9:7
| 551.32
|align=center|435.08
|align=center|{{audio|Septimal major third on C.mid|Play<br/>}}
| {{audio| Eleventh harmonic on C.mid| Play}}
|align=center|+{{0}}1.28
|{{0}}5.87
|-
|-
| 375th subharmonic
|align=center bgcolor="#D4D4D4"|[[undecimal major third]]
| 10
|align=center bgcolor="#D4D4D4"|{{0}}8
| 545.45
|align=center bgcolor="#D4D4D4"|436.36
|
|align=center bgcolor="#D4D4D4"|
| 512:375
|align=center bgcolor="#D4D4D4"|14:11
| 539.10
|align=center bgcolor="#D4D4D4"|417.51
|
|align=center bgcolor="#D4D4D4"|{{audio|Undecimal major third on C.mid|Play<br/>}}
| +{{0}}6.35
|align=center bgcolor="#D4D4D4"|+18.86
|-
|-
| 15:11 wide fourth
|align=center|[[major third]]
| 10
|align=center|{{0}}7
| 545.45
|align=center|381.82
|
|align=center|{{audio|7 steps in 22-et on C.mid|Play<br/>}}
| 15:11
|align=center|5:4
| 536.95
|align=center|386.31
|align=center|{{audio|Just major third on C.mid|Play<br/>}}
| {{audio| Undecimal augmented fourth on C.mid| Play}}
|align=center|−{{0}}4.49
| +{{0}}8.50
|- align=center bgcolor="#D4D4D4"
|undecimal [[neutral third]] ||{{0}}6 ||327.27 || {{audio|3 steps in 11-et on C.mid|Play<br/>}} ||11:9{{0}} ||347.41 || {{audio|Undecimal neutral third on C.mid|Play<br/>}} ||−20.14
|-
|-
| [[perfect fourth]]
|align=center|septendecimal supraminor third
|align=center|{{0}}6
| {{0}}9
| 490.91
|align=center|327.27
| {{audio| 9 steps in 22-et on C.mid| Play}}
|align=center|
| 4:3
|align=center|17:14
| 498.05
|align=center|336.13
|align=center|{{audio|Superminor third on C.mid|Play<br/>}}
| {{audio| Just perfect fourth on C.mid| Play}}
|align=center|−{{0}}8.86
| −{{0}}7.14
|-
|-
|align=center|[[minor third]]
| septendecimal supermajor third
|align=center|{{0}}6
| {{0}}8
| 436.36
|align=center|327.27
| {{audio| 4 steps in 11-et on C.mid| Play}}
|align=center|
| 22:17
|align=center|6:5
| 446.36
|align=center|315.64
|
|align=center|{{audio|Just minor third on C.mid|Play<br/>}}
| −10.00
|align=center|+11.63
|-
|-
| [[septimal major third]]
|align=center|septendecimal augmented second
|align=center|{{0}}5
| {{0}}8
| 436.36
|align=center|272.73
|
|align=center|{{audio|5 steps in 22-et on C.mid|Play<br/>}}
| 9:7
|align=center|20:17
| 435.08
|align=center|281.36
| {{audio| Septimal major third on C.mid| Play}}
|align=center|
|align=center|−{{0}}8.63
| +{{0}}1.28
|-
|-
| [[diminished fourth]]
|align=center|[[septimal minor third]]
|align=center|{{0}}5
| {{0}}8
| 436.36
|align=center|272.73
|
|align=center|
| 32:25
|align=center|7:6
| 427.37
|align=center|266.88
|align=center|{{audio|Septimal minor third on C.mid|Play<br/>}}
| {{audio| Just_diminished_fourth_on_C.mid| Play}}
|align=center|+{{0}}5.85
| +{{0}}8.99
|- style="background-color: #D4D4D4;"
| [[undecimal major third]]
| {{0}}8
| 436.36
|
| 14:11
| 417.51
| {{audio| Undecimal major third on C.mid| Play}}
| +18.86
|-
|-
| [[major third]]
|align=center|[[septimal whole tone]]
|align=center|{{0}}4
| {{0}}7
| 381.82
|align=center|218.18
|align=center|{{audio|2 steps in 11-et on C.mid|Play<br/>}}
| {{audio| 7 steps in 22-et on C.mid| Play}}
| 5:4
|align=center|8:7
| 386.31
|align=center|231.17
|align=center|{{audio|Septimal major second on C.mid|Play<br/>}}
| {{audio| Just major third on C.mid| Play}}
| −{{0}}4.49
|align=center|−12.99
|- style="background-color: #D4D4D4;"
| undecimal [[neutral third]]
| {{0}}6
| 327.27
| {{audio| 3 steps in 11-et on C.mid| Play}}
| 11:9{{0}}
| 347.41
| {{audio| Undecimal neutral third on C.mid| Play}}
| −20.14
|-
|-
|align=center|septendecimal major second
| septendecimal supraminor third
|align=center|{{0}}4
| {{0}}6
| 327.27
|align=center|218.18
|
|align=center|
|align=center|17:15
| 17:14
| 336.13
|align=center|216.69
| {{audio| Superminor third on C.mid| Play}}
|align=center|
|align=center|+{{0}}1.50
|{{0}}8.86
|-
|-
| [[minor third]]
|align=center bgcolor="#D4D4D4"|[[whole tone]], [[major tone]]
| {{0}}6
|align=center bgcolor="#D4D4D4"|{{0}}4
| 327.27
|align=center bgcolor="#D4D4D4"|218.18
|
|align=center bgcolor="#D4D4D4"|
| 6:5
|align=center bgcolor="#D4D4D4"|9:8
| 315.64
|align=center bgcolor="#D4D4D4"|203.91
|align=center bgcolor="#D4D4D4"|{{audio|Major tone on C.mid|Play<br/>}}
| {{audio| Just minor third on C.mid| Play}}
| +11.63
|align=center bgcolor="#D4D4D4"|+14.27
|-
|-
| septendecimal augmented second
|align=center bgcolor="#D4D4D4"|whole tone, [[minor tone]]
| {{0}}5
|align=center bgcolor="#D4D4D4"|{{0}}3
| 272.73
|align=center bgcolor="#D4D4D4"|163.64
|align=center bgcolor="#D4D4D4"|{{audio|3 steps in 22-et on C.mid|Play<br/>}}
| {{audio| 5 steps in 22-et on C.mid| Play}}
| 20:17
|align=center bgcolor="#D4D4D4"|10:9{{0}}
| 281.36
|align=center bgcolor="#D4D4D4"|182.40
|
|align=center bgcolor="#D4D4D4"|{{audio|Minor tone on C.mid|Play<br/>}}
| −{{0}}8.63
|align=center bgcolor="#D4D4D4"|−18.77
|-
|-
|align=center|[[neutral second]], greater undecimal
| [[augmented second]]
|align=center|{{0}}3
| {{0}}5
| 272.73
|align=center|163.64
|
|align=center|
| 75:64
|align=center|11:10
| 274.58
|align=center|165.00
|align=center|{{audio|Greater undecimal neutral second on C.mid|Play<br/>}}
| {{audio| Just_augmented_second_on_C.mid| Play}}
|align=center|−{{0}}1.37
| −{{0}}1.86
|-
|-
| [[septimal minor third]]
|align=center|neutral second, lesser undecimal
|align=center|{{0}}3
| {{0}}5
| 272.73
|align=center|163.64
|
|align=center|
| 7:6
|align=center|12:11
| 266.88
|align=center|150.64
|align=center|{{audio|Lesser undecimal neutral second on C.mid|Play<br/>}}
| {{audio| Septimal minor third on C.mid| Play}}
| +{{0}}5.85
|align=center|+13.00
|-
|-
|align=center|[[septimal diatonic semitone]]
| [[septimal whole tone]]
|align=center|{{0}}2
| {{0}}4
| 218.18
|align=center|109.09
|align=center|{{audio|1 step in 11-et on C.mid|Play<br/>}}
| {{audio| 2 steps in 11-et on C.mid| Play}}
| 8:7
|align=center|15:14
| 231.17
|align=center|119.44
|align=center|{{audio|Septimal diatonic semitone on C.mid|Play<br/>}}
| {{audio| Septimal major second on C.mid| Play}}
| −12.99
|align=center|−10.35
|-
|-
| [[diminished third]]
|align=center|[[diatonic semitone]], [[just intonation|just]]
|align=center|{{0}}2
| {{0}}4
| 218.18
|align=center|109.09
|
|align=center|
| 256:225
|align=center|16:15
| 223.46
|align=center|111.73
|align=center|{{audio|Just diatonic semitone on C.mid|Play<br/>}}
| {{audio| Just_diminished_third_on_C.mid| Play}}
|align=center|−{{0}}2.64
| −{{0}}5.28
|-
|-
| septendecimal major second
|align=center|17th harmonic
|align=center|{{0}}2
| {{0}}4
| 218.18
|align=center|109.09
|
|align=center|
|align=center|17:16
| 17:15
| 216.69
|align=center|104.95
|
|align=center|{{audio|Just major semitone on C.mid|Play<br/>}}
|align=center|+{{0}}4.13
| +{{0}}1.50
|- style="background-color: #D4D4D4;"
| [[whole tone]], [[major tone]]
| {{0}}4
| 218.18
|
| 9:8
| 203.91
| {{audio| Major tone on C.mid| Play}}
| +14.27
|-
|-
| whole tone, [[minor tone]]
|align=center|Arabic lute index finger
|align=center|{{0}}2
| {{0}}3
| 163.64
|align=center|109.09
| {{audio| 3 steps in 22-et on C.mid| Play}}
|align=center|
| 10:9{{0}}
|align=center|18:17
| 182.40
|align=center|{{0}}98.95
|align=center|{{audio|Just minor semitone on C.mid|Play<br/>}}
| {{audio| Minor tone on C.mid| Play}}
| −18.77
|align=center|+10.14
|-
|-
| [[neutral second]], greater undecimal
|align=center bgcolor="#D4D4D4"|[[septimal chromatic semitone]]
| {{0}}3
|align=center bgcolor="#D4D4D4"|{{0}}2
| 163.64
|align=center bgcolor="#D4D4D4"|109.09
|
|align=center bgcolor="#D4D4D4"|
| 11:10
|align=center bgcolor="#D4D4D4"|21:20
| 165.00
|align=center bgcolor="#D4D4D4"|{{0}}84.47
|align=center bgcolor="#D4D4D4"|{{audio|Septimal chromatic semitone on C.mid|Play<br/>}}
| {{audio| Greater undecimal neutral second on C.mid| Play}}
| −{{0}}1.37
|align=center bgcolor="#D4D4D4"|+24.62
|-
|-
| 1125th harmonic
|align=center bgcolor="#D4D4D4"|[[chromatic semitone]], just
| {{0}}3
|align=center bgcolor="#D4D4D4"|{{0}}1
| 163.64
|align=center bgcolor="#D4D4D4"|{{0}}54.55
|
|align=center bgcolor="#D4D4D4"|{{audio|1 step in 22-et on C.mid|Play<br/>}}
| 1125:1024
|align=center bgcolor="#D4D4D4"|25:24
| 162.85
|align=center bgcolor="#D4D4D4"|{{0}}70.67
|
|align=center bgcolor="#D4D4D4"|{{audio|Just chromatic semitone on C.mid|Play<br/>}}
| +{{0}}0.79
|align=center bgcolor="#D4D4D4"|−16.13
|-
|-
| neutral second, lesser undecimal
|align=center|[[septimal third-tone]]
|align=center|{{0}}1
| {{0}}3
| 163.64
|align=center|{{0}}54.55
|
|align=center|
| 12:11
|align=center|28:27
| 150.64
|align=center|{{0}}62.96
|align=center|{{audio|Septimal minor second on C.mid|Play<br/>}}
| {{audio| Lesser undecimal neutral second on C.mid| Play}}
| +13.00
|align=center|−{{0}}8.42
|-
|-
| [[septimal diatonic semitone]]
|align=center|undecimal quarter tone
|align=center|{{0}}1
| {{0}}2
| 109.09
|align=center|{{0}}54.55
| {{audio| 1 step in 11-et on C.mid| Play}}
|align=center|
| 15:14
|align=center|33:32
| 119.44
|align=center|{{0}}53.27
|align=center|{{audio|Thirty-third harmonic on C.mid|Play<br/>}}
| {{audio| Septimal diatonic semitone on C.mid| Play}}
| −10.35
|align=center|+{{0}}1.27
|-
|-
| [[diatonic semitone]], [[just intonation| just]]
|align=center|[[septimal quarter tone]]
|align=center|{{0}}1
| {{0}}2
| 109.09
|align=center|{{0}}54.55
|
|align=center|
| 16:15
|align=center|36:35
| 111.73
|align=center|{{0}}48.77
|align=center|{{audio|Septimal quarter tone on C.mid|Play<br/>}}
| {{audio| Just diatonic semitone on C.mid| Play}}
|align=center|+{{0}}5.78
|{{0}}2.64
|-
| 17th harmonic
| {{0}}2
| 109.09
|
| 17:16
| 104.95
| {{audio| Just major semitone on C.mid| Play}}
| +{{0}}4.13
|-
| Arabic lute index finger
| {{0}}2
| 109.09
|
| 18:17
| {{0}}98.95
| {{audio| Just minor semitone on C.mid| Play}}
| +10.14
|- style="background-color: #D4D4D4;"
| [[septimal chromatic semitone]]
| {{0}}2
| 109.09
|
| 21:20
| {{0}}84.47
| {{audio| Septimal chromatic semitone on C.mid| Play}}
| +24.62
|-
| [[chromatic semitone]], just
| {{0}}1
| {{0}}54.55
| {{audio| 1 step in 22-et on C.mid| Play}}
| 25:24
| {{0}}70.67
| {{audio| Just chromatic semitone on C.mid| Play}}
| −16.13
|-
| [[septimal third-tone]]
| {{0}}1
| {{0}}54.55
|
| 28:27
| {{0}}62.96
| {{audio| Septimal minor second on C.mid| Play}}
| −{{0}}8.42
|-
| undecimal quarter tone
| {{0}}1
| {{0}}54.55
|
| 33:32
| {{0}}53.27
| {{audio| Thirty-third harmonic on C.mid| Play}}
| +{{0}}1.27
|-
| [[septimal quarter tone]]
| {{0}}1
| {{0}}54.55
|
| 36:35
| {{0}}48.77
| {{audio| Septimal quarter tone on C.mid| Play}}
| +{{0}}5.78
|-
| [[diminished second]]
| {{0}}1
| {{0}}54.55
|
| 128:125
| {{0}}41.06
| {{audio| 5-limit_limma_on_C.mid| Play}}
| +13.49
|}
|}


== External links ==
== See also ==
* [[Musical temperament]]
*[http://sethares.engr.wisc.edu/paperspdf/Erlich-22.pdf Erlich, Paul, "Tuning, Tonality, and Twenty-Two Tone Temperament"], ''William A. Sethares''.
* [[Equal temperament]]
*[https://www.prismnet.com/~hmiller/midi/canon22.mid Pachelbel's Canon in 22edo], ''Herman Miller''
*[https://www.youtube.com/watch?v=4i6J_D80-Yk Good devil], ''Johann Elsass''


== References ==
== References ==
{{reflist}}
{{reflist}}

== External links ==
*[http://sethares.engr.wisc.edu/paperspdf/Erlich-22.pdf Erlich, Paul, "Tuning, Tonality, and Twenty-Two Tone Temperament"], ''William A. Sethares''.
*[https://www.prismnet.com/~hmiller/midi/canon22.mid Pachelbel's Canon in 22edo (MIDI)], ''Herman Miller''


{{Microtonal music}}
{{Microtonal music}}

Latest revision as of 18:19, 24 June 2024

In music, 22 equal temperament, called 22-TET, 22-EDO, or 22-ET, is the tempered scale derived by dividing the octave into 22 equal steps (equal frequency ratios). Play Each step represents a frequency ratio of 222, or 54.55 cents (Play).

When composing with 22-ET, one needs to take into account a variety of considerations. Considering the 5-limit, there is a difference between 3 fifths and the sum of 1 fourth and 1 major third. It means that, starting from C, there are two A's—one 16 steps and one 17 steps away. There is also a difference between a major tone and a minor tone. In C major, the second note (D) will be 4 steps away. However, in A minor, where A is 6 steps below C, the fourth note (D) will be 9 steps above A, so 3 steps above C. So when switching from C major to A minor, one needs to slightly change the D note. These discrepancies arise because, unlike 12-ET, 22-ET does not temper out the syntonic comma of 81/80, but instead exaggerates its size by mapping it to one step.

In the 7-limit, the septimal minor seventh (7/4) can be distinguished from the sum of a fifth (3/2) and a minor third (6/5), and the septimal subminor third (7/6) is different from the minor third (6/5). This mapping tempers out the septimal comma of 64/63, which allows 22-ET to function as a "Superpythagorean" system where four stacked fifths are equated with the septimal major third (9/7) rather than the usual pental third of 5/4. This system is a "mirror image" of septimal meantone in many ways: meantone systems tune the fifth flat so that intervals of 5 are simple while intervals of 7 are complex, superpythagorean systems have the fifth tuned sharp so that intervals of 7 are simple while intervals of 5 are complex. The enharmonic structure is also reversed: sharps are sharper than flats, similar to Pythagorean tuning (and by extension 53 equal temperament), but to a greater degree.

Finally, 22-ET has a good approximation of the 11th harmonic, and is in fact the smallest equal temperament to be consistent in the 11-limit.

The net effect is that 22-ET allows (and to some extent even forces) the exploration of new musical territory, while still having excellent approximations of common practice consonances.

History and use

[edit]

The idea of dividing the octave into 22 steps of equal size seems to have originated with nineteenth-century music theorist RHM Bosanquet. Inspired by the use of a 22-tone unequal division of the octave in the music theory of India, Bosanquet noted that a 22-tone equal division was capable of representing 5-limit music with tolerable accuracy.[1] In this he was followed in the twentieth century by theorist José Würschmidt, who noted it as a possible next step after 19 equal temperament, and J. Murray Barbour in his survey of tuning history, Tuning and Temperament.[2] Contemporary advocates of 22 equal temperament include music theorist Paul Erlich.

Notation

[edit]
Circle of fifths in 22 tone equal temperament, "ups and downs" notation
Circle of edosteps in 22 tone equal temperament, "ups and downs" notation

22-EDO can be notated several ways. The first, Ups And Downs Notation,[3] uses up and down arrows, written as a caret and a lower-case "v", usually in a sans-serif font. One arrow equals one edostep. In note names, the arrows come first, to facilitate chord naming. This yields the following chromatic scale:

C, ^C/D, vC/^D, C/vD,

D, ^D/E, vD/^E, D/vE, E,

F, ^F/G, vF/^G, F/vG,

G, ^G/A, vG/^A, G/vA,

A, ^A/B, vA/^B, A/vB, B, C

The Pythagorean minor chord with 32/27 on C is still named Cm and still spelled C–E–G. But the 5-limit upminor chord uses the upminor 3rd 6/5 and is spelled C–^E–G. This chord is named C^m. Compare with ^Cm (^C–^E–^G).

The second, Quarter Tone Notation, uses half-sharps and half-flats instead of up and down arrows:

C, Chalf sharp, C/D, Dhalf flat,

D, Dhalf sharp, D/E, Ehalf flat, E,

F, Fhalf sharp, F/G, Ghalf flat,

G, Ghalf sharp, G/A, Ahalf flat,

A, Ahalf sharp, A/B, Bhalf flat, B, C

However, chords and some enharmonic equivalences are much different than they are in 12-EDO. For example, even though a 5-limit C minor triad is notated as C–E–G, C major triads are now C–Ehalf flat–G instead of C–E–G, and an A minor triad is now A–Chalf sharp–E even though an A major triad is still A–C–E. Additionally, while major seconds such as C–D are divided as expected into 4 quarter tones, minor seconds such as E–F and B–C are 1 quarter tone, not 2. Thus E is now equivalent to Fhalf sharp instead of F, F is equivalent to Ehalf flat instead of E, F is equivalent to Ehalf sharp, and E is equivalent to Fhalf flat. Furthermore, the note a fifth above B is not the expected F but rather Fthree quarter sharp or Ghalf flat, and the note that is a fifth below F is now Bthree quarter flat instead of B.

The third, Porcupine Notation, introduces no new accidentals, but significantly changes chord spellings (e.g. the 5-limit major triad is now C–E–G). In addition, enharmonic equivalences from 12-EDO are no longer valid. This yields the following chromatic scale:

C, C, D, D, D, E, E, E, F, F, F, G, G, G, Gdouble sharp/Adouble flat, A, A, A, B, B, B, C, C

Interval size

[edit]
Just intervals approximated in 22 equal temperament

The table below gives the sizes of some common intervals in 22 equal temperament. Intervals shown with a shaded background—such as the septimal tritones—are more than 1/4 of a step (approximately 13.6 cents) out of tune, when compared to the just ratios they approximate.

Interval name Size (steps) Size (cents) MIDI Just ratio Just (cents) MIDI Error (cents)
octave 22 1200 2:1 1200 0
major seventh 20 1090.91 Play 15:8 1088.27 Play +2.64
septimal minor seventh 18 981.818 7:4 968.82591 +12.99
17:10 wide major sixth 17 927.27 Play 17:10 918.64 +8.63
major sixth 16 872.73 Play 5:3 884.36 Play −11.63
perfect fifth 13 709.09 Play 3:2 701.95 Play +7.14
septendecimal tritone 11 600.00 Play 17:12 603.00 3.00
tritone 11 600.00 45:32 590.22 Play +9.78
septimal tritone 11 600.00 7:5 582.51 Play +17.49
11:8 wide fourth 10 545.45 Play 11:8 551.32 Play 5.87
375th subharmonic 10 545.45 512:375 539.10 +6.35
15:11 wide fourth 10 545.45 15:11 536.95 Play +8.50
perfect fourth 9 490.91 Play 4:3 498.05 Play 7.14
septendecimal supermajor third 8 436.36 Play 22:17 446.36 −10.00
septimal major third 8 436.36 9:7 435.08 Play +1.28
diminished fourth 8 436.36 32:25 427.37 Play +8.99
undecimal major third 8 436.36 14:11 417.51 Play +18.86
major third 7 381.82 Play 5:4 386.31 Play 4.49
undecimal neutral third 6 327.27 Play 11:9 347.41 Play −20.14
septendecimal supraminor third 6 327.27 17:14 336.13 Play 8.86
minor third 6 327.27 6:5 315.64 Play +11.63
septendecimal augmented second 5 272.73 Play 20:17 281.36 8.63
augmented second 5 272.73 75:64 274.58 Play 1.86
septimal minor third 5 272.73 7:6 266.88 Play +5.85
septimal whole tone 4 218.18 Play 8:7 231.17 Play −12.99
diminished third 4 218.18 256:225 223.46 Play 5.28
septendecimal major second 4 218.18 17:15 216.69 +1.50
whole tone, major tone 4 218.18 9:8 203.91 Play +14.27
whole tone, minor tone 3 163.64 Play 10:9 182.40 Play −18.77
neutral second, greater undecimal 3 163.64 11:10 165.00 Play 1.37
1125th harmonic 3 163.64 1125:1024 162.85 +0.79
neutral second, lesser undecimal 3 163.64 12:11 150.64 Play +13.00
septimal diatonic semitone 2 109.09 Play 15:14 119.44 Play −10.35
diatonic semitone, just 2 109.09 16:15 111.73 Play 2.64
17th harmonic 2 109.09 17:16 104.95 Play +4.13
Arabic lute index finger 2 109.09 18:17 98.95 Play +10.14
septimal chromatic semitone 2 109.09 21:20 84.47 Play +24.62
chromatic semitone, just 1 54.55 Play 25:24 70.67 Play −16.13
septimal third-tone 1 54.55 28:27 62.96 Play 8.42
undecimal quarter tone 1 54.55 33:32 53.27 Play +1.27
septimal quarter tone 1 54.55 36:35 48.77 Play +5.78
diminished second 1 54.55 128:125 41.06 Play +13.49

See also

[edit]

References

[edit]
  1. ^ Bosanquet, R.H.M. "On the Hindoo division of the octave, with additions to the theory of higher orders" (Archived 2009-10-22), Proceedings of the Royal Society of London vol. 26 (March 1, 1877, to December 20, 1877) Taylor & Francis, London 1878, pp. 372–384. (Reproduced in Tagore, Sourindro Mohun, Hindu Music from Various Authors, Chowkhamba Sanskrit Series, Varanasi, India, 1965).
  2. ^ Barbour, James Murray, Tuning and temperament, a historical survey, East Lansing, Michigan State College Press, 1953 [c1951].
  3. ^ "Ups_and_downs_notation", on Xenharmonic Wiki. Accessed 2023-8-12.
[edit]