Jump to content

Takuzo Aida: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Citation bot (talk | contribs)
Removed proxy/dead URL that duplicated identifier. | Use this bot. Report bugs. | Suggested by Headbomb | Linked from Wikipedia:WikiProject_Academic_Journals/Journals_cited_by_Wikipedia/Sandbox | #UCB_webform_linked 550/1049
Citation bot (talk | contribs)
Add: bibcode, date. Removed URL that duplicated identifier. | Use this bot. Report bugs. | Suggested by Folkezoft | #UCB_toolbar
 
(17 intermediate revisions by 8 users not shown)
Line 1: Line 1:
{{Short description|Japanese polymer chemist}}
{{Infobox scientist
{{Infobox scientist
| name = Takuzo Aida
| name = Takuzo Aida
Line 4: Line 5:
| birth_date = {{birth date and age|1956|05|03|df=y}}
| birth_date = {{birth date and age|1956|05|03|df=y}}
| birth_place = [[Ōita Prefecture|Oita]], [[Japan]]
| birth_place = [[Ōita Prefecture|Oita]], [[Japan]]
| nationality = {{JPN}}
| nationality = Japanese
| alma_mater = [[Yokohama National University]], [[The University of Tokyo]]
| alma_mater = [[Yokohama National University]], [[The University of Tokyo]]
| known_for = [[Supramolecular polymers]], [[Molecular self-assembly]], [[Dendrimers]], [[Polymer chemistry]], Adaptive materials, Bucky gels, Aquamaterials
| known_for = [[Supramolecular polymers]], [[Molecular self-assembly]], [[Dendrimers]], [[Polymer chemistry]], Adaptive materials, Bucky gels, Aquamaterials
Line 11: Line 12:
| workplaces = [[The University of Tokyo]]
| workplaces = [[The University of Tokyo]]
| website = {{URL|http://park.itc.u-tokyo.ac.jp/Aida_Lab/aida_laboratory/index.html}}
| website = {{URL|http://park.itc.u-tokyo.ac.jp/Aida_Lab/aida_laboratory/index.html}}
| image = Takuzo Aida Portrait.tif
| image = Takuzo Aida Portrait.jpg
}}
}}


{{nihongo|'''Takuzo Aida'''|相田 卓三|Aida Takuzō|extra=born May 3, 1956 in [[Japan]]}} is a [[Polymer chemistry|polymer chemist]] known for his work in the fields of [[supramolecular chemistry]], [[materials chemistry]] and polymer chemistry. Aida, who is the Deputy Director for the [[Riken|RIKEN]] Center for Emergent Matter Science (CEMS) and a professor in the Department of Chemistry and Biotechnology, School of Engineering, at the [[University of Tokyo]], has made pioneering contributions to the initiation, fundamental progress, and conceptual expansion of [[Supramolecular polymers|supramolecular polymerization]]. Aida has also been a leader and advocate for addressing critical [[environmental issues]] caused by [[Plastic pollution|plastic waste]] and [[microplastics]] in the oceans, soil, and food supply, through the development of dynamic, responsive, healable, reorganizable, and adaptive supramolecular polymers and related soft materials.<ref name=":0">{{Cite journal|last1=Aida|first1=Takuzo|last2=Meijer|first2=E. W.|date=2020|title=Supramolecular Polymers – we've Come Full Circle|journal=Israel Journal of Chemistry|language=en|volume=60|issue=1–2|pages=33–47|doi=10.1002/ijch.201900165|issn=1869-5868|doi-access=free}}</ref><ref name=":1">{{Cite journal|last1=Hashim|first1=P. K.|last2=Bergueiro|first2=Julian|last3=Meijer|first3=E. W.|last4=Aida|first4=Takuzo|date=2020-04-25|title=Supramolecular Polymerization: A Conceptual Expansion for Innovative Materials|journal=Progress in Polymer Science|volume=105|language=en|pages=101250|doi=10.1016/j.progpolymsci.2020.101250|issn=0079-6700|doi-access=free}}</ref><ref>{{Citation|title=Hard, durable and self-healing materials {{!}} Takuzo Aida|url=https://www.youtube.com/watch?v=IYDo89Y9n_Y|language=en|access-date=2020-05-07}}</ref>
{{nihongo|'''Takuzo Aida'''|相田 卓三|Aida Takuzō|extra=born May 3, 1956 in [[Japan]]}} is a [[Polymer chemistry|polymer chemist]] known for his work in the fields of [[supramolecular chemistry]], [[materials chemistry]] and polymer chemistry. Aida, who is the Deputy Director for the [[Riken|RIKEN]] Center for Emergent Matter Science (CEMS) and a Distinguished University Professor at the [[University of Tokyo]], has made pioneering contributions to the initiation, fundamental progress, and conceptual expansion of [[Supramolecular polymers|supramolecular polymerization]]. Aida has also been a leader and advocate for addressing critical [[environmental issues]] caused by [[Plastic pollution|plastic waste]] and [[microplastics]] in the oceans, soil, and food supply, through the development of dynamic, responsive, healable, reorganizable, and adaptive supramolecular polymers and related soft materials.<ref name=":0">{{Cite journal|last1=Aida|first1=Takuzo|last2=Meijer|first2=E. W.|date=2020|title=Supramolecular Polymers – we've Come Full Circle|journal=Israel Journal of Chemistry|language=en|volume=60|issue=1–2|pages=33–47|doi=10.1002/ijch.201900165|issn=1869-5868|doi-access=}}</ref><ref name=":1">{{Cite journal|last1=Hashim|first1=P. K.|last2=Bergueiro|first2=Julian|last3=Meijer|first3=E. W.|last4=Aida|first4=Takuzo|date=2020-04-25|title=Supramolecular Polymerization: A Conceptual Expansion for Innovative Materials|journal=Progress in Polymer Science|volume=105|language=en|pages=101250|doi=10.1016/j.progpolymsci.2020.101250|issn=0079-6700|doi-access=}}</ref><ref name=":10">{{Citation|title=Hard, durable and self-healing materials {{!}} Takuzo Aida| date=26 February 2019 |url=https://www.youtube.com/watch?v=IYDo89Y9n_Y|language=en|access-date=2020-05-07}}</ref>


== Education ==
== Education ==
Line 20: Line 21:


== Career ==
== Career ==
After completing his doctoral studies, Aida was immediately appointed as an Assistant Professor in the Department of Synthetic Chemistry at the University of Tokyo. At the beginning of his research career, he worked on the development of precision macromolecular synthesis using metalloporphyrin complexes. In 1986, he was a visiting scholar at the [[IBM Research|IBM Almaden Research Center]]. Aida was promoted to the position of Lecturer in 1989 and Associate Professor in 1991, before being installed as a full professor in the Department of Chemistry and Biotechnology at the University of Tokyo in 1996.
After completing his doctoral studies, Aida was immediately appointed as an Assistant Professor in the Department of Synthetic Chemistry at the University of Tokyo. At the beginning of his research career, he worked on the development of precision macromolecular synthesis using metalloporphyrin complexes. In 1986, he was a visiting scholar at the [[IBM Research|IBM Almaden Research Center]]. Aida was promoted to the position of Lecturer in 1989 and Associate Professor in 1991, before being installed as a full professor in the Department of Chemistry and Biotechnology at the University of Tokyo in 1996. In 2022 he was appointed as a Distinguished University Professor at the University of Tokyo.


From 1996 to 1999, Aida served as a researcher in the [[Japan Science and Technology Agency]] (JST) PRESTO Fields and Reactions Project. Aida was appointed as a visiting Visiting Professor at the Institute for Molecular Science, Okazaki, from 1999 to 2001. He served as the director for the JST ERATO AIDA Nanospace Project from 2000 to 2005<ref>{{Cite web|title=AIDA Nanospace|url=https://www.jst.go.jp/erato/en/research_area/completed/ank_P.html|last=|first=|date=|website=Japan Science and Technology Agency|url-status=live|archive-url=|archive-date=|access-date=2020-05-08}}</ref> and the JST ERATO–SORST Electronic Nanospace Project from 2005 to 2010. Aida served as the director of the RIKEN Advanced Science Institute from 2008 to 2012. Since 2013 he has been a deputy director of the RIKEN Center for Emergent Matter Science (CEMS).<ref>{{Cite web|title=Organization {{!}} About CEMS {{!}} Center for Emergent Matter Science (CEMS) {{!}} RIKEN|url=https://cems.riken.jp/about/organization|language=ja|access-date=2020-05-07}}</ref>
From 1996 to 1999, Aida served as a researcher in the [[Japan Science and Technology Agency]] (JST) PRESTO Fields and Reactions Project. Aida was appointed as a visiting Visiting Professor at the Institute for Molecular Science, Okazaki, from 1999 to 2001. He served as the director for the JST ERATO AIDA Nanospace Project from 2000 to 2005<ref>{{Cite web|title=AIDA Nanospace|url=https://www.jst.go.jp/erato/en/research_area/completed/ank_P.html|last=|first=|date=|website=Japan Science and Technology Agency|access-date=2020-05-08}}</ref> and the JST ERATO–SORST Electronic Nanospace Project from 2005 to 2010. Aida served as the director of the RIKEN Advanced Science Institute from 2008 to 2012. Since 2013 he has been a Deputy Director of the RIKEN Center for Emergent Matter Science (CEMS).<ref>{{Cite web|title=Organization {{!}} About CEMS {{!}} Center for Emergent Matter Science (CEMS) {{!}} RIKEN|url=https://cems.riken.jp/about/organization|language=ja|access-date=2020-05-07}}</ref>


