Arsenite: Difference between revisions
Bernardirfan (talk | contribs) Replacing HTML with {{chem2}} |
No edit summary |
||
(15 intermediate revisions by 6 users not shown) | |||
Line 1: | Line 1: | ||
{{short description|Chemical compounds containing arsenic at oxidation state +3}} |
{{short description|Chemical compounds containing arsenic at oxidation state +3}} |
||
{{for|the supporters of [[Arsenios Autoreianos]] in the Byzantine Empire|Arsenite Schism}} |
{{for|the supporters of [[Arsenios Autoreianos]] in the Byzantine Empire|Arsenite Schism}} |
||
In chemistry, an '''arsenite''' is a chemical compound containing an [[arsenic]] [[ |
In chemistry, an '''arsenite''' is a chemical compound containing an [[arsenic]] [[oxyanion]] where arsenic has oxidation state +3. Note that in fields that commonly deal with groundwater chemistry, '''arsenite''' is used generically to identify soluble As<sup>III</sup> anions. IUPAC have recommended that arsenite compounds are to be named as arsenate(III), for example ortho-arsenite is called trioxidoarsenate(III). |
||
Ortho-arsenite contrasts to the corresponding anions of the lighter members of group 15, [[phosphite]] which has the structure {{chem2|HPO3(2−)}} and [[nitrite]], {{chem2|NO2−}} which is bent.<ref name = "Greenwood">{{Greenwood&Earnshaw}}</ref> |
Ortho-arsenite contrasts to the corresponding anions of the lighter members of group 15, [[phosphite]] which has the structure {{chem2|HPO3(2−)}} and [[nitrite]], {{chem2|NO2−}} which is bent.<ref name = "Greenwood">{{Greenwood&Earnshaw}}</ref> |
||
Line 8: | Line 8: | ||
*{{chem2|(AsO2−)_{''n''}|}} meta-arsenite, a polymeric chain anion.<ref name="Norman">{{cite book|last1=Carmalt|first1=C.J|title=Chemistry of Arsenic, Antimony and Bismuth|last2=Norman|first2=N.C.|publisher=Blackie Academic and Professional|year=1998|isbn=07514-0389-X|editor-last=Norman|editor-first=N.C.|pages=118–121|chapter=Chapter 1: Arsenic, antimony and bismuth|author-link=Claire J. Carmalt|name-list-style=amp}}</ref> |
*{{chem2|(AsO2−)_{''n''}|}} meta-arsenite, a polymeric chain anion.<ref name="Norman">{{cite book|last1=Carmalt|first1=C.J|title=Chemistry of Arsenic, Antimony and Bismuth|last2=Norman|first2=N.C.|publisher=Blackie Academic and Professional|year=1998|isbn=07514-0389-X|editor-last=Norman|editor-first=N.C.|pages=118–121|chapter=Chapter 1: Arsenic, antimony and bismuth|author-link=Claire J. Carmalt|name-list-style=amp}}</ref> |
||
*{{chem2|As2O5(4−)}} pyro-arsenite, {{chem2|[O2As\sO\sAsO2](4−)}} |
*{{chem2|As2O5(4−)}} pyro-arsenite, {{chem2|[O2As\sO\sAsO2](4−)}} |
||
*{{chem2|As3O7(5−)}} |
*{{chem2|As3O7(5−)}} ''catena''-triarsenite, {{chem2|[O2As\sO\sAs(O)\sO\sAsO2](5−)}}<ref name="HamidaWickleder2006">{{cite journal|last1=Hamida|first1=M. Ben|last2=Wickleder|first2=M. S.|title=Die neuen Catena-Polyarsenite [As<sub>3</sub>O<sub>7</sub>]<sup>5−</sup> und [As<sub>4</sub>O<sub>9</sub>]<sup>6−</sup>|journal=Zeitschrift für anorganische und allgemeine Chemie|volume=632|issue=12–13|year=2006|pages=2109|issn=0044-2313|doi=10.1002/zaac.200670065}}</ref> |
||
*{{chem2|As4O9(6−)}} |
*{{chem2|As4O9(6−)}} ''catena''-tetraarsenite, {{chem2|[O2As\sO\sAs(O)\sO\sAs(O)\sO\sAsO2](6−)}}<ref name="HamidaWickleder2006"/> |
||
*{{chem2|As4O8(4−)}} ''cyclo''-tetraarsenite<ref name="KangSchleid2006">{{cite journal|last1=Kang|first1=Dong-Hee|last2=Schleid|first2=Thomas|title=Sm<sub>2</sub>As<sub>4</sub>O<sub>9</sub>: Ein ungewöhnliches Samarium(III)-Oxoarsenat(III) gemäß Sm<sub>4</sub>[As<sub>2</sub>O<sub>5</sub>]<sub>2</sub>[As<sub>4</sub>O<sub>8</sub>]|journal=Zeitschrift für anorganische und allgemeine Chemie|volume=632|issue=1|year=2006|pages=91|issn=0044-2313|doi=10.1002/zaac.200500333}}</ref> |
|||
*{{chem2|(As6O11(4−))_{''n''}|}}, a polymeric anion |
*{{chem2|(As6O11(4−))_{''n''}|}}, a polymeric anion |
||
Line 16: | Line 17: | ||
==Preparation of arsenites== |
==Preparation of arsenites== |
||
Some arsenite salts can be prepared from an aqueous solution of [[arsenic trioxide|{{chem2|As2O3}}]]. Examples of these are the meta-arsenite salts and at low temperature, hydrogen arsenite salts can be prepared, such as {{chem2|Na2H2As4O8}}, {{chem2|NaAsO2*4H2O}}, {{chem2|Na2HAsO3*5H2O}} and {{chem2|Na5(HAsO3)(AsO3)*12H2O}}<ref name="SheldrickHäusler1987">{{cite journal|last1=Sheldrick|first1=W. S.|last2=Häusler|first2=H.-J.|title=Zur Kenntnis von Natriumarseniten im Dreistoffsystem Na<sub>2</sub>O–As<sub>2</sub>O<sub>3</sub>–H<sub>2</sub>O bei 6 °C|journal=Zeitschrift für anorganische und allgemeine Chemie|volume=549|issue=6|year=1987|pages=177–186|issn=0044-2313|doi=10.1002/zaac.19875490618}}</ref> |
Some arsenite salts can be prepared from an aqueous solution of [[arsenic trioxide|{{chem2|As2O3}}]]. Examples of these are the meta-arsenite salts and at low temperature, hydrogen arsenite salts can be prepared, such as {{chem2|Na2H2As4O8}}, {{chem2|NaAsO2*4H2O}}, {{chem2|Na2HAsO3*5H2O}} and {{chem2|Na5(HAsO3)(AsO3)*12H2O}}.<ref name="SheldrickHäusler1987">{{cite journal|last1=Sheldrick|first1=W. S.|last2=Häusler|first2=H.-J.|title=Zur Kenntnis von Natriumarseniten im Dreistoffsystem Na<sub>2</sub>O–As<sub>2</sub>O<sub>3</sub>–H<sub>2</sub>O bei 6 °C|journal=Zeitschrift für anorganische und allgemeine Chemie|volume=549|issue=6|year=1987|pages=177–186|issn=0044-2313|doi=10.1002/zaac.19875490618}}</ref> |
||
==Arsenite minerals== |
==Arsenite minerals== |
||
⚫ | A number of minerals contain arsenite anions: [[reinerite]], {{chem2|Zn3(AsO3)2}};<ref name="Norman"/> [[finnemanite]], {{chem2|Pb5Cl(AsO3)3}};<ref name="Norman"/> [[paulmooreite]], {{chem2|Pb2As2O5}};<ref name="Norman"/> [[stenhuggarite]], {{chem2|CaFeSbAs2O7}} (contains a complex polymeric anion);<ref name="Norman"/> [[schneiderhöhnite]], Fe{{su|p=II}}Fe{{su|p=III|b=3}}{{chem2|(AsO3)(As2O5)2}};<ref>Hawthorne, Frank C. "Schneiderhoehnite, {{chem|Fe|2+|Fe|3|3+|As|5|3+|O|13}}, a densely packed arsenite structure." ''The Canadian Mineralogist'' '''23.4''' (1985): 675–679.</ref> [[magnussonite]], {{chem2|Mn5(OH)(AsO3)3}};<ref name="Norman"/> [[trippkeite]], {{chem2|CuAs2O4}};<ref name="Norman"/> [[trigonite]], {{chem2|Pb3Mn(AsO3)2(HAsO3)}};<ref name="Norman"/> [[tooeleite]], {{chem2|Fe6(AsO3)4(SO4)(OH)4*4H2O}}.<ref name="MorinRousse2007">{{cite journal|last1=Morin|first1=G.|last2=Rousse|first2=G.|last3=Elkaim|first3=E.|title=Crystal structure of tooeleite, Fe<sub>6</sub>(AsO<sub>3</sub>)<sub>4</sub>SO<sub>4</sub>(OH)<sub>4</sub>•4H<sub>2</sub>O, a new iron arsenite oxyhydroxy-sulfate mineral relevant to acid mine drainage|journal=American Mineralogist|volume=92|issue=1|year=2007|pages=193–197|issn=0003-004X|doi=10.2138/am.2007.2361|bibcode=2007AmMin..92..193M|s2cid=98312889 }}</ref> |
||
A number of minerals contain arsenite anions: [[reinerite]], Zn<sub>3</sub>(AsO<sub>3</sub>)<sub>2</sub>;<ref name="Norman"/> [[finnemanite]], Pb<sub>5</sub>Cl(AsO<sub>3</sub>)<sub>3</sub>;<ref name="Norman"/> [[paulmooreite]], Pb<sub>2</sub>As<sub>2</sub>O<sub>5</sub>;<ref name="Norman"/> [[stenhuggarite]], CaFeSbAs<sub>2</sub>O<sub>7</sub> (contains a complex polymeric anion);<ref name="Norman"/> |
|||
⚫ | [[schneiderhöhnite]], Fe{{su|p=II}}Fe{{su|p=III|b=3}}( |
||
==Arsenites in the environment== |
==Arsenites in the environment== |
||
Line 27: | Line 27: | ||
==Uses== |
==Uses== |
||
Sodium arsenite is used in the [[water gas shift reaction]] to remove carbon dioxide. |
Sodium arsenite is used in the [[water gas shift reaction]] to remove carbon dioxide. |
||
[[Fowler's solution]] first introduced in the 18th century was made up from |
[[Fowler's solution]] first introduced in the 18th century was made up from {{chem2|As2O3}}<ref>''Managing Arsenic in the Environment: From Soil to Human Health'', R. Naidu, Csiro Publishing, 2006, {{ISBN|978-0643068681}}</ref> as a solution of potassium meta-arsenite, {{chem2|KAsO2}}.<ref name=Jolliffe>{{ cite journal | author = Jolliffe, D. M. | title = A history of the use of arsenicals in man | journal = Journal of the Royal Society of Medicine | year = 1993 | volume = 86 | issue = 5 | pages = 287–289 | pmc = 1294007 | pmid=8505753}}</ref> |
||
Arsenic in its trioxide, As<sub>2</sub>O<sub>3</sub>, (brand name Trisenox, ATO) is used as a chemotherapy drug against [[Acute promyelocytic leukemia|acute promyelocytic leukaemia (APL)]], a type of myeloid leukemia.<ref>{{Cite web |title=Arsenic trioxide (Trisenox, ATO) |url=https://www.cancerresearchuk.org/about-cancer/treatment/drugs/arsenic |access-date=2023-08-16 |website=www.cancerresearchuk.org |language=en}}</ref> The detailed mechanism of action is unknown, but it is suspected to speed up apoptosis of cancer cells. Arsenic trioxide triggers morphological changes and DNA fragmentations in NB4 ''in vitro'' model for APL. It also degrades [[Retinoic acid receptor alpha|retinoic acid receptor alpha (RARA)]].<ref>{{Cite web |last=EMA |date=2018-09-17 |title=Trisenox |url=https://www.ema.europa.eu/en/medicines/human/EPAR/trisenox |access-date=2023-08-16 |website=European Medicines Agency |language=en}}</ref> RARA gene is important regulator of premyelocytic immune cell development, differentiation, and apoptosis.<ref>{{Cite web |title=RARA retinoic acid receptor alpha [Homo sapiens (human)] - Gene - NCBI |url=https://www.ncbi.nlm.nih.gov/gene/5914 |access-date=2023-08-16 |website=www.ncbi.nlm.nih.gov}}</ref> |
|||
==Bacteria using and generating arsenite== |
==Bacteria using and generating arsenite== |
||
Line 34: | Line 36: | ||
In 2008, bacteria were discovered that employ a version of [[photosynthesis]] with arsenites as [[electron donor]]s, producing arsenates (just like ordinary photosynthesis uses water as electron donor, producing molecular oxygen). The researchers conjectured that historically these photosynthesizing organisms produced the arsenates that allowed the arsenate-reducing bacteria to thrive.<ref>[https://www.chemistryworld.com/news/arsenic-loving-bacteria-rewrite-photosynthesis-rules/3000398.article "Arsenic-loving bacteria rewrite photosynthesis rules"], ''Chemistry World'', 15 August 2008</ref> |
In 2008, bacteria were discovered that employ a version of [[photosynthesis]] with arsenites as [[electron donor]]s, producing arsenates (just like ordinary photosynthesis uses water as electron donor, producing molecular oxygen). The researchers conjectured that historically these photosynthesizing organisms produced the arsenates that allowed the arsenate-reducing bacteria to thrive.<ref>[https://www.chemistryworld.com/news/arsenic-loving-bacteria-rewrite-photosynthesis-rules/3000398.article "Arsenic-loving bacteria rewrite photosynthesis rules"], ''Chemistry World'', 15 August 2008</ref> |
||
In humans, arsenite inhibits [[pyruvate dehydrogenase]] (PDH complex) in the [[pyruvate]] |
In humans, arsenite inhibits [[pyruvate dehydrogenase]] (PDH complex) in the [[pyruvate]]-[[acetyl CoA]] reaction, by binding to the [[Thiol|–SH]] group of [[lipoamide]], a participant coenzyme. It also inhibits the [[oxoglutarate dehydrogenase complex]] by the same mechanism. The inhibition of these enzymes disrupts energy production. |
||
==References== |
==References== |
||
Line 43: | Line 45: | ||
*[http://www.chemicalland21.com/industrialchem/inorganic/ARSENIC%20TRIOXIDE.htm Page at chemicalland21.com] |
*[http://www.chemicalland21.com/industrialchem/inorganic/ARSENIC%20TRIOXIDE.htm Page at chemicalland21.com] |
||
⚫ | |||
[[Category:Oxyanions]] |
[[Category:Oxyanions]] |
||
⚫ | |||
[[Category:Arsenic(III) compounds]] |
[[Category:Arsenic(III) compounds]] |
Revision as of 20:54, 25 June 2024
In chemistry, an arsenite is a chemical compound containing an arsenic oxyanion where arsenic has oxidation state +3. Note that in fields that commonly deal with groundwater chemistry, arsenite is used generically to identify soluble AsIII anions. IUPAC have recommended that arsenite compounds are to be named as arsenate(III), for example ortho-arsenite is called trioxidoarsenate(III). Ortho-arsenite contrasts to the corresponding anions of the lighter members of group 15, phosphite which has the structure HPO2−3 and nitrite, NO−2 which is bent.[1]
A number of different arsenite anions are known:
- AsO3−3 ortho-arsenite, an ion of arsenous acid, with a pyramidal shape[1]
- (AsO−2)n meta-arsenite, a polymeric chain anion.[2]
- As2O4−5 pyro-arsenite, [O2As−O−AsO2]4−
- As3O5−7 catena-triarsenite, [O2As−O−As(O)−O−AsO2]5−[3]
- As4O6−9 catena-tetraarsenite, [O2As−O−As(O)−O−As(O)−O−AsO2]6−[3]
- As4O4−8 cyclo-tetraarsenite[4]
- (As6O4−11)n, a polymeric anion
In all of these the geometry around the AsIII centers are approximately trigonal, the lone pair on the arsenic atom is stereochemically active.[1] Well known examples of arsenites include sodium meta-arsenite which contains a polymeric linear anion, (AsO−2)n, and silver ortho-arsenite, Ag3AsO3, which contains the trigonal AsO3−3 anion.
Preparation of arsenites
Some arsenite salts can be prepared from an aqueous solution of As2O3. Examples of these are the meta-arsenite salts and at low temperature, hydrogen arsenite salts can be prepared, such as Na2H2As4O8, NaAsO2·4H2O, Na2HAsO3·5H2O and Na5(HAsO3)(AsO3)·12H2O.[5]
Arsenite minerals
A number of minerals contain arsenite anions: reinerite, Zn3(AsO3)2;[2] finnemanite, Pb5Cl(AsO3)3;[2] paulmooreite, Pb2As2O5;[2] stenhuggarite, CaFeSbAs2O7 (contains a complex polymeric anion);[2] schneiderhöhnite, FeII
FeIII
3(AsO3)(As2O5)2;[6] magnussonite, Mn5(OH)(AsO3)3;[2] trippkeite, CuAs2O4;[2] trigonite, Pb3Mn(AsO3)2(HAsO3);[2] tooeleite, Fe6(AsO3)4(SO4)(OH)4·4H2O.[7]
Arsenites in the environment
Arsenic can enter groundwater due to naturally occurring arsenic at deeper levels or from mine workings. Arsenic(III) can be removed from water by a number of methods, oxidation of AsIII to AsV for example with chlorine followed by coagulation with for example iron(III) sulfate. Other methods include ion-exchange and filtration. Filtration is only effective if arsenic is present as particulates, if the arsenite is in solution it passes through the filtration membrane.[8]
Uses
Sodium arsenite is used in the water gas shift reaction to remove carbon dioxide. Fowler's solution first introduced in the 18th century was made up from As2O3[9] as a solution of potassium meta-arsenite, KAsO2.[10]
Arsenic in its trioxide, As2O3, (brand name Trisenox, ATO) is used as a chemotherapy drug against acute promyelocytic leukaemia (APL), a type of myeloid leukemia.[11] The detailed mechanism of action is unknown, but it is suspected to speed up apoptosis of cancer cells. Arsenic trioxide triggers morphological changes and DNA fragmentations in NB4 in vitro model for APL. It also degrades retinoic acid receptor alpha (RARA).[12] RARA gene is important regulator of premyelocytic immune cell development, differentiation, and apoptosis.[13]
Bacteria using and generating arsenite
Some species of bacteria obtain their energy by oxidizing various fuels while reducing arsenates to form arsenites. The enzymes involved are known as arsenate reductases.
In 2008, bacteria were discovered that employ a version of photosynthesis with arsenites as electron donors, producing arsenates (just like ordinary photosynthesis uses water as electron donor, producing molecular oxygen). The researchers conjectured that historically these photosynthesizing organisms produced the arsenates that allowed the arsenate-reducing bacteria to thrive.[14]
In humans, arsenite inhibits pyruvate dehydrogenase (PDH complex) in the pyruvate-acetyl CoA reaction, by binding to the –SH group of lipoamide, a participant coenzyme. It also inhibits the oxoglutarate dehydrogenase complex by the same mechanism. The inhibition of these enzymes disrupts energy production.
References
- ^ a b c Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
- ^ a b c d e f g h Carmalt, C.J & Norman, N.C. (1998). "Chapter 1: Arsenic, antimony and bismuth". In Norman, N.C. (ed.). Chemistry of Arsenic, Antimony and Bismuth. Blackie Academic and Professional. pp. 118–121. ISBN 07514-0389-X.
- ^ a b Hamida, M. Ben; Wickleder, M. S. (2006). "Die neuen Catena-Polyarsenite [As3O7]5− und [As4O9]6−". Zeitschrift für anorganische und allgemeine Chemie. 632 (12–13): 2109. doi:10.1002/zaac.200670065. ISSN 0044-2313.
- ^ Kang, Dong-Hee; Schleid, Thomas (2006). "Sm2As4O9: Ein ungewöhnliches Samarium(III)-Oxoarsenat(III) gemäß Sm4[As2O5]2[As4O8]". Zeitschrift für anorganische und allgemeine Chemie. 632 (1): 91. doi:10.1002/zaac.200500333. ISSN 0044-2313.
- ^ Sheldrick, W. S.; Häusler, H.-J. (1987). "Zur Kenntnis von Natriumarseniten im Dreistoffsystem Na2O–As2O3–H2O bei 6 °C". Zeitschrift für anorganische und allgemeine Chemie. 549 (6): 177–186. doi:10.1002/zaac.19875490618. ISSN 0044-2313.
- ^ Hawthorne, Frank C. "Schneiderhoehnite, Fe2+
Fe3+
3As3+
5O
13, a densely packed arsenite structure." The Canadian Mineralogist 23.4 (1985): 675–679. - ^ Morin, G.; Rousse, G.; Elkaim, E. (2007). "Crystal structure of tooeleite, Fe6(AsO3)4SO4(OH)4•4H2O, a new iron arsenite oxyhydroxy-sulfate mineral relevant to acid mine drainage". American Mineralogist. 92 (1): 193–197. Bibcode:2007AmMin..92..193M. doi:10.2138/am.2007.2361. ISSN 0003-004X. S2CID 98312889.
- ^ EPA, United states Environmental Protection Agency, Report 815R00012, "Technologies and Costs for the Removal of Arsenic From Drinking Water", December 2000 http://water.epa.gov/drink/info/arsenic/upload/2005_11_10_arsenic_treatments_and_costs.pdf
- ^ Managing Arsenic in the Environment: From Soil to Human Health, R. Naidu, Csiro Publishing, 2006, ISBN 978-0643068681
- ^ Jolliffe, D. M. (1993). "A history of the use of arsenicals in man". Journal of the Royal Society of Medicine. 86 (5): 287–289. PMC 1294007. PMID 8505753.
- ^ "Arsenic trioxide (Trisenox, ATO)". www.cancerresearchuk.org. Retrieved 2023-08-16.
- ^ EMA (2018-09-17). "Trisenox". European Medicines Agency. Retrieved 2023-08-16.
- ^ "RARA retinoic acid receptor alpha [Homo sapiens (human)] - Gene - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2023-08-16.
- ^ "Arsenic-loving bacteria rewrite photosynthesis rules", Chemistry World, 15 August 2008