Jump to content

Hyperdeformation: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
delete total nonsense that is not supported by the reference cited
No edit summary
 
(28 intermediate revisions by 20 users not shown)
Line 1: Line 1:
{{Short description|Extremely deformed atomic nuclei}}
In [[nuclear physics]], '''hyperdeformation''' is theoretically predicted states of an [[atomic nucleus]] with extremely elongated shape and very high angular momentum. Less elongated states, [[superdeformation]], has been well observed, but the experimental evidence for hyperdeformation is more limited. Hyperdeformed states correspond to an axis ratio of 3:1. They would be caused by a third minimum in the [[Potential energy surface]], the second causing superdeformation and the first minimum being normal deformation.<ref name="Adamian">{{cite conference
In [[nuclear physics]], '''hyperdeformation''' is theoretically predicted states of an [[atomic nucleus]] with an extremely elongated shape and a very high angular momentum. Less elongated states, [[superdeformation]], have been well observed, but the experimental evidence for hyperdeformation is more limited. Hyperdeformed states correspond to an axis ratio of 3:1. They would be caused by a third minimum in the [[potential energy surface]], the second causing superdeformation and the first minimum being normal deformation.<ref name="Adamian">{{cite conference|first = G. G.|last = Adamian|author2=N. V. Antonenko |author3=Z. Gagyi-Palffy |author4=S.P. Ivanova |author5=R. V. Jolos |author6=Yu. V. Palchikov |author7=W. Scheid |author8=T.M. Shneidman|author9=A.S. Zubov|year = 2007|title = Nuclear Molecular Structure|book-title = Collective Motion and Phase Transitions in Nuclear Systems: Proceedings of the Predeal International Summer School in Nuclear Physics|edition = illustrated|publisher = World Scientific|page=483|isbn = 978-981-270-083-4}}
| first = G. G.
</ref><ref name="Schunck">{{cite journal|last=Schunck|first=N.|author2=Dudek, J. |author3=Herskind, B. |date=May 2007|title=Nuclear hyperdeformation and the Jacobi shape transition|journal=Physical Review C|volume=75|issue=5|pages=id. 054304|doi=10.1103/PhysRevC.75.054304|bibcode = 2007PhRvC..75e4304S }}</ref><ref name="Afanasjev">{{cite journal|last=Abusara|first=H.|author2=Afanasjev, A. V.|year=2009|title=Hyperdeformation in the Cd isotopes: A microscopic analysis|journal=Physical Review C|publisher=American Physical Society|volume=79|issue=2|pages=eid 024317|doi=10.1103/PhysRevC.79.024317|arxiv = 0902.0095 |bibcode = 2009PhRvC..79b4317A |s2cid=119268176 }} [[arXiv]]: [http://www.arxiv.org/abs/0902.0095v1 0902.0095v1]</ref> Hyperdeformation is predicted to be found in [[Isotopes of cadmium|<sup>107</sup>Cd]].
| last = Adamian
| coauthors = N. V. Antonenko, 2. Gagyi-Palffy, S.P. Ivanova, R. V. Jolos, Yu. V. Palchikov, W. Scheid, T.M. Shneidman and A.S. Zubov
| year = 2007
| title = Nuclear Molecular Structure
| booktitle = Collective Motion and Phase Transitions in Nuclear Systems: Proceedings of the Predeal International Summer School in Nuclear Physics
| edition = illustrated
| publisher = World Scientific
| pages = 483
| url = http://books.google.com/books?id=lQVw1Sh6XcgC&pg=PA483
| accessdate = 2009-02-17
| id = ISBN 9812700838
}}
</ref><ref name="Schunck">{{cite journal|last=Schunck|first=N.|coauthors=Dudek, J.; Herskind, B.|year=2007|month=May|title=Nuclear hyperdeformation and the Jacobi shape transition|journal=Physical Review C|volume=75|issue=5|pages=id. 054304|doi=10.1103/PhysRevC.75.054304}}</ref><ref name="Afanasjev">{{cite journal|last=Abusara|first=H.|coauthors=Afanasjev, A. V.|date=2009|title=Hyperdeformation in the Cd isotopes: A microscopic analysis|journal=[[Physical Review]] C (Nuclear Physics)|publisher=American Physical Society|volume=79|issue=2|pages=eid 024317|doi=10.1103/PhysRevC.79.024317}} [[arXiv]]: [http://www.arxiv.org/abs/0902.0095v1 0902.0095v1]</ref>


== References ==
==References==
{{reflist}}
{{reflist}}



Latest revision as of 17:15, 25 June 2024

In nuclear physics, hyperdeformation is theoretically predicted states of an atomic nucleus with an extremely elongated shape and a very high angular momentum. Less elongated states, superdeformation, have been well observed, but the experimental evidence for hyperdeformation is more limited. Hyperdeformed states correspond to an axis ratio of 3:1. They would be caused by a third minimum in the potential energy surface, the second causing superdeformation and the first minimum being normal deformation.[1][2][3] Hyperdeformation is predicted to be found in 107Cd.

References

[edit]
  1. ^ Adamian, G. G.; N. V. Antonenko; Z. Gagyi-Palffy; S.P. Ivanova; R. V. Jolos; Yu. V. Palchikov; W. Scheid; T.M. Shneidman; A.S. Zubov (2007). "Nuclear Molecular Structure". Collective Motion and Phase Transitions in Nuclear Systems: Proceedings of the Predeal International Summer School in Nuclear Physics (illustrated ed.). World Scientific. p. 483. ISBN 978-981-270-083-4.
  2. ^ Schunck, N.; Dudek, J.; Herskind, B. (May 2007). "Nuclear hyperdeformation and the Jacobi shape transition". Physical Review C. 75 (5): id. 054304. Bibcode:2007PhRvC..75e4304S. doi:10.1103/PhysRevC.75.054304.
  3. ^ Abusara, H.; Afanasjev, A. V. (2009). "Hyperdeformation in the Cd isotopes: A microscopic analysis". Physical Review C. 79 (2). American Physical Society: eid 024317. arXiv:0902.0095. Bibcode:2009PhRvC..79b4317A. doi:10.1103/PhysRevC.79.024317. S2CID 119268176. arXiv: 0902.0095v1