== Contributions to research ==
== Contributions to research ==
Aida’s research focuses on [[Supramolecular chemistry|supramolecular systems]] with unique properties and functions. Aida is recognized for his pioneering contributions to the emergence and progress of [[Supramolecular polymers|supramolecular polymerization]]. He reported the first example of this [[Non-covalent interaction|non-covalent]] polymerization by designing an [[Amphiphile|amphiphilic]] [[porphyrin]] that spontaneously forms a 1D cofacial assembly in water as a prototype supramolecular polymer.<ref name=":2">{{Cite journal|last1=Aida|first1=Takuzo|last2=Takemura|first2=Akihiko|last3=Fuse|first3=Masahiro|last4=Inoue|first4=Shohei|date=1988-01-01|title=Synthesis of a novel amphiphilic porphyrin carrying water-soluble polyether side chains of controlled chain length. Formation of a cofacial molecular assembly in aqueous media|url=https://pubs.rsc.org/en/content/articlelanding/1988/c3/c39880000391|journal=Journal of the Chemical Society, Chemical Communications|language=en|issue=5|pages=391–393|doi=10.1039/C39880000391|issn=0022-4936}}</ref> Then, he non-covalently achieved (1) [[Nanotube|nanotubular]] polymerization,<ref name=":3">{{Cite journal|last1=Hill|first1=Jonathan P.|last2=Jin|first2=Wusong|last3=Kosaka|first3=Atsuko|last4=Fukushima|first4=Takanori|last5=Ichihara|first5=Hideki|last6=Shimomura|first6=Takeshi|last7=Ito|first7=Kohzo|last8=Hashizume|first8=Tomihiro|last9=Ishii|first9=Noriyuki|last10=Aida|first10=Takuzo|date=2004-06-04|title=Self-Assembled Hexa-peri-hexabenzocoronene Graphitic Nanotube|url=https://science.sciencemag.org/content/304/5676/1481|journal=Science|language=en|volume=304|issue=5676|pages=1481–1483|doi=10.1126/science.1097789|issn=0036-8075|pmid=15178796|bibcode=2004Sci...304.1481H|s2cid=39674411}}</ref> (2) [[Living polymerization|living chain-growth]] ([[Ring-opening polymerization|ring-opening]]) polymerization,<ref name=":4">{{Cite journal|last1=Kang|first1=Jiheong|last2=Miyajima|first2=Daigo|last3=Mori|first3=Tadashi|last4=Inoue|first4=Yoshihisa|last5=Itoh|first5=Yoshimitsu|last6=Aida|first6=Takuzo|date=2015-02-06|title=A rational strategy for the realization of chain-growth supramolecular polymerization|url=https://science.sciencemag.org/content/347/6222/646|journal=Science|language=en|volume=347|issue=6222|pages=646–651|doi=10.1126/science.aaa4249|issn=0036-8075|pmid=25657246|bibcode=2015Sci...347..646K|s2cid=8487579}}</ref> (3) block copolymerization,<ref name=":5">{{Cite journal|last1=Yamamoto|first1=Yohei|last2=Fukushima|first2=Takanori|last3=Suna|first3=Yuki|last4=Ishii|first4=Noriyuki|last5=Saeki|first5=Akinori|last6=Seki|first6=Shu|last7=Tagawa|first7=Seiichi|last8=Taniguchi|first8=Masateru|last9=Kawai|first9=Tomoji|last10=Aida|first10=Takuzo|date=2006-12-15|title=Photoconductive Coaxial Nanotubes of Molecularly Connected Electron Donor and Acceptor Layers|url=https://science.sciencemag.org/content/314/5806/1761|journal=Science|language=en|volume=314|issue=5806|pages=1761–1764|doi=10.1126/science.1134441|issn=0036-8075|pmid=17170300|bibcode=2006Sci...314.1761Y|s2cid=10615728}}</ref><ref name=":6">{{Cite journal|last1=Yamamoto|first1=Yohei|last2=Zhang|first2=Guanxin|last3=Jin|first3=Wusong|last4=Fukushima|first4=Takanori|last5=Ishii|first5=Noriyuki|last6=Saeki|first6=Akinori|last7=Seki|first7=Shu|last8=Tagawa|first8=Seiichi|last9=Minari|first9=Takeo|last10=Tsukagoshi|first10=Kazuhito|last11=Aida|first11=Takuzo|date=2009-12-15|title=Ambipolar-transporting coaxial nanotubes with a tailored molecular graphene–fullerene heterojunction|journal=Proceedings of the National Academy of Sciences|language=en|volume=106|issue=50|pages=21051–21056|doi=10.1073/pnas.0905655106|issn=0027-8424|pmid=19940243|pmc=2795534|bibcode=2009PNAS..10621051Y|doi-access=free}}</ref><ref name="Zhang 340–343">{{Cite journal|last1=Zhang|first1=Wei|last2=Jin|first2=Wusong|last3=Fukushima|first3=Takanori|last4=Saeki|first4=Akinori|last5=Seki|first5=Shu|last6=Aida|first6=Takuzo|date=2011-10-21|title=Supramolecular Linear Heterojunction Composed of Graphite-Like Semiconducting Nanotubular Segments|url=https://science.sciencemag.org/content/334/6054/340|journal=Science|language=en|volume=334|issue=6054|pages=340–343|doi=10.1126/science.1210369|issn=0036-8075|pmid=22021852|bibcode=2011Sci...334..340Z|s2cid=5458366}}</ref> (4) [[Stereoselectivity|stereoselective]] polymerization,<ref name=":7">{{Cite journal|last1=Jin|first1=Wusong|last2=Fukushima|first2=Takanori|last3=Niki|first3=Makiko|last4=Kosaka|first4=Atsuko|last5=Ishii|first5=Noriyuki|last6=Aida|first6=Takuzo|date=2005-08-02|title=Self-assembled graphitic nanotubes with one-handed helical arrays of a chiral amphiphilic molecular graphene|journal=Proceedings of the National Academy of Sciences|language=en|volume=102|issue=31|pages=10801–10806|doi=10.1073/pnas.0500852102|issn=0027-8424|pmid=16043721|pmc=1182409|bibcode=2005PNAS..10210801J|doi-access=free}}</ref><ref name=":8">{{Cite journal|last1=Shen|first1=Zhaocun|last2=Sang|first2=Yutao|last3=Wang|first3=Tianyu|last4=Jiang|first4=Jian|last5=Meng|first5=Yan|last6=Jiang|first6=Yuqian|last7=Okuro|first7=Kou|last8=Aida|first8=Takuzo|last9=Liu|first9=Minghua|date=2019-09-04|title=Asymmetric catalysis mediated by a mirror symmetry-broken helical nanoribbon|journal=Nature Communications|language=en|volume=10|issue=1|page=3976|doi=10.1038/s41467-019-11840-3|pmid=31484928|pmc=6726595|bibcode=2019NatCo..10.3976S|issn=2041-1723|doi-access=free}}</ref> and (5) thermally bisignate polymerization.<ref name=":9">{{Cite journal|last1=Venkata Rao|first1=Kotagiri|last2=Miyajima|first2=Daigo|last3=Nihonyanagi|first3=Atsuko|last4=Aida|first4=Takuzo|date=November 2017|title=Thermally bisignate supramolecular polymerization|url=https://www.nature.com/articles/nchem.2812|journal=Nature Chemistry|language=en|volume=9|issue=11|pages=1133–1139|doi=10.1038/nchem.2812|pmid=29064499|bibcode=2017NatCh...9.1133V|issn=1755-4349}}</ref> He has also made fundamental contributions in expanding the scope of supramolecular polymerization to include chain propagations in two and three dimensions. His works have challenged preconceptions in the field of supramolecular chemistry, connected gaps between conventional and supramolecular polymerizations and realized properties unachievable through conventional polymerization.<ref>{{Cite journal|last=Aida|first=Takuzo|title=On Supramolecular Polymerization: Interview with Takuzo Aida|journal=Advanced Materials|year=2020|volume=32|issue=20|language=en|pages=1905445|doi=10.1002/adma.201905445|pmid=31867791|issn=1521-4095|doi-access=free}}</ref> In addition to fundamental contributions to the understanding of supramolecular systems, he has promoted their widespread use by developing materials for a wide range of applications. Aida has published several [[review article]]s on the historical background and progress of supramolecular polymerization: (1) Aida, [[Bert Meijer|Meijer]], and [[Samuel I. Stupp|Stupp]],<ref>{{Cite journal|last1=Aida|first1=T.|last2=Meijer|first2=E. W.|last3=Stupp|first3=S. I.|date=2012-02-17|title=Functional Supramolecular Polymers|url= |journal=Science|language=en|volume=335|issue=6070|pages=813–817|doi=10.1126/science.1205962|issn=0036-8075|pmid=22344437|pmc=3291483|bibcode=2012Sci...335..813A}}</ref> (2) Aida and Meijer,<ref name=":0" /> and (3) Hashim, Bergueiro, Meijer, and Aida.<ref name=":1" />
Aida’s research focuses on [[Supramolecular chemistry|supramolecular systems]] with unique properties and functions. Aida is recognized for his pioneering contributions to the emergence and progress of [[Supramolecular polymers|supramolecular polymerization]]. He reported the first example of this [[Non-covalent interaction|non-covalent]] polymerization by designing an [[Amphiphile|amphiphilic]] [[porphyrin]] that spontaneously forms a 1D cofacial assembly in water as a prototype supramolecular polymer.<ref name=":2">{{Cite journal|last1=Aida|first1=Takuzo|last2=Takemura|first2=Akihiko|last3=Fuse|first3=Masahiro|last4=Inoue|first4=Shohei|date=1988-01-01|title=Synthesis of a novel amphiphilic porphyrin carrying water-soluble polyether side chains of controlled chain length. Formation of a cofacial molecular assembly in aqueous media|url=https://pubs.rsc.org/en/content/articlelanding/1988/c3/c39880000391|journal=Journal of the Chemical Society, Chemical Communications|language=en|issue=5|pages=391–393|doi=10.1039/C39880000391|issn=0022-4936}}</ref> Then, he non-covalently achieved (1) [[Nanotube|nanotubular]] polymerization,<ref name=":3">{{Cite journal|last1=Hill|first1=Jonathan P.|last2=Jin|first2=Wusong|last3=Kosaka|first3=Atsuko|last4=Fukushima|first4=Takanori|last5=Ichihara|first5=Hideki|last6=Shimomura|first6=Takeshi|last7=Ito|first7=Kohzo|last8=Hashizume|first8=Tomihiro|last9=Ishii|first9=Noriyuki|last10=Aida|first10=Takuzo|date=2004-06-04|title=Self-Assembled Hexa-peri-hexabenzocoronene Graphitic Nanotube|url=https://www.science.org/doi/10.1126/science.1097789|journal=Science|language=en|volume=304|issue=5676|pages=1481–1483|doi=10.1126/science.1097789|issn=0036-8075|pmid=15178796|bibcode=2004Sci...304.1481H|s2cid=39674411}}</ref> (2) [[Living polymerization|living chain-growth]] ([[Ring-opening polymerization|ring-opening]]) polymerization,<ref name=":4">{{Cite journal|last1=Kang|first1=Jiheong|last2=Miyajima|first2=Daigo|last3=Mori|first3=Tadashi|last4=Inoue|first4=Yoshihisa|last5=Itoh|first5=Yoshimitsu|last6=Aida|first6=Takuzo|date=2015-02-06|title=A rational strategy for the realization of chain-growth supramolecular polymerization|url=https://www.science.org/doi/10.1126/science.aaa4249|journal=Science|language=en|volume=347|issue=6222|pages=646–651|doi=10.1126/science.aaa4249|issn=0036-8075|pmid=25657246|bibcode=2015Sci...347..646K|s2cid=8487579}}</ref> (3) block copolymerization,<ref name=":5">{{Cite journal|last1=Yamamoto|first1=Yohei|last2=Fukushima|first2=Takanori|last3=Suna|first3=Yuki|last4=Ishii|first4=Noriyuki|last5=Saeki|first5=Akinori|last6=Seki|first6=Shu|last7=Tagawa|first7=Seiichi|last8=Taniguchi|first8=Masateru|last9=Kawai|first9=Tomoji|last10=Aida|first10=Takuzo|date=2006-12-15|title=Photoconductive Coaxial Nanotubes of Molecularly Connected Electron Donor and Acceptor Layers|url=https://www.science.org/doi/10.1126/science.1134441|journal=Science|language=en|volume=314|issue=5806|pages=1761–1764|doi=10.1126/science.1134441|issn=0036-8075|pmid=17170300|bibcode=2006Sci...314.1761Y|s2cid=10615728}}</ref><ref name=":6">{{Cite journal|last1=Yamamoto|first1=Yohei|last2=Zhang|first2=Guanxin|last3=Jin|first3=Wusong|last4=Fukushima|first4=Takanori|last5=Ishii|first5=Noriyuki|last6=Saeki|first6=Akinori|last7=Seki|first7=Shu|last8=Tagawa|first8=Seiichi|last9=Minari|first9=Takeo|last10=Tsukagoshi|first10=Kazuhito|last11=Aida|first11=Takuzo|date=2009-12-15|title=Ambipolar-transporting coaxial nanotubes with a tailored molecular graphene–fullerene heterojunction|journal=Proceedings of the National Academy of Sciences|language=en|volume=106|issue=50|pages=21051–21056|doi=10.1073/pnas.0905655106|issn=0027-8424|pmid=19940243|pmc=2795534|bibcode=2009PNAS..10621051Y|doi-access=free}}</ref><ref name="Zhang 340–343">{{Cite journal|last1=Zhang|first1=Wei|last2=Jin|first2=Wusong|last3=Fukushima|first3=Takanori|last4=Saeki|first4=Akinori|last5=Seki|first5=Shu|last6=Aida|first6=Takuzo|date=2011-10-21|title=Supramolecular Linear Heterojunction Composed of Graphite-Like Semiconducting Nanotubular Segments|url=https://www.science.org/doi/10.1126/science.1210369|journal=Science|language=en|volume=334|issue=6054|pages=340–343|doi=10.1126/science.1210369|issn=0036-8075|pmid=22021852|bibcode=2011Sci...334..340Z|s2cid=5458366}}</ref> (4) [[Stereoselectivity|stereoselective]] polymerization,<ref name=":7">{{Cite journal|last1=Jin|first1=Wusong|last2=Fukushima|first2=Takanori|last3=Niki|first3=Makiko|last4=Kosaka|first4=Atsuko|last5=Ishii|first5=Noriyuki|last6=Aida|first6=Takuzo|date=2005-08-02|title=Self-assembled graphitic nanotubes with one-handed helical arrays of a chiral amphiphilic molecular graphene|journal=Proceedings of the National Academy of Sciences|language=en|volume=102|issue=31|pages=10801–10806|doi=10.1073/pnas.0500852102|issn=0027-8424|pmid=16043721|pmc=1182409|bibcode=2005PNAS..10210801J|doi-access=free}}</ref><ref name=":8">{{Cite journal|last1=Shen|first1=Zhaocun|last2=Sang|first2=Yutao|last3=Wang|first3=Tianyu|last4=Jiang|first4=Jian|last5=Meng|first5=Yan|last6=Jiang|first6=Yuqian|last7=Okuro|first7=Kou|last8=Aida|first8=Takuzo|last9=Liu|first9=Minghua|date=2019-09-04|title=Asymmetric catalysis mediated by a mirror symmetry-broken helical nanoribbon|journal=Nature Communications|language=en|volume=10|issue=1|page=3976|doi=10.1038/s41467-019-11840-3|pmid=31484928|pmc=6726595|bibcode=2019NatCo..10.3976S|issn=2041-1723|doi-access=free}}</ref> and (5) thermally bisignate polymerization.<ref name=":9">{{Cite journal|last1=Venkata Rao|first1=Kotagiri|last2=Miyajima|first2=Daigo|last3=Nihonyanagi|first3=Atsuko|last4=Aida|first4=Takuzo|date=November 2017|title=Thermally bisignate supramolecular polymerization|url=https://www.nature.com/articles/nchem.2812|journal=Nature Chemistry|language=en|volume=9|issue=11|pages=1133–1139|doi=10.1038/nchem.2812|pmid=29064499|bibcode=2017NatCh...9.1133V|issn=1755-4349}}</ref> He has also made fundamental contributions in expanding the scope of supramolecular polymerization to include chain propagations in two and three dimensions. His works have challenged preconceptions in the field of supramolecular chemistry, connected gaps between conventional and supramolecular polymerizations and realized properties unachievable through conventional polymerization.<ref>{{Cite journal|last=Aida|first=Takuzo|title=On Supramolecular Polymerization: Interview with Takuzo Aida|journal=Advanced Materials|year=2020|volume=32|issue=20|language=en|pages=1905445|doi=10.1002/adma.201905445|pmid=31867791|issn=1521-4095|doi-access=|bibcode=2020AdM....3205445A }}</ref> In addition to fundamental contributions to the understanding of supramolecular systems, he has promoted their widespread use by developing materials for a wide range of applications. Aida has published several [[review article]]s on the historical background and progress of supramolecular polymerization: (1) Aida, [[Bert Meijer|Meijer]], and [[Samuel I. Stupp|Stupp]],<ref>{{Cite journal|last1=Aida|first1=T.|last2=Meijer|first2=E. W.|last3=Stupp|first3=S. I.|date=2012-02-17|title=Functional Supramolecular Polymers|url= |journal=Science|language=en|volume=335|issue=6070|pages=813–817|doi=10.1126/science.1205962|issn=0036-8075|pmid=22344437|pmc=3291483|bibcode=2012Sci...335..813A}}</ref> (2) Aida and Meijer,<ref name=":0" /> and (3) Hashim, Bergueiro, Meijer, and Aida.<ref name=":1" />


In 1988, while working on the development of polymerization catalysts as a non-independent assistant professor, Aida published a prototype of supramolecular polymerization, based on his finding of a catalytic version of living polymerization, named "immortal polymerization". He utilized immortal polymerization to synthesize oligo(ethylene glycol)-appended amphiphilic porphyrin and confirmed its 1D assembly in aqueous media.<ref name=":2" /> In addition to this pioneering contribution to supramolecular polymerization, he made an early seminal discovery of extrusion polymerization within catalyst-immobilized [[mesoporous silica]], affording extended-chain crystalline [[polyethylene]] fibers.<ref>{{Cite journal|last1=Kageyama|first1=Keisuke|last2=Tamazawa|first2=Jun-ichi|last3=Aida|first3=Takuzo|date=1999-09-24|title=Extrusion Polymerization: Catalyzed Synthesis of Crystalline Linear Polyethylene Nanofibers Within a Mesoporous Silica|url=https://science.sciencemag.org/content/285/5436/2113|journal=Science|language=en|volume=285|issue=5436|pages=2113–2115|doi=10.1126/science.285.5436.2113|issn=0036-8075|pmid=10497126}}</ref> He was also the first to discover morphology-dependent energy funneling in [[Photoexcitation|photoexcited]] [[dendrimer]]s.<ref>{{Cite journal|last1=Jiang|first1=Dong-Lin|last2=Aida|first2=Takuzo|date=July 1997|title=Photoisomerization in dendrimers by harvesting of low-energy photons|journal=Nature|language=en|volume=388|issue=6641|pages=454–456|doi=10.1038/41290|bibcode=1997Natur.388..454J|s2cid=205028355|issn=1476-4687|doi-access=free}}</ref><ref name="Jiang 10895–10901">{{Cite journal|last1=Jiang|first1=Dong-Lin|last2=Aida|first2=Takuzo|date=1998-10-01|title=Morphology-Dependent Photochemical Events in Aryl Ether Dendrimer Porphyrins: Cooperation of Dendron Subunits for Singlet Energy Transduction|url=https://doi.org/10.1021/ja9823520|journal=Journal of the American Chemical Society|volume=120|issue=42|pages=10895–10901|doi=10.1021/ja9823520|issn=0002-7863}}</ref>
In 1988, while working on the development of polymerization catalysts as a non-independent assistant professor, Aida published a prototype of supramolecular polymerization, based on his finding of a catalytic version of living polymerization, named "immortal polymerization". He utilized immortal polymerization to synthesize oligo(ethylene glycol)-appended amphiphilic porphyrin and confirmed its 1D assembly in aqueous media.<ref name=":2" /> In addition to this pioneering contribution to supramolecular polymerization, he made an early seminal discovery of extrusion polymerization within catalyst-immobilized [[mesoporous silica]], affording extended-chain crystalline [[polyethylene]] fibers.<ref>{{Cite journal|last1=Kageyama|first1=Keisuke|last2=Tamazawa|first2=Jun-ichi|last3=Aida|first3=Takuzo|date=1999-09-24|title=Extrusion Polymerization: Catalyzed Synthesis of Crystalline Linear Polyethylene Nanofibers Within a Mesoporous Silica|url=https://www.science.org/doi/10.1126/science.285.5436.2113|journal=Science|language=en|volume=285|issue=5436|pages=2113–2115|doi=10.1126/science.285.5436.2113|issn=0036-8075|pmid=10497126}}</ref> He was also the first to discover morphology-dependent energy funneling in [[Photoexcitation|photoexcited]] [[dendrimer]]s.<ref>{{Cite journal|last1=Jiang|first1=Dong-Lin|last2=Aida|first2=Takuzo|date=July 1997|title=Photoisomerization in dendrimers by harvesting of low-energy photons|journal=Nature|language=en|volume=388|issue=6641|pages=454–456|doi=10.1038/41290|bibcode=1997Natur.388..454J|s2cid=205028355|issn=1476-4687|doi-access=free}}</ref><ref name="Jiang 10895–10901">{{Cite journal|last1=Jiang|first1=Dong-Lin|last2=Aida|first2=Takuzo|date=1998-10-01|title=Morphology-Dependent Photochemical Events in Aryl Ether Dendrimer Porphyrins: Cooperation of Dendron Subunits for Singlet Energy Transduction|url=https://doi.org/10.1021/ja9823520|journal=Journal of the American Chemical Society|volume=120|issue=42|pages=10895–10901|doi=10.1021/ja9823520|issn=0002-7863}}</ref>


After being promoted to full professor, Aida revisited his work on supramolecular polymerization and demonstrated the first [[Homochirality|homochiral]] (chiral self-sorting) supramolecular polymerization using a [[cyclic peptide]] motif as the [[Chirality|chiral]] [[monomer]].<ref>{{Cite journal|last1=Ishida|first1=Yasuhiro|last2=Aida|first2=Takuzo|date=2002-11-01|title=Homochiral Supramolecular Polymerization of an "S"-Shaped Chiral Monomer: Translation of Optical Purity into Molecular Weight Distribution|url=https://doi.org/10.1021/ja028403h|journal=Journal of the American Chemical Society|volume=124|issue=47|pages=14017–14019|doi=10.1021/ja028403h|pmid=12440899|issn=0002-7863}}</ref> He also synthesized an amphiphilic version of [[hexabenzocoronene]], a "molecular graphene”, and succeeded in its supramolecular nanotubular polymerization, obtaining the first electroconductive supramolecular nanotube.<ref name=":3" /> He then utilized this nanographene platform to obtain radial<ref name=":5" /><ref name=":6" /> and linear<ref name="Zhang 340–343"/> supramolecular block copolymers. The resulting block copolymers were designed to include donor/acceptor heterojunctions and displayed photophysical properties. This series of pioneering works challenged the preconception that supramolecular polymers are only 1D dynamic aggregates with poor structural integrity. Aida also found that the supramolecular polymerization of chiral amphiphilic hexabenzocoronenes proceeds in a one-handed [[Axial chirality|helical]] manner via the majority rule.<ref name=":7" /> This work was further extended to the development of a redox-active oligo(''o''-phenylene) helix<ref>{{Cite journal|last1=Ohta|first1=Eisuke|last2=Sato|first2=Hiroyasu|last3=Ando|first3=Shinji|last4=Kosaka|first4=Atsuko|last5=Fukushima|first5=Takanori|last6=Hashizume|first6=Daisuke|last7=Yamasaki|first7=Mikio|last8=Hasegawa|first8=Kimiko|last9=Muraoka|first9=Azusa|last10=Ushiyama|first10=Hiroshi|last11=Yamashita|first11=Koichi|date=January 2011|title=Redox-responsive molecular helices with highly condensed π -clouds|url=https://www.nature.com/articles/nchem.900|journal=Nature Chemistry|language=en|volume=3|issue=1|pages=68–73|doi=10.1038/nchem.900|pmid=21160520|bibcode=2011NatCh...3...68O|issn=1755-4349}}</ref> and, together with Professor Minghua Liu of the [[Chinese Academy of Sciences]], [[Homochirality|mirror-symmetry broken]] helical fibers consisting of an achiral component that serve as a chiral scaffold for transition metal-catalyzed [[Enantioselective synthesis|asymmetric reactions]].<ref name=":8" /> In 2014, Aida obtained a metal-organic nanotube by the supramolecular polymerization of a redox-active [[ferrocene]]-cored double-decker tetrapyridyl monomer and demonstrated that this nanotube, upon [[Redox|oxidation]], can be cut into gigantic nanorings, which can then be pasted on a negatively charged [[mica]] substrate or assembled coaxially to recover the original nanotube upon [[Redox|reduction]].<ref>{{Cite journal|last1=Fukino|first1=Takahiro|last2=Joo|first2=Hyunho|last3=Hisada|first3=Yuki|last4=Obana|first4=Maiko|last5=Yamagishi|first5=Hiroshi|last6=Hikima|first6=Takaaki|last7=Takata|first7=Masaki|last8=Fujita|first8=Norifumi|last9=Aida|first9=Takuzo|date=2014-05-02|title=Manipulation of Discrete Nanostructures by Selective Modulation of Noncovalent Forces|url=https://science.sciencemag.org/content/344/6183/499|journal=Science|language=en|volume=344|issue=6183|pages=499–504|doi=10.1126/science.1252120|issn=0036-8075|pmid=24786075|bibcode=2014Sci...344..499F|s2cid=6360178}}</ref>
After being promoted to full professor, Aida revisited his work on supramolecular polymerization and demonstrated the first [[Homochirality|homochiral]] (chiral self-sorting) supramolecular polymerization using a [[cyclic peptide]] motif as the [[Chirality|chiral]] [[monomer]].<ref>{{Cite journal|last1=Ishida|first1=Yasuhiro|last2=Aida|first2=Takuzo|date=2002-11-01|title=Homochiral Supramolecular Polymerization of an "S"-Shaped Chiral Monomer: Translation of Optical Purity into Molecular Weight Distribution|url=https://doi.org/10.1021/ja028403h|journal=Journal of the American Chemical Society|volume=124|issue=47|pages=14017–14019|doi=10.1021/ja028403h|pmid=12440899|issn=0002-7863}}</ref> He also synthesized an amphiphilic version of [[hexabenzocoronene]], a "molecular graphene”, and succeeded in its supramolecular nanotubular polymerization, obtaining the first electroconductive supramolecular nanotube.<ref name=":3" /> He then utilized this nanographene platform to obtain radial<ref name=":5" /><ref name=":6" /> and linear<ref name="Zhang 340–343"/> supramolecular block copolymers. The resulting block copolymers were designed to include donor/acceptor heterojunctions and displayed photophysical properties. This series of pioneering works challenged the preconception that supramolecular polymers are only 1D dynamic aggregates with poor structural integrity. Aida also found that the supramolecular polymerization of chiral amphiphilic hexabenzocoronenes proceeds in a one-handed [[Axial chirality|helical]] manner via the majority rule.<ref name=":7" /> This work was further extended to the development of a redox-active oligo(''o''-phenylene) helix<ref>{{Cite journal|last1=Ohta|first1=Eisuke|last2=Sato|first2=Hiroyasu|last3=Ando|first3=Shinji|last4=Kosaka|first4=Atsuko|last5=Fukushima|first5=Takanori|last6=Hashizume|first6=Daisuke|last7=Yamasaki|first7=Mikio|last8=Hasegawa|first8=Kimiko|last9=Muraoka|first9=Azusa|last10=Ushiyama|first10=Hiroshi|last11=Yamashita|first11=Koichi|date=January 2011|title=Redox-responsive molecular helices with highly condensed π -clouds|url=https://www.nature.com/articles/nchem.900|journal=Nature Chemistry|language=en|volume=3|issue=1|pages=68–73|doi=10.1038/nchem.900|pmid=21160520|bibcode=2011NatCh...3...68O|issn=1755-4349}}</ref> and, together with Professor Minghua Liu of the [[Chinese Academy of Sciences]], [[Homochirality|mirror-symmetry broken]] helical fibers consisting of an achiral component that serve as a chiral scaffold for transition metal-catalyzed [[Enantioselective synthesis|asymmetric reactions]].<ref name=":8" /> In 2014, Aida obtained a metal-organic nanotube by the supramolecular polymerization of a redox-active [[ferrocene]]-cored double-decker tetrapyridyl monomer and demonstrated that this nanotube, upon [[Redox|oxidation]], can be cut into gigantic nanorings, which can then be pasted on a negatively charged [[mica]] substrate or assembled coaxially to recover the original nanotube upon [[Redox|reduction]].<ref>{{Cite journal|last1=Fukino|first1=Takahiro|last2=Joo|first2=Hyunho|last3=Hisada|first3=Yuki|last4=Obana|first4=Maiko|last5=Yamagishi|first5=Hiroshi|last6=Hikima|first6=Takaaki|last7=Takata|first7=Masaki|last8=Fujita|first8=Norifumi|last9=Aida|first9=Takuzo|date=2014-05-02|title=Manipulation of Discrete Nanostructures by Selective Modulation of Noncovalent Forces|url=https://www.science.org/doi/10.1126/science.1252120|journal=Science|language=en|volume=344|issue=6183|pages=499–504|doi=10.1126/science.1252120|issn=0036-8075|pmid=24786075|bibcode=2014Sci...344..499F|s2cid=6360178}}</ref>


In 2015, Aida realized the first example of chain-growth supramolecular polymerization,<ref name=":4" /> where a bowl-shaped, [[corannulene]]-based monomer, rendered non-polymerizable by an [[Intramolecular force|intramolecular]] [[Hydrogen bond|hydrogen-bonding]] network, is forced to polymerize by the action of a corresponding initiator that can reorganize the intramolecular hydrogen-bonding network into an [[Intermolecular force|intermolecular]] one. The polymer molecular weight is uniform and tunable by changing the monomer-to-initiator mole ratio. Furthermore, sequential polymerization of two monomers with this system leads to well-defined [[Copolymer|block copolymers]]. The chain growth is also perfectly homochiral, even when a racemic chiral monomer is polymerized. When one [[enantiomer]] of a properly designed chiral initiator is used for the polymerization, only the monomer with the preferred enantiomeric form polymerizes, resulting in 100% enantiomeric separation of the [[Racemic mixture|racemic]] monomer. These achievements challenged the notion that supramolecular polymerization always follows a [[Step-growth polymerization|step-growth]] mechanism and revealed the potential of supramolecular polymerization as a tool for precision macromolecular synthesis.
In 2015, Aida realized the first example of chain-growth supramolecular polymerization,<ref name=":4" /> where a bowl-shaped, [[corannulene]]-based monomer, rendered non-polymerizable by an [[Intramolecular force|intramolecular]] [[Hydrogen bond|hydrogen-bonding]] network, is forced to polymerize by the action of a corresponding initiator that can reorganize the intramolecular hydrogen-bonding network into an [[Intermolecular force|intermolecular]] one. The polymer molecular weight is uniform and tunable by changing the monomer-to-initiator mole ratio. Furthermore, sequential polymerization of two monomers with this system leads to well-defined [[Copolymer|block copolymers]]. The chain growth is also perfectly homochiral, even when a racemic chiral monomer is polymerized. When one [[enantiomer]] of a properly designed chiral initiator is used for the polymerization, only the monomer with the preferred enantiomeric form polymerizes, resulting in 100% enantiomeric separation of the [[Racemic mixture|racemic]] monomer. These achievements challenged the notion that supramolecular polymerization always follows a [[Step-growth polymerization|step-growth]] mechanism and revealed the potential of supramolecular polymerization as a tool for precision macromolecular synthesis.
Line 35: Line 36:
In 2017, Aida reported a conceptually new, "thermally bisignate", supramolecular polymerization,<ref name=":9" /> where supramolecular polymers are designed in such a way that they form upon heating as well as cooling but disappear at temperatures in between. This work challenged the preconception that supramolecular polymers are more stable at lower temperatures, while they readily dissociate upon heating, unveiling new insights into the dynamic nature of supramolecular polymers. One of the most energy-demanding and costly processes in macromolecular engineering is solution processing, as [[polymer solution]]s are [[Viscosity|viscous]] due to [[Reptation|chain entanglement]]. Thermally bisignate supramolecular polymerization has the potential to solve this universal issue in macromolecular engineering.
In 2017, Aida reported a conceptually new, "thermally bisignate", supramolecular polymerization,<ref name=":9" /> where supramolecular polymers are designed in such a way that they form upon heating as well as cooling but disappear at temperatures in between. This work challenged the preconception that supramolecular polymers are more stable at lower temperatures, while they readily dissociate upon heating, unveiling new insights into the dynamic nature of supramolecular polymers. One of the most energy-demanding and costly processes in macromolecular engineering is solution processing, as [[polymer solution]]s are [[Viscosity|viscous]] due to [[Reptation|chain entanglement]]. Thermally bisignate supramolecular polymerization has the potential to solve this universal issue in macromolecular engineering.


In 2021, Aida reported the solvent-free autocatalytic supramolecular polymerization of [[phthalocyanine]]s,<ref>{{Cite journal |last1=Chen |first1=Zhen |last2=Suzuki |first2=Yukinaga |last3=Imayoshi |first3=Ayumi |last4=Ji |first4=Xiaofan |last5=Rao |first5=Kotagiri Venkata |last6=Omata |first6=Yuki |last7=Miyajima |first7=Daigo |last8=Sato |first8=Emiko |last9=Nihonyanagi |first9=Atsuko |last10=Aida |first10=Takuzo |date=14 October 2021 |title=Solvent-free autocatalytic supramolecular polymerization |url=https://www.nature.com/articles/s41563-021-01122-z |journal=Nature Materials |language=en |volume=21 |issue=2 |pages=253–261 |doi=10.1038/s41563-021-01122-z |pmid=34650229 |s2cid=234062383 |issn=1476-4660}}</ref> where the cross section of the end of the propagating chain serves as a template to catalyze the conversion of [[phthalonitrile]]s into phthalocyanines in an exceptionally high yield of over 80%. Solvent-free chemical synthesis and [[autocatalysis]] are important [[Environmental technology|green technology]] concepts for [[Sustainable materials use and disposal (conservation of cultural heritage)|sustainable materials]].
Aida has made significant contributions to filling the gap between supramolecular and conventional (covalent) polymerizations and inspired the field through the development of a variety of innovative materials by expansion of the basic concept of supramolecular polymerization. Representative examples include (1) "bucky gels", [[carbon nanotube]]s physically crosslinked by [[ionic liquid]]s<ref>{{Cite journal|last1=Fukushima|first1=Takanori|last2=Kosaka|first2=Atsuko|last3=Ishimura|first3=Yoji|last4=Yamamoto|first4=Takashi|last5=Takigawa|first5=Toshikazu|last6=Ishii|first6=Noriyuki|last7=Aida|first7=Takuzo|date=2003-06-27|title=Molecular Ordering of Organic Molten Salts Triggered by Single-Walled Carbon Nanotubes|url=https://science.sciencemag.org/content/300/5628/2072|journal=Science|language=en|volume=300|issue=5628|pages=2072–2074|doi=10.1126/science.1082289|issn=0036-8075|pmid=12829776|bibcode=2003Sci...300.2072F|s2cid=14898755}}</ref> and the use of this technology for [[graphite]] [[Intercalation (chemistry)|exfoliation]] to [[graphene]],<ref>{{Cite journal|last1=Matsumoto|first1=Michio|last2=Saito|first2=Yusuke|last3=Park|first3=Chiyoung|last4=Fukushima|first4=Takanori|last5=Aida|first5=Takuzo|date=September 2015|title=Ultrahigh-throughput exfoliation of graphite into pristine 'single-layer' graphene using microwaves and molecularly engineered ionic liquids|url=https://www.nature.com/articles/nchem.2315|journal=Nature Chemistry|language=en|volume=7|issue=9|pages=730–736|doi=10.1038/nchem.2315|pmid=26291945|bibcode=2015NatCh...7..730M|issn=1755-4349}}</ref> and the fabrication of the first metal-free [[stretchable electronics]]<ref>{{Cite journal|last1=Sekitani|first1=Tsuyoshi|last2=Noguchi|first2=Yoshiaki|last3=Hata|first3=Kenji|last4=Fukushima|first4=Takanori|last5=Aida|first5=Takuzo|last6=Someya|first6=Takao|date=2008-09-12|title=A Rubberlike Stretchable Active Matrix Using Elastic Conductors|url=https://science.sciencemag.org/content/321/5895/1468|journal=Science|language=en|volume=321|issue=5895|pages=1468–1472|doi=10.1126/science.1160309|issn=0036-8075|pmid=18687922|bibcode=2008Sci...321.1468S|s2cid=15663382}}</ref><ref>{{Cite journal|last1=Sekitani|first1=Tsuyoshi|last2=Nakajima|first2=Hiroyoshi|last3=Maeda|first3=Hiroki|last4=Fukushima|first4=Takanori|last5=Aida|first5=Takuzo|last6=Hata|first6=Kenji|last7=Someya|first7=Takao|date=June 2009|title=Stretchable active-matrix organic light-emitting diode display using printable elastic conductors|url=https://www.nature.com/articles/nmat2459|journal=Nature Materials|language=en|volume=8|issue=6|pages=494–499|doi=10.1038/nmat2459|pmid=19430465|bibcode=2009NatMa...8..494S|issn=1476-4660}}</ref> and battery-driven dry actuators<ref>{{Cite journal|last1=Fukushima|first1=Takanori|last2=Asaka|first2=Kinji|last3=Kosaka|first3=Atsuko|last4=Aida|first4=Takuzo|date=2005|title=Fully Plastic Actuator through Layer-by-Layer Casting with Ionic-Liquid-Based Bucky Gel|url=https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.200462318|journal=Angewandte Chemie International Edition|volume=44|issue=16|pages=2410–2413|doi=10.1002/anie.200462318|pmid=15761901|issn=1521-3773}}</ref> for manufacturing mobile [[Refreshable braille display|Braille devices]], (2) "aqua materials", highly water-rich (organic content of 0.1–0.2% for ultralow dependency on [[Non-renewable resource|fossil resources]]) [[Gel#Hydrogels|hydrogels]] anomalously having significant mechanical robustness<ref>{{Cite journal|last1=Wang|first1=Qigang|last2=Mynar|first2=Justin L.|last3=Yoshida|first3=Masaru|last4=Lee|first4=Eunji|last5=Lee|first5=Myongsoo|last6=Okuro|first6=Kou|last7=Kinbara|first7=Kazushi|last8=Aida|first8=Takuzo|date=January 2010|title=High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder|url=https://www.nature.com/articles/nature08693|journal=Nature|language=en|volume=463|issue=7279|pages=339–343|doi=10.1038/nature08693|pmid=20090750|bibcode=2010Natur.463..339W|s2cid=4422721|issn=1476-4687}}</ref> or geometrical [[anisotropy]],<ref>{{Cite journal|last1=Liu|first1=Mingjie|last2=Ishida|first2=Yasuhiro|last3=Ebina|first3=Yasuo|last4=Sasaki|first4=Takayoshi|last5=Hikima|first5=Takaaki|last6=Takata|first6=Masaki|last7=Aida|first7=Takuzo|date=January 2015|title=An anisotropic hydrogel with electrostatic repulsion between cofacially aligned nanosheets|url=https://www.nature.com/articles/nature14060|journal=Nature|language=en|volume=517|issue=7532|pages=68–72|doi=10.1038/nature14060|pmid=25557713|bibcode=2015Natur.517...68L|s2cid=4470394|issn=1476-4687}}</ref><ref>{{Cite journal|last1=Kim|first1=Youn Soo|last2=Liu|first2=Mingjie|last3=Ishida|first3=Yasuhiro|last4=Ebina|first4=Yasuo|last5=Osada|first5=Minoru|last6=Sasaki|first6=Takayoshi|last7=Hikima|first7=Takaaki|last8=Takata|first8=Masaki|last9=Aida|first9=Takuzo|date=October 2015|title=Thermoresponsive actuation enabled by permittivity switching in an electrostatically anisotropic hydrogel|url=https://www.nature.com/articles/nmat4363|journal=Nature Materials|language=en|volume=14|issue=10|pages=1002–1007|doi=10.1038/nmat4363|pmid=26259107|bibcode=2015NatMa..14.1002K|issn=1476-4660}}</ref> (3) [[Adenosine triphosphate|ATP]]-responsive nanotubular carriers composed of [[Chaperone (protein)|chaperonin proteins]], a biomolecular machine,<ref>{{Cite journal|last1=Ishii|first1=Daisuke|last2=Kinbara|first2=Kazushi|last3=Ishida|first3=Yasuhiro|last4=Ishii|first4=Noriyuki|last5=Okochi|first5=Mina|last6=Yohda|first6=Masafumi|last7=Aida|first7=Takuzo|date=June 2003|title=Chaperonin-mediated stabilization and ATP-triggered release of semiconductor nanoparticles|url=https://www.nature.com/articles/nature01663|journal=Nature|language=en|volume=423|issue=6940|pages=628–632|doi=10.1038/nature01663|pmid=12789335|bibcode=2003Natur.423..628I|s2cid=52862173|issn=1476-4687}}</ref><ref>{{Cite journal|last1=Biswas|first1=Shuvendu|last2=Kinbara|first2=Kazushi|last3=Niwa|first3=Tatsuya|last4=Taguchi|first4=Hideki|last5=Ishii|first5=Noriyuki|last6=Watanabe|first6=Sumiyo|last7=Miyata|first7=Kanjiro|last8=Kataoka|first8=Kazunori|last9=Aida|first9=Takuzo|date=July 2013|title=Biomolecular robotics for chemomechanically driven guest delivery fuelled by intracellular ATP|url=https://www.nature.com/articles/nchem.1681|journal=Nature Chemistry|language=en|volume=5|issue=7|pages=613–620|doi=10.1038/nchem.1681|pmid=23787753|bibcode=2013NatCh...5..613B|issn=1755-4349}}</ref> (4) non-crosslinked photoactuators,<ref>{{Cite journal|last1=Hosono|first1=Nobuhiko|last2=Kajitani|first2=Takashi|last3=Fukushima|first3=Takanori|last4=Ito|first4=Kazuki|last5=Sasaki|first5=Sono|last6=Takata|first6=Masaki|last7=Aida|first7=Takuzo|date=2010-11-05|title=Large-Area Three-Dimensional Molecular Ordering of a Polymer Brush by One-Step Processing|url=https://science.sciencemag.org/content/330/6005/808|journal=Science|language=en|volume=330|issue=6005|pages=808–811|doi=10.1126/science.1195302|pmid=21051635|bibcode=2010Sci...330..808H|s2cid=2649063|issn=0036-8075}}</ref> (5) [[Ferroelectricity|ferroelectric]] [[Columnar phase|columnar]] [[liquid crystal]]s,<ref>{{Cite journal|last1=Miyajima|first1=Daigo|last2=Araoka|first2=Fumito|last3=Takezoe|first3=Hideo|last4=Kim|first4=Jungeun|last5=Kato|first5=Kenichi|last6=Takata|first6=Masaki|last7=Aida|first7=Takuzo|date=2012-04-13|title=Ferroelectric Columnar Liquid Crystal Featuring Confined Polar Groups Within Core–Shell Architecture|url=https://science.sciencemag.org/content/336/6078/209|journal=Science|language=en|volume=336|issue=6078|pages=209–213|doi=10.1126/science.1217954|issn=0036-8075|pmid=22499944|bibcode=2012Sci...336..209M|s2cid=11434473}}</ref> (6) mechanically robust yet [[Self-healing material|self-healable]] [[Polymer#Glass transition|polymer glass]],<ref>{{Cite journal|last1=Yanagisawa|first1=Yu|last2=Nan|first2=Yiling|last3=Okuro|first3=Kou|last4=Aida|first4=Takuzo|date=2018-01-05|title=Mechanically robust, readily repairable polymers via tailored noncovalent cross-linking|journal=Science|language=en|volume=359|issue=6371|pages=72–76|doi=10.1126/science.aam7588|issn=0036-8075|pmid=29242235|bibcode=2018Sci...359...72Y|doi-access=free}}</ref> (7) self-healable high-temperature [[Porosity|porous]] organic materials,<ref>{{Cite journal|last1=Yamagishi|first1=Hiroshi|last2=Sato|first2=Hiroshi|last3=Hori|first3=Akihiro|last4=Sato|first4=Yohei|last5=Matsuda|first5=Ryotaro|last6=Kato|first6=Kenichi|last7=Aida|first7=Takuzo|date=2018-09-21|title=Self-assembly of lattices with high structural complexity from a geometrically simple molecule|journal=Science|language=en|volume=361|issue=6408|pages=1242–1246|doi=10.1126/science.aat6394|issn=0036-8075|pmid=30237354|bibcode=2018Sci...361.1242Y|doi-access=free}}</ref> and (8) optoelectrically rewritable core-shell columnar liquid crystals with an [[Molecular logic gate|AND logic gate]] operation.<ref>{{Cite journal|last1=Yano|first1=Keiichi|last2=Itoh|first2=Yoshimitsu|last3=Araoka|first3=Fumito|last4=Watanabe|first4=Go|last5=Hikima|first5=Takaaki|last6=Aida|first6=Takuzo|date=2019-01-11|title=Nematic-to-columnar mesophase transition by in situ supramolecular polymerization|journal=Science|language=en|volume=363|issue=6423|pages=161–165|doi=10.1126/science.aan1019|issn=0036-8075|pmid=30630928|bibcode=2019Sci...363..161Y|doi-access=free}}</ref>


Aida has made significant contributions to filling the gap between supramolecular and conventional (covalent) polymerizations and inspired the field through the development of a variety of innovative materials by expansion of the basic concept of supramolecular polymerization. Representative examples include
In addition to his pioneering contribution to the field of supramolecular polymerization, he published other seminal papers such as those on photo-driven chiral [[Molecular tweezers|molecular pincers]] that can deform guest molecules using light,<ref>{{Cite journal|last1=Muraoka|first1=Takahiro|last2=Kinbara|first2=Kazushi|last3=Aida|first3=Takuzo|date=March 2006|title=Mechanical twisting of a guest by a photoresponsive host|url=https://www.nature.com/articles/nature04635|journal=Nature|language=en|volume=440|issue=7083|pages=512–515|doi=10.1038/nature04635|pmid=16554815|bibcode=2006Natur.440..512M|s2cid=4424929|issn=1476-4687}}</ref><ref>{{Cite journal|last1=Kinbara|first1=Kazushi|last2=Aida|first2=Takuzo|date=2005-04-01|title=Toward Intelligent Molecular Machines: Directed Motions of Biological and Artificial Molecules and Assemblies|url=https://doi.org/10.1021/cr030071r|journal=Chemical Reviews|volume=105|issue=4|pages=1377–1400|doi=10.1021/cr030071r|pmid=15826015|issn=0009-2665}}</ref> subnanoscale hydrophobic modulation of [[Salt bridge (protein and supramolecular)|salt bridges]] in aqueous media,<ref>{{Cite journal|last1=Chen|first1=Shuo|last2=Itoh|first2=Yoshimitsu|last3=Masuda|first3=Takuya|last4=Shimizu|first4=Seishi|last5=Zhao|first5=Jun|last6=Ma|first6=Jing|last7=Nakamura|first7=Shugo|last8=Okuro|first8=Kou|last9=Noguchi|first9=Hidenori|last10=Uosaki|first10=Kohei|last11=Aida|first11=Takuzo|date=2015-05-01|title=Subnanoscale hydrophobic modulation of salt bridges in aqueous media|url=https://science.sciencemag.org/content/348/6234/555|journal=Science|language=en|volume=348|issue=6234|pages=555–559|doi=10.1126/science.aaa7532|issn=0036-8075|pmid=25931555|bibcode=2015Sci...348..555C|s2cid=10098226}}</ref> and the first [[carbon nitride]] [[thin film]].<ref>{{Cite journal|last1=Arazoe|first1=Hiroki|last2=Miyajima|first2=Daigo|last3=Akaike|first3=Kouki|last4=Araoka|first4=Fumito|last5=Sato|first5=Emiko|last6=Hikima|first6=Takaaki|last7=Kawamoto|first7=Masuki|last8=Aida|first8=Takuzo|date=October 2016|title=An autonomous actuator driven by fluctuations in ambient humidity|url=https://www.nature.com/articles/nmat4693|journal=Nature Materials|language=en|volume=15|issue=10|pages=1084–1089|doi=10.1038/nmat4693|pmid=27429210|bibcode=2016NatMa..15.1084A|issn=1476-4660}}</ref>


(1) "bucky gels", [[carbon nanotube]]s physically crosslinked by [[ionic liquid]]s<ref>{{Cite journal|last1=Fukushima|first1=Takanori|last2=Kosaka|first2=Atsuko|last3=Ishimura|first3=Yoji|last4=Yamamoto|first4=Takashi|last5=Takigawa|first5=Toshikazu|last6=Ishii|first6=Noriyuki|last7=Aida|first7=Takuzo|date=2003-06-27|title=Molecular Ordering of Organic Molten Salts Triggered by Single-Walled Carbon Nanotubes|url=https://www.science.org/doi/10.1126/science.1082289|journal=Science|language=en|volume=300|issue=5628|pages=2072–2074|doi=10.1126/science.1082289|issn=0036-8075|pmid=12829776|bibcode=2003Sci...300.2072F|s2cid=14898755}}</ref> and the use of this technology for [[graphite]] [[Intercalation (chemistry)|exfoliation]] to [[graphene]],<ref>{{Cite journal|last1=Matsumoto|first1=Michio|last2=Saito|first2=Yusuke|last3=Park|first3=Chiyoung|last4=Fukushima|first4=Takanori|last5=Aida|first5=Takuzo|date=September 2015|title=Ultrahigh-throughput exfoliation of graphite into pristine 'single-layer' graphene using microwaves and molecularly engineered ionic liquids|url=https://www.nature.com/articles/nchem.2315|journal=Nature Chemistry|language=en|volume=7|issue=9|pages=730–736|doi=10.1038/nchem.2315|pmid=26291945|bibcode=2015NatCh...7..730M|issn=1755-4349}}</ref> and the fabrication of the first metal-free [[stretchable electronics]]<ref>{{Cite journal|last1=Sekitani|first1=Tsuyoshi|last2=Noguchi|first2=Yoshiaki|last3=Hata|first3=Kenji|last4=Fukushima|first4=Takanori|last5=Aida|first5=Takuzo|last6=Someya|first6=Takao|date=2008-09-12|title=A Rubberlike Stretchable Active Matrix Using Elastic Conductors|url=https://www.science.org/doi/10.1126/science.1160309|journal=Science|language=en|volume=321|issue=5895|pages=1468–1472|doi=10.1126/science.1160309|issn=0036-8075|pmid=18687922|bibcode=2008Sci...321.1468S|s2cid=15663382}}</ref><ref>{{Cite journal|last1=Sekitani|first1=Tsuyoshi|last2=Nakajima|first2=Hiroyoshi|last3=Maeda|first3=Hiroki|last4=Fukushima|first4=Takanori|last5=Aida|first5=Takuzo|last6=Hata|first6=Kenji|last7=Someya|first7=Takao|date=June 2009|title=Stretchable active-matrix organic light-emitting diode display using printable elastic conductors|url=https://www.nature.com/articles/nmat2459|journal=Nature Materials|language=en|volume=8|issue=6|pages=494–499|doi=10.1038/nmat2459|pmid=19430465|bibcode=2009NatMa...8..494S|issn=1476-4660}}</ref> and battery-driven dry actuators<ref>{{Cite journal|last1=Fukushima|first1=Takanori|last2=Asaka|first2=Kinji|last3=Kosaka|first3=Atsuko|last4=Aida|first4=Takuzo|date=2005|title=Fully Plastic Actuator through Layer-by-Layer Casting with Ionic-Liquid-Based Bucky Gel|url=https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.200462318|journal=Angewandte Chemie International Edition|volume=44|issue=16|pages=2410–2413|doi=10.1002/anie.200462318|pmid=15761901|issn=1521-3773}}</ref> for manufacturing mobile [[Refreshable braille display|Braille devices]]
Aida currently oversees a group of students and researchers with a diversity of research projects in his labs at the University of Tokyo<ref>{{Cite web|title=Aida Laboratory|url=http://park.itc.u-tokyo.ac.jp/Aida_Lab/aida_laboratory/index.html|last=|first=|date=|website=|url-status=live|archive-url=|archive-date=|access-date=2020-05-07}}</ref> and at the RIKEN Center for Emergent Matter Science (CEMS).<ref>{{Cite web|title=Emergent Soft Matter Function Research Group {{!}} Takuzo Aida {{!}} Center for Emergent Matter Science (CEMS) {{!}} RIKEN|url=https://cems.riken.jp/laboratory/esmfrg|last=|first=|date=|website=|language=en|url-status=live|archive-url=|archive-date=|access-date=2020-05-07}}</ref> Current research in the Aida lab focuses on the design and application of supramolecular materials, including supramolecular polymers and gels, liquid crystals, and biomolecular assemblies.

(2) "aqua materials", highly water-rich (organic content of 0.1–0.2% for ultralow dependency on [[Non-renewable resource|fossil resources]]) [[Gel#Hydrogels|hydrogels]] anomalously having significant mechanical robustness<ref>{{Cite journal|last1=Wang|first1=Qigang|last2=Mynar|first2=Justin L.|last3=Yoshida|first3=Masaru|last4=Lee|first4=Eunji|last5=Lee|first5=Myongsoo|last6=Okuro|first6=Kou|last7=Kinbara|first7=Kazushi|last8=Aida|first8=Takuzo|date=January 2010|title=High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder|url=https://www.nature.com/articles/nature08693|journal=Nature|language=en|volume=463|issue=7279|pages=339–343|doi=10.1038/nature08693|pmid=20090750|bibcode=2010Natur.463..339W|s2cid=4422721|issn=1476-4687}}</ref> or geometrical [[anisotropy]]<ref>{{Cite journal|last1=Liu|first1=Mingjie|last2=Ishida|first2=Yasuhiro|last3=Ebina|first3=Yasuo|last4=Sasaki|first4=Takayoshi|last5=Hikima|first5=Takaaki|last6=Takata|first6=Masaki|last7=Aida|first7=Takuzo|date=January 2015|title=An anisotropic hydrogel with electrostatic repulsion between cofacially aligned nanosheets|url=https://www.nature.com/articles/nature14060|journal=Nature|language=en|volume=517|issue=7532|pages=68–72|doi=10.1038/nature14060|pmid=25557713|bibcode=2015Natur.517...68L|s2cid=4470394|issn=1476-4687}}</ref><ref>{{Cite journal|last1=Kim|first1=Youn Soo|last2=Liu|first2=Mingjie|last3=Ishida|first3=Yasuhiro|last4=Ebina|first4=Yasuo|last5=Osada|first5=Minoru|last6=Sasaki|first6=Takayoshi|last7=Hikima|first7=Takaaki|last8=Takata|first8=Masaki|last9=Aida|first9=Takuzo|date=October 2015|title=Thermoresponsive actuation enabled by permittivity switching in an electrostatically anisotropic hydrogel|url=https://www.nature.com/articles/nmat4363|journal=Nature Materials|language=en|volume=14|issue=10|pages=1002–1007|doi=10.1038/nmat4363|pmid=26259107|bibcode=2015NatMa..14.1002K|issn=1476-4660}}</ref>

(3) [[Adenosine triphosphate|ATP]]-responsive nanotubular carriers composed of [[Chaperone (protein)|chaperonin proteins]], a biomolecular machine<ref>{{Cite journal|last1=Ishii|first1=Daisuke|last2=Kinbara|first2=Kazushi|last3=Ishida|first3=Yasuhiro|last4=Ishii|first4=Noriyuki|last5=Okochi|first5=Mina|last6=Yohda|first6=Masafumi|last7=Aida|first7=Takuzo|date=June 2003|title=Chaperonin-mediated stabilization and ATP-triggered release of semiconductor nanoparticles|journal=Nature|language=en|volume=423|issue=6940|pages=628–632|doi=10.1038/nature01663|pmid=12789335|bibcode=2003Natur.423..628I|s2cid=52862173|issn=1476-4687|doi-access=free}}</ref><ref>{{Cite journal|last1=Biswas|first1=Shuvendu|last2=Kinbara|first2=Kazushi|last3=Niwa|first3=Tatsuya|last4=Taguchi|first4=Hideki|last5=Ishii|first5=Noriyuki|last6=Watanabe|first6=Sumiyo|last7=Miyata|first7=Kanjiro|last8=Kataoka|first8=Kazunori|last9=Aida|first9=Takuzo|date=July 2013|title=Biomolecular robotics for chemomechanically driven guest delivery fuelled by intracellular ATP|url=https://www.nature.com/articles/nchem.1681|journal=Nature Chemistry|language=en|volume=5|issue=7|pages=613–620|doi=10.1038/nchem.1681|pmid=23787753|bibcode=2013NatCh...5..613B|issn=1755-4349}}</ref>

(4) non-crosslinked photoactuators<ref>{{Cite journal|last1=Hosono|first1=Nobuhiko|last2=Kajitani|first2=Takashi|last3=Fukushima|first3=Takanori|last4=Ito|first4=Kazuki|last5=Sasaki|first5=Sono|last6=Takata|first6=Masaki|last7=Aida|first7=Takuzo|date=2010-11-05|title=Large-Area Three-Dimensional Molecular Ordering of a Polymer Brush by One-Step Processing|url=https://www.science.org/doi/10.1126/science.1195302|journal=Science|language=en|volume=330|issue=6005|pages=808–811|doi=10.1126/science.1195302|pmid=21051635|bibcode=2010Sci...330..808H|s2cid=2649063|issn=0036-8075}}</ref>

(5) [[Ferroelectricity|ferroelectric]] [[Columnar phase|columnar]] [[liquid crystal]]s<ref>{{Cite journal|last1=Miyajima|first1=Daigo|last2=Araoka|first2=Fumito|last3=Takezoe|first3=Hideo|last4=Kim|first4=Jungeun|last5=Kato|first5=Kenichi|last6=Takata|first6=Masaki|last7=Aida|first7=Takuzo|date=2012-04-13|title=Ferroelectric Columnar Liquid Crystal Featuring Confined Polar Groups Within Core–Shell Architecture|url=https://www.science.org/doi/10.1126/science.1217954|journal=Science|language=en|volume=336|issue=6078|pages=209–213|doi=10.1126/science.1217954|issn=0036-8075|pmid=22499944|bibcode=2012Sci...336..209M|s2cid=11434473}}</ref>

(6) mechanically robust yet [[Self-healing material|self-healable]] [[Polymer#Glass transition|polymer glass]]<ref name=":11">{{Cite journal|last1=Yanagisawa|first1=Yu|last2=Nan|first2=Yiling|last3=Okuro|first3=Kou|last4=Aida|first4=Takuzo|date=2018-01-05|title=Mechanically robust, readily repairable polymers via tailored noncovalent cross-linking|journal=Science|language=en|volume=359|issue=6371|pages=72–76|doi=10.1126/science.aam7588|issn=0036-8075|pmid=29242235|bibcode=2018Sci...359...72Y|doi-access=free}}</ref>

(7) self-healable high-temperature [[Porosity|porous]] organic materials<ref>{{Cite journal|last1=Yamagishi|first1=Hiroshi|last2=Sato|first2=Hiroshi|last3=Hori|first3=Akihiro|last4=Sato|first4=Yohei|last5=Matsuda|first5=Ryotaro|last6=Kato|first6=Kenichi|last7=Aida|first7=Takuzo|date=2018-09-21|title=Self-assembly of lattices with high structural complexity from a geometrically simple molecule|journal=Science|language=en|volume=361|issue=6408|pages=1242–1246|doi=10.1126/science.aat6394|issn=0036-8075|pmid=30237354|bibcode=2018Sci...361.1242Y|doi-access=free}}</ref>

(8) optoelectrically rewritable core-shell columnar liquid crystals with an [[Molecular logic gate|AND logic gate]] operation<ref>{{Cite journal|last1=Yano|first1=Keiichi|last2=Itoh|first2=Yoshimitsu|last3=Araoka|first3=Fumito|last4=Watanabe|first4=Go|last5=Hikima|first5=Takaaki|last6=Aida|first6=Takuzo|date=2019-01-11|title=Nematic-to-columnar mesophase transition by in situ supramolecular polymerization|journal=Science|language=en|volume=363|issue=6423|pages=161–165|doi=10.1126/science.aan1019|issn=0036-8075|pmid=30630928|bibcode=2019Sci...363..161Y|doi-access=free}}</ref>

(9) an elastic metal–organic crystal with a densely [[Catenane|catenated]] backbone<ref>{{Cite journal |last1=Meng |first1=Wenjing |last2=Kondo |first2=Shun |last3=Ito |first3=Takuji |last4=Komatsu |first4=Kazuki |last5=Pirillo |first5=Jenny |last6=Hijikata |first6=Yuh |last7=Ikuhara |first7=Yuichi |last8=Aida |first8=Takuzo |last9=Sato |first9=Hiroshi |date=13 October 2021 |title=An elastic metal–organic crystal with a densely catenated backbone |url=https://www.nature.com/articles/s41586-021-03880-x |journal=Nature |language=en |volume=598 |issue=7880 |pages=298–303 |doi=10.1038/s41586-021-03880-x |pmid=34646002 |bibcode=2021Natur.598..298M |s2cid=238859665 |issn=1476-4687}}</ref>

(10) densely fluorinated nanochannels with ultrafast water permeation and salt rejection, formed by the stacking of [[macrocycle]]s<ref>{{Cite journal |last1=Itoh |first1=Yoshimitsu |last2=Chen |first2=Shuo |last3=Hirahara |first3=Ryota |last4=Konda |first4=Takeshi |last5=Aoki |first5=Tsubasa |last6=Ueda |first6=Takumi |last7=Shimada |first7=Ichio |last8=Cannon |first8=James J. |last9=Shao |first9=Cheng |last10=Shiomi |first10=Junichiro |last11=Tabata |first11=Kazuhito V. |last12=Noji |first12=Hiroyuki |last13=Sato |first13=Kohei |last14=Aida |first14=Takuzo |date=2022-05-13 |title=Ultrafast water permeation through nanochannels with a densely fluorous interior surface |journal=Science |language=en |volume=376 |issue=6594 |pages=738–743 |doi=10.1126/science.abd0966 |pmid=35549437 |s2cid=248750030 |issn=0036-8075|doi-access=free |bibcode=2022Sci...376..738I }}</ref>

His mechanically robust polymer glass which is self-healable at ambient temperatures, poly(ether thiourea),<ref name=":11" /> is notable as it dispelled a long-term preconception that mechanical robustness and self-healing abilities of polymers are mutually exclusive. Poly(ether thiourea) shows excellent mechanical robustness ([[Young's modulus]] ''E'' = 1.4 GPa) due to the dense, non-linear [[Hydrogen bond|hydrogen-bonding]] network formed among [[thiourea]] groups, even though the molecular weight is relatively small (''M''<sub>n</sub> = ~10,000 (g/mol)). Aida presented this concept at the [[World Economic Forum]] (Davos, 2019)<ref name=":10" /> as a promising example of sustainable materials.

In addition to his pioneering contribution to the field of supramolecular polymerization, he published seminal papers on photo-driven chiral [[Molecular tweezers|molecular pincers]] that can deform guest molecules using light,<ref>{{Cite journal|last1=Muraoka|first1=Takahiro|last2=Kinbara|first2=Kazushi|last3=Aida|first3=Takuzo|date=March 2006|title=Mechanical twisting of a guest by a photoresponsive host|url=https://www.nature.com/articles/nature04635|journal=Nature|language=en|volume=440|issue=7083|pages=512–515|doi=10.1038/nature04635|pmid=16554815|bibcode=2006Natur.440..512M|s2cid=4424929|issn=1476-4687}}</ref><ref>{{Cite journal|last1=Kinbara|first1=Kazushi|last2=Aida|first2=Takuzo|date=2005-04-01|title=Toward Intelligent Molecular Machines: Directed Motions of Biological and Artificial Molecules and Assemblies|url=https://doi.org/10.1021/cr030071r|journal=Chemical Reviews|volume=105|issue=4|pages=1377–1400|doi=10.1021/cr030071r|pmid=15826015|issn=0009-2665}}</ref> subnanoscale hydrophobic modulation of [[Salt bridge (protein and supramolecular)|salt bridges]] in aqueous media,<ref>{{Cite journal|last1=Chen|first1=Shuo|last2=Itoh|first2=Yoshimitsu|last3=Masuda|first3=Takuya|last4=Shimizu|first4=Seishi|last5=Zhao|first5=Jun|last6=Ma|first6=Jing|last7=Nakamura|first7=Shugo|last8=Okuro|first8=Kou|last9=Noguchi|first9=Hidenori|last10=Uosaki|first10=Kohei|last11=Aida|first11=Takuzo|date=2015-05-01|title=Subnanoscale hydrophobic modulation of salt bridges in aqueous media|url=https://www.science.org/doi/10.1126/science.aaa7532|journal=Science|language=en|volume=348|issue=6234|pages=555–559|doi=10.1126/science.aaa7532|issn=0036-8075|pmid=25931555|bibcode=2015Sci...348..555C|s2cid=10098226}}</ref> and the first [[carbon nitride]] [[thin film]].<ref>{{Cite journal|last1=Arazoe|first1=Hiroki|last2=Miyajima|first2=Daigo|last3=Akaike|first3=Kouki|last4=Araoka|first4=Fumito|last5=Sato|first5=Emiko|last6=Hikima|first6=Takaaki|last7=Kawamoto|first7=Masuki|last8=Aida|first8=Takuzo|date=October 2016|title=An autonomous actuator driven by fluctuations in ambient humidity|url=https://www.nature.com/articles/nmat4693|journal=Nature Materials|language=en|volume=15|issue=10|pages=1084–1089|doi=10.1038/nmat4693|pmid=27429210|bibcode=2016NatMa..15.1084A|issn=1476-4660}}</ref>

Aida currently oversees a group of students and researchers with a diversity of research projects in his labs at the University of Tokyo<ref>{{Cite web|title=Aida Laboratory|url=http://park.itc.u-tokyo.ac.jp/Aida_Lab/aida_laboratory/index.html|last=|first=|date=|website=|access-date=2020-05-07}}</ref> and at the RIKEN Center for Emergent Matter Science (CEMS).<ref>{{Cite web|title=Emergent Soft Matter Function Research Group {{!}} Takuzo Aida {{!}} Center for Emergent Matter Science (CEMS) {{!}} RIKEN|url=https://cems.riken.jp/laboratory/esmfrg|last=|first=|date=|website=|language=en|access-date=2020-05-07}}</ref> Current research in the Aida Lab focuses on the design and application of supramolecular materials, including supramolecular polymers and gels, liquid crystals, and biomolecular assemblies.


==Achievements and awards==
==Achievements and awards==
''Scientific output and professional service''
''Scientific output and professional service''


Aida has published over 380 peer-reviewed [[Academic publishing|research papers]], review articles, and books, and more than 70 of his former group members now hold tenured academic professorships worldwide.<ref>{{Cite web|title=PhD Alumni|url=http://park.itc.u-tokyo.ac.jp/aida_laboratory/phd-alumni.html|website=park.itc.u-tokyo.ac.jp|access-date=2020-05-07}}</ref>
Aida has published over 400 peer-reviewed [[Academic publishing|research papers]], review articles, and books, and more than 90 of his former group members now hold tenured academic positions worldwide.<ref>{{Cite web|title=PhD Alumni|url=http://park.itc.u-tokyo.ac.jp/aida_laboratory/phd-alumni.html|website=park.itc.u-tokyo.ac.jp|access-date=2020-05-07}}</ref>


Aida has served on the Board of Reviewing Editors for [[Science (journal)|''Science Magazine'']] (since 2009),<ref>{{Cite web|title=Editors and Advisory Boards|url=https://www.sciencemag.org/about/editors-and-editorial-boards|date=2018-01-31|website=Science {{!}} AAAS|language=en|access-date=2020-05-07}}</ref> on the Advisory Board for the ''[[Journal of the American Chemical Society]]'' (since 2014), and as Associate Editor for the ''[[Journal of Materials Chemistry]]'' (2004–2006). He has further served on the international advisory boards of over 15 journals, including executive advisory board for Giant.<ref>{{Cite web|title=Giant - Editorial Board|url=https://www.journals.elsevier.com/giant/editorial-board|last=|first=|date=|website=Elsevier|url-status=live|archive-url=|archive-date=|access-date=2020-05-08}}</ref>
Aida has served on the Board of Reviewing Editors for [[Science (journal)|''Science Magazine'']] (since 2009),<ref>{{Cite web|title=Editors and Advisory Boards|url=https://www.sciencemag.org/about/editors-and-editorial-boards|date=2018-01-31|website=Science {{!}} AAAS|language=en|access-date=2020-05-07}}</ref> on the Advisory Board for the ''[[Journal of the American Chemical Society]]'' (2014–2021), and as Associate Editor for the ''[[Journal of Materials Chemistry]]'' (2004–2006). He has further served on the international advisory boards of over 15 journals, including executive advisory board for Giant.<ref>{{Cite web|title=Giant - Editorial Board|url=https://www.journals.elsevier.com/giant/editorial-board|last=|first=|date=|website=Elsevier|access-date=2020-05-08}}</ref>


He has served as a technical advisor for [[Kao Corporation|KAO Co. Ltd]]. (since 2017) and for [[Mitsui Chemicals|Mitsui Chemical]] (2010–2015). He serves as an International Academic Advancement Council Member for the South China Advanced Institute for Soft Matter Science and Technology (AISMST) (since 2017). Aida was a member of the International Advisory Committee of the Institute of Molecular Functional Materials of the [[University of Hong Kong]] (2010–2018). He also served on the International Advisory Board of the International Center for Materials Nanoarchitectonics at the [[National Institute for Materials Science]], Japan (2007–2017).
He has served as a technical advisor for [[Kao Corporation|KAO Co. Ltd]]. (since 2017) and for [[Mitsui Chemicals|Mitsui Chemical]] (2010–2015). He serves as a Member of the Scientific Advisory Board of the Max Planck Institute for Polymer Research (since 2020) and as an International Academic Advancement Council Member for the South China Advanced Institute for Soft Matter Science and Technology (AISMST) (since 2017). Aida was a member of the International Advisory Committee of the Institute of Molecular Functional Materials of the [[University of Hong Kong]] (2010–2018). He also served on the International Advisory Board of the International Center for Materials Nanoarchitectonics at the [[National Institute for Materials Science]], Japan (2007–2017).


''Academic invitations and memberships''
''Academic invitations and memberships''


Aida has been invited to give lectures at many universities and conferences. He has been, amongst others, Rohm & Haas Lecturer (Berkeley, 2007), Annual Bayer Lecture series Lecturer (Pittsburgh, 2009; Texas A&M, 2012), Stephanie Kwolek Lecturer in Materials Chemistry (Carnegie Mellon University, 2009), Merck-Pfister Lecturer in Organic Chemistry (MIT, 2010), Novartis Seminar in Organic Chemistry lecturer, (University of Illinois, 2010), Toray Advanced Materials Symposium lecturer (Japan, 2011), Torkil Holm Symposium Lecturer (Denmark, 2012), Danish Chemical Society Opening Plenary Lecturer (Denmark, 2012), International Institute for Nanotechnology Symposium lecturer (Northwestern University, 2012), Van’t Hoff Award Lecturer (The Netherlands, 2013), Schmidt Lecturer (Weizmann Institute of Science, Israel, 2016), Melville Lecturer (Cambridge, UK, 2017), Xuetang Lecturer (Tsinghua University, China, 2017), Peter Timms Lecturer (Bristol, UK, 2018), and Master Distinguished Lecturer (Shanghai Jiao Tong University, China, 2019). Aida has given a number of lectures at [[Gordon Research Conferences]] (Self-Assembly and Supramolecular Chemistry, 2013,<ref>{{Cite web|title=2013 Self-Assembly and Supramolecular Chemistry Conference GRC|url=https://www.grc.org/self-assembly-and-supramolecular-chemistry-conference/2013/|website=www.grc.org|access-date=2020-05-07}}</ref> 2019;<ref>{{Cite web|title=2019 Self-Assembly and Supramolecular Chemistry Conference GRC|url=https://www.grc.org/self-assembly-and-supramolecular-chemistry-conference/2019/|website=www.grc.org|access-date=2020-05-07}}</ref> Artificial Molecular Switches & Motors, 2015,<ref>{{Cite web|title=2015 Artificial Molecular Switches and Motors Conference GRC|url=https://www.grc.org/artificial-molecular-switches-and-motors-conference/2015/|website=www.grc.org|access-date=2020-05-07}}</ref> 2017;<ref>{{Cite web|title=2017 Artificial Molecular Switches and Motors Conference GRC|url=https://www.grc.org/artificial-molecular-switches-and-motors-conference/2017/|website=www.grc.org|access-date=2020-05-07}}</ref> Bioinspired Materials, 2018).<ref>{{Cite web|title=2018 Bioinspired Materials Conference GRC|url=https://www.grc.org/bioinspired-materials-conference/2018/|website=www.grc.org|access-date=2020-05-07}}</ref> He served as Chair of the Gordon Research Conference on Self-Assembly and Supramolecular Chemistry in 2017.<ref>{{Cite web|title=2017 Self-Assembly and Supramolecular Chemistry Conference GRC|url=https://www.grc.org/self-assembly-and-supramolecular-chemistry-conference/2017/|website=www.grc.org|access-date=2020-05-07}}</ref> He gave lectures at the Molecular Machines Nobel Prize Conference (Netherlands, 2017) and at the [[Wolf Prize in Chemistry|Wolf Prize]] Symposium (Israel, 2018).
Aida has been invited to give lectures at many universities and conferences. He has been, amongst others, Rohm & Haas Lecturer (Berkeley, 2007), Annual Bayer Lecture series Lecturer (Pittsburgh, 2009; Texas A&M, 2012), Stephanie Kwolek Lecturer in Materials Chemistry (Carnegie Mellon University, 2009), Merck-Pfister Lecturer in Organic Chemistry (MIT, 2010), Novartis Seminar in Organic Chemistry lecturer, (University of Illinois, 2010), Toray Advanced Materials Symposium lecturer (Japan, 2011), Torkil Holm Symposium Lecturer (Denmark, 2012), Danish Chemical Society Opening Plenary Lecturer (Denmark, 2012), International Institute for Nanotechnology Symposium lecturer (Northwestern University, 2012), Van’t Hoff Award Lecturer (The Netherlands, 2013), Schmidt Lecturer (Weizmann Institute of Science, Israel, 2016), Melville Lecturer (Cambridge, UK, 2017), Xuetang Lecturer (Tsinghua University, China, 2017), Peter Timms Lecturer (Bristol, UK, 2018), Master Distinguished Lecturer (Shanghai Jiao Tong University, China, 2019), and Dodge Lecturer (Yale University, 2021). Aida has given a number of lectures at [[Gordon Research Conferences]] (Self-Assembly and Supramolecular Chemistry, 2013,<ref>{{Cite web|title=2013 Self-Assembly and Supramolecular Chemistry Conference GRC|url=https://www.grc.org/self-assembly-and-supramolecular-chemistry-conference/2013/|website=www.grc.org|access-date=2020-05-07}}</ref> 2019;<ref>{{Cite web|title=2019 Self-Assembly and Supramolecular Chemistry Conference GRC|url=https://www.grc.org/self-assembly-and-supramolecular-chemistry-conference/2019/|website=www.grc.org|access-date=2020-05-07}}</ref> Artificial Molecular Switches & Motors, 2015,<ref>{{Cite web|title=2015 Artificial Molecular Switches and Motors Conference GRC|url=https://www.grc.org/artificial-molecular-switches-and-motors-conference/2015/|website=www.grc.org|access-date=2020-05-07}}</ref> 2017;<ref>{{Cite web|title=2017 Artificial Molecular Switches and Motors Conference GRC|url=https://www.grc.org/artificial-molecular-switches-and-motors-conference/2017/|website=www.grc.org|access-date=2020-05-07}}</ref> Bioinspired Materials, 2018).<ref>{{Cite web|title=2018 Bioinspired Materials Conference GRC|url=https://www.grc.org/bioinspired-materials-conference/2018/|website=www.grc.org|access-date=2020-05-07}}</ref> He served as Chair of the Gordon Research Conference on Self-Assembly and Supramolecular Chemistry in 2017.<ref>{{Cite web|title=2017 Self-Assembly and Supramolecular Chemistry Conference GRC|url=https://www.grc.org/self-assembly-and-supramolecular-chemistry-conference/2017/|website=www.grc.org|access-date=2020-05-07}}</ref> He gave lectures at the Molecular Machines Nobel Prize Conference (Netherlands, 2017) and at the [[Wolf Prize in Chemistry|Wolf Prize]] Symposium (Israel, 2018), as well as the opening keynote lecture at the ACS Spring 2021 Meeting.<ref>{{Cite web |title=Macromolecular Chemistry: The Second Century |url=https://www.acs.org/content/acs/en/meetings/acs-meetings/past-meetings/opening-session/macromolecular-chemistry-the-second-century.html |access-date=2022-10-04 |website=American Chemical Society |language=en}}</ref>


He has been an Honorary Fellow of the [[Indian Chemical Society]] (since 2013). Aida received a Senior Visiting Scholarship from [[State Key Laboratories|State Key Laboratory]], [[Fudan University]] (since 2018). He was elected a foreign member of the [[Royal Netherlands Academy of Arts and Sciences]] in 2020.<ref>{{cite web|author= |url=https://knaw.nl/en/members/foreign-members/16614 |archive-url=https://web.archive.org/web/20200502091240/https://knaw.nl/en/members/foreign-members/16614 |title=Takuzo Aida |publisher=Royal Netherlands Academy of Arts and Sciences |date= |archive-date=2 May 2020}}</ref>
Aida has been an Honorary Fellow of the [[Indian Chemical Society]] (since 2013). He received a Senior Visiting Scholarship from [[State Key Laboratories|State Key Laboratory]], [[Fudan University]] (since 2018). He was elected a foreign member of the [[Royal Netherlands Academy of Arts and Sciences]] in 2020.<ref>{{cite web|author= |url=https://knaw.nl/en/members/foreign-members/16614 |archive-url=https://web.archive.org/web/20200502091240/https://knaw.nl/en/members/foreign-members/16614 |title=Takuzo Aida |publisher=Royal Netherlands Academy of Arts and Sciences |date= |archive-date=2 May 2020}}</ref>


Aida was elected into the [[National Academy of Engineering]] in 2021 for contributions to the engineering of smart and adaptive molecular materials using physical perturbation of multivalent interactions.<ref>{{Cite web |title=Dr. Takuzo Aida |url=https://nae.edu/250164/Dr-Takuzo-Aida |access-date=2023-10-04 |website=NAE Website |language=en}}</ref> He was elected as an International Honorary Member of the [[American Academy of Arts and Sciences]] in 2023 for pioneering contributions to the initiation, fundamental progress, and conceptual expansion of supramolecular polymerization and for his leadership and advocacy in addressing critical environmental issues caused by plastic waste and microplastics in the oceans, soil, and food supply, through the development of dynamic, responsive, healable, reorganizable, and adaptive supramolecular polymers and related soft materials.<ref>{{Cite web |date=2023-10-03 |title=Takuzo Aida |url=https://www.amacad.org/person/takuzo-aida |access-date=2023-10-04 |website=American Academy of Arts & Sciences |language=en}}</ref>
Aida was elected into the [[National Academy of Engineering]] in 2021 for contributions to the engineering of smart and adaptive molecular materials using physical perturbation of multivalent interactions.


''Awards''
''Awards''


Aida has received numerous prominent awards, including the Chemical Society of Japan Award for Young Chemists (1988),<ref>{{Cite web|title=日本化学会 各賞受賞者一覧(第3階層資料)|url=http://www.chemistry.or.jp/compendium/jyusho.html#jyusyo-8|website=www.chemistry.or.jp|access-date=2020-05-07}}</ref> the Society of Polymer Science Japan Award (1992),<ref>{{Cite web|title=学会賞|高分子学会|url=https://main.spsj.or.jp/c15/gaku/gakuran-e.php|website=main.spsj.or.jp|access-date=2020-05-07}}</ref> SPACC Award (1998), Wiley Polymer Chemistry Award (1999), IBM Science Award (1999),<ref>{{Cite web|title=日本IBM科学賞第13回(1999年)受賞者|url=http://www-6.ibm.com/jp/company/society/science/p13th/aida.html|last=|first=|date=|website=IBM|language=ja|url-status=dead|archive-url=https://web.archive.org/web/20010422042115/http://www-6.ibm.com/jp/company/society/science/p13th/aida.html|archive-date=2001-04-22|access-date=2020-05-07}}</ref> The Nagoya Medal of Organic Chemistry: Silver Medal (2000),<ref>{{Cite web|title=The Nagoya Medal of Organic Chemistry|url=http://www.itbm.nagoya-u.ac.jp/ja/news/NagoyaMedal.pdf|last=|first=|date=2014|website=Nagoya University|url-status=live|archive-url=|archive-date=|access-date=2020-05-08}}</ref> Tokyo Techno Forum Award: Gold Medal (2001),<ref>{{Cite web|title=ゴールド・メダル賞受賞者一覧|url=https://info.yomiuri.co.jp/group/yri/techno-forum/medalist_list.html|last=|first=|date=|website=Yomiuri|language=ja|url-status=live|archive-url=|archive-date=|access-date=2020-05-07}}</ref> Inoue Prize for Science (2005), Molecular Chirality Award (2008),<ref>{{Cite web|title=Molecular Chirality|url=http://www.camelianet.com/chiral/|last=|first=|date=|website=www.camelianet.com|url-status=live|archive-url=|archive-date=|access-date=2020-05-07}}</ref> Coordination Chemistry Award (2008),<ref>{{Cite web|title=「貢献賞」受賞者一覧 {{!}} 錯体化学会 Japan Society of Coordination Chemistry|url=http://www.sakutai.jp/awardees/award-9|website=www.sakutai.jp|language=ja|access-date=2020-05-07}}</ref> The Chemical Society of Japan Award (2008),<ref>{{Cite web|title=CSJ Awards|url=http://www.chemistry.or.jp/en/awards/2008/|last=|first=|date=|website=The Chemical Society of Japan|language=en|url-status=live|archive-url=|archive-date=|access-date=2020-05-07}}</ref> The American Chemical Society Award in Polymer Chemistry (2009),<ref>{{Cite web|title=ACS Award in Polymer Chemistry|url=https://www.acs.org/content/acs/en/funding-and-awards/awards/national/bytopic/acs-award-in-polymer-chemistry.html|website=American Chemical Society|language=en|access-date=2020-05-07}}</ref> Medal with Purple Ribbon (2010), [[Humboldt Prize|Alexander von Humboldt Research Award]] (2011), Fujihara Award (2011),<ref>{{Cite web|title=無題ドキュメント|url=https://www.fujizai.or.jp/e_prize_one51_.htm|website=www.fujizai.or.jp|access-date=2020-05-07}}</ref> American Chemical Society Arthur K. Doolittle Award (PMSE, 2012),<ref>{{Cite web|title=Dolittle Award|url=https://pmse.sites.acs.org/dolittleaward.htm|website=Polymeric Materials: Science and Engineering Division: Archival Website (through 2017)|access-date=2020-05-07}}</ref> van't Hoff Award Lecture (2013),<ref>{{Cite web|title=Van 't Hoff Award Lectures — KNAW|url=https://www.knaw.nl/en/awards/funds/van-t-hoff-fund/van-t-hoff-award-lectures|website=www.knaw.nl|access-date=2020-05-07}}</ref> Leo Esaki Prize (2015),<ref>{{Cite web|title=Past Leo Esaki Prize winners|url=https://www.i-step.org/laureates_en.html|website=一般財団法人 茨城県科学技術振興財団|筑波研究学園都市:茨城県つくば市|language=ja|access-date=2020-05-07}}</ref> the [[Chirality Medal]] (2017),<ref>{{Cite web|title=Chirality 2019 - Sciencesconf.org|url=https://chirality2019.sciencesconf.org/resource/page/id/27|website=chirality2019.sciencesconf.org|access-date=2020-05-07}}</ref> [[Imperial Prize of the Japan Academy|Japan Academy Prize]] (2018),<ref>{{Cite web|title=The Imperial Prize,Japan Academy Prize,Duke of Edinburgh Prize Recipients {{!}} The Japan Academy|url=https://www.japan-acad.go.jp/en/activities/jyusho/101to110.html#anker108|website=www.japan-acad.go.jp|access-date=2020-05-07}}</ref> Global Outstanding Student and Mentor Award in Polymer Science and Engineering (2018),<ref>{{Cite web|title=Global Outstanding Student and Mentor Award in Polymer Science and Engineering – PMSE|url=https://pmsedivision.org/global-outstanding-student-award/|language=en-US|access-date=2020-05-07}}</ref> Ichimura Prize in Science for Excellent Achievement (2020).<ref>{{Cite web|title=過去の受賞一覧 / 市村賞贈呈 {{!}} 公益財団法人 市村清新技術財団|url=http://www.sgkz.or.jp/prize/science/list/|website=www.sgkz.or.jp|access-date=2020-05-07}}</ref>
Aida has received numerous prominent awards, including the Chemical Society of Japan Award for Young Chemists (1988),<ref>{{Cite web|title=日本化学会 各賞受賞者一覧(第3階層資料)|url=http://www.chemistry.or.jp/compendium/jyusho.html#jyusyo-8|website=www.chemistry.or.jp|access-date=2020-05-07}}</ref> the Society of Polymer Science Japan Award (1992),<ref>{{Cite web|title=学会賞|高分子学会|url=https://main.spsj.or.jp/c15/gaku/gakuran-e.php|website=main.spsj.or.jp|access-date=2020-05-07}}</ref> SPACC Award (1998), Wiley Polymer Chemistry Award (1999), IBM Science Award (1999),<ref>{{Cite web|title=日本IBM科学賞第13回(1999年)受賞者|url=http://www-6.ibm.com/jp/company/society/science/p13th/aida.html|last=|first=|date=|website=IBM|language=ja|url-status=dead|archive-url=https://web.archive.org/web/20010422042115/http://www-6.ibm.com/jp/company/society/science/p13th/aida.html|archive-date=2001-04-22|access-date=2020-05-07}}</ref> The Nagoya Medal of Organic Chemistry: Silver Medal (2000),<ref>{{Cite web|title=The Nagoya Medal of Organic Chemistry|url=http://www.itbm.nagoya-u.ac.jp/ja/news/NagoyaMedal.pdf|last=|first=|date=2014|website=Nagoya University|access-date=2020-05-08}}</ref> Tokyo Techno Forum Award: Gold Medal (2001),<ref>{{Cite web|title=ゴールド・メダル賞受賞者一覧|url=https://info.yomiuri.co.jp/group/yri/techno-forum/medalist_list.html|last=|first=|date=|website=Yomiuri|language=ja|access-date=2020-05-07}}</ref> Inoue Prize for Science (2005), Molecular Chirality Award (2008),<ref>{{Cite web|title=Molecular Chirality|url=http://www.camelianet.com/chiral/|last=|first=|date=|website=www.camelianet.com|access-date=2020-05-07}}</ref> Coordination Chemistry Award (2008),<ref>{{Cite web|title=「貢献賞」受賞者一覧 {{!}} 錯体化学会 Japan Society of Coordination Chemistry|url=http://www.sakutai.jp/awardees/award-9|website=www.sakutai.jp|language=ja|access-date=2020-05-07}}</ref> The Chemical Society of Japan Award (2008),<ref>{{Cite web|title=CSJ Awards|url=http://www.chemistry.or.jp/en/awards/2008/|last=|first=|date=|website=The Chemical Society of Japan|language=en|access-date=2020-05-07}}</ref> The American Chemical Society Award in Polymer Chemistry (2009),<ref>{{Cite web|title=ACS Award in Polymer Chemistry|url=https://www.acs.org/content/acs/en/funding-and-awards/awards/national/bytopic/acs-award-in-polymer-chemistry.html|website=American Chemical Society|language=en|access-date=2020-05-07}}</ref> Medal with Purple Ribbon (2010), [[Humboldt Prize|Alexander von Humboldt Research Award]] (2011), Fujihara Award (2011),<ref>{{Cite web|title=無題ドキュメント|url=https://www.fujizai.or.jp/e_prize_one51_.htm|website=www.fujizai.or.jp|access-date=2020-05-07}}</ref> American Chemical Society Arthur K. Doolittle Award (PMSE, 2012),<ref>{{Cite web|title=Dolittle Award|url=https://pmse.sites.acs.org/dolittleaward.htm|website=Polymeric Materials: Science and Engineering Division: Archival Website (through 2017)|access-date=2020-05-07}}</ref> van't Hoff Award Lecture (2013),<ref>{{Cite web|title=Van 't Hoff Award Lectures — KNAW|url=https://www.knaw.nl/en/awards/funds/van-t-hoff-fund/van-t-hoff-award-lectures|website=www.knaw.nl|access-date=2020-05-07}}</ref> Leo Esaki Prize (2015),<ref>{{Cite web|title=Past Leo Esaki Prize winners|url=https://www.i-step.org/laureates_en.html|website=一般財団法人 茨城県科学技術振興財団|筑波研究学園都市:茨城県つくば市|language=ja|access-date=2020-05-07}}</ref> the [[Chirality Medal]] (2017),<ref>{{Cite web|title=Chirality 2019 - Sciencesconf.org|url=https://chirality2019.sciencesconf.org/resource/page/id/27|website=chirality2019.sciencesconf.org|access-date=2020-05-07}}</ref> [[Imperial Prize of the Japan Academy|Japan Academy Prize]] (2018),<ref>{{Cite web|title=The Imperial Prize,Japan Academy Prize,Duke of Edinburgh Prize Recipients {{!}} The Japan Academy|url=https://www.japan-acad.go.jp/en/activities/jyusho/101to110.html#anker108|website=www.japan-acad.go.jp|access-date=2020-05-07}}</ref> Global Outstanding Student and Mentor Award in Polymer Science and Engineering (2018),<ref>{{Cite web|title=Global Outstanding Student and Mentor Award in Polymer Science and Engineering – PMSE|url=https://pmsedivision.org/global-outstanding-student-award/|language=en-US|access-date=2020-05-07}}</ref> Ichimura Prize in Science for Excellent Achievement (2020),<ref>{{Cite web|title=過去の受賞一覧 / 市村賞贈呈 {{!}} 公益財団法人 市村清新技術財団|url=http://www.sgkz.or.jp/prize/science/list/|website=www.sgkz.or.jp|access-date=2020-05-07}}</ref> Ryoji Noyori ACES Award (2021),<ref>{{Cite web |title=相田卓三副センター長がRyoji Noyori ACES Awardを受賞 |url=https://www.riken.jp/pr/news/2021/20211019_2/index.html |access-date=2022-10-04 |website=www.riken.jp |language=ja}}</ref> and the Netherlands Award for Supramolecular Chemistry (2021).<ref>{{Cite web |title=The Netherlands Award for Supramolecular Chemistry – FMS Research Center |url=https://fmsresearch.nl/netherlands-award-for-supramolecular-chemistry/ |access-date=2022-10-04 |website=fmsresearch.nl}}</ref>


==Personal life==
==Personal life==
Line 80: Line 105:
[[Category:Japanese scientists]]
[[Category:Japanese scientists]]
[[Category:Members of the Royal Netherlands Academy of Arts and Sciences]]
[[Category:Members of the Royal Netherlands Academy of Arts and Sciences]]
[[Category:University of Tokyo faculty]]
[[Category:Academic staff of the University of Tokyo]]
[[Category:University of Tokyo alumni]]
[[Category:University of Tokyo alumni]]
[[Category:Living people]]
[[Category:Living people]]

Latest revision as of 18:36, 6 August 2024

Takuzo Aida
Born
Takuzo Aida (相田 卓三, Aida Takuzō)

(1956-05-03) 3 May 1956 (age 68)
NationalityJapanese
Alma materYokohama National University, The University of Tokyo
Known forSupramolecular polymers, Molecular self-assembly, Dendrimers, Polymer chemistry, Adaptive materials, Bucky gels, Aquamaterials
Scientific career
FieldsChemistry, Supramolecular chemistry, Materials chemistry, Polymer chemistry
InstitutionsThe University of Tokyo
Doctoral advisorProfessor Shohei Inoue
Websitepark.itc.u-tokyo.ac.jp/Aida_Lab/aida_laboratory/index.html

Takuzo Aida (相田 卓三, Aida Takuzō, born May 3, 1956 in Japan) is a polymer chemist known for his work in the fields of supramolecular chemistry, materials chemistry and polymer chemistry. Aida, who is the Deputy Director for the RIKEN Center for Emergent Matter Science (CEMS) and a Distinguished University Professor at the University of Tokyo, has made pioneering contributions to the initiation, fundamental progress, and conceptual expansion of supramolecular polymerization. Aida has also been a leader and advocate for addressing critical environmental issues caused by plastic waste and microplastics in the oceans, soil, and food supply, through the development of dynamic, responsive, healable, reorganizable, and adaptive supramolecular polymers and related soft materials.[1][2][3]

Education

[edit]

Aida received his Bachelor of Engineering in Colloidal Science at the Yokohama National University in 1979, before moving to the University of Tokyo for his Master of Engineering (1981) and Doctor of Engineering (1984) degrees in Polymer Chemistry. He was awarded the Inoue Research Award for Young Scientists for his doctoral work, with the thesis title of "Controlled Polymerization by Metalloporphyrins" under the supervision of Professor Shohei Inoue.[4]

Career

[edit]

After completing his doctoral studies, Aida was immediately appointed as an Assistant Professor in the Department of Synthetic Chemistry at the University of Tokyo. At the beginning of his research career, he worked on the development of precision macromolecular synthesis using metalloporphyrin complexes. In 1986, he was a visiting scholar at the IBM Almaden Research Center. Aida was promoted to the position of Lecturer in 1989 and Associate Professor in 1991, before being installed as a full professor in the Department of Chemistry and Biotechnology at the University of Tokyo in 1996. In 2022 he was appointed as a Distinguished University Professor at the University of Tokyo.

From 1996 to 1999, Aida served as a researcher in the Japan Science and Technology Agency (JST) PRESTO Fields and Reactions Project. Aida was appointed as a visiting Visiting Professor at the Institute for Molecular Science, Okazaki, from 1999 to 2001. He served as the director for the JST ERATO AIDA Nanospace Project from 2000 to 2005[5] and the JST ERATO–SORST Electronic Nanospace Project from 2005 to 2010. Aida served as the director of the RIKEN Advanced Science Institute from 2008 to 2012. Since 2013 he has been a Deputy Director of the RIKEN Center for Emergent Matter Science (CEMS).[6]

Contributions to research

[edit]

Aida’s research focuses on supramolecular systems with unique properties and functions. Aida is recognized for his pioneering contributions to the emergence and progress of supramolecular polymerization. He reported the first example of this non-covalent polymerization by designing an amphiphilic porphyrin that spontaneously forms a 1D cofacial assembly in water as a prototype supramolecular polymer.[7] Then, he non-covalently achieved (1) nanotubular polymerization,[8] (2) living chain-growth (ring-opening) polymerization,[9] (3) block copolymerization,[10][11][12] (4) stereoselective polymerization,[13][14] and (5) thermally bisignate polymerization.[15] He has also made fundamental contributions in expanding the scope of supramolecular polymerization to include chain propagations in two and three dimensions. His works have challenged preconceptions in the field of supramolecular chemistry, connected gaps between conventional and supramolecular polymerizations and realized properties unachievable through conventional polymerization.[16] In addition to fundamental contributions to the understanding of supramolecular systems, he has promoted their widespread use by developing materials for a wide range of applications. Aida has published several review articles on the historical background and progress of supramolecular polymerization: (1) Aida, Meijer, and Stupp,[17] (2) Aida and Meijer,[1] and (3) Hashim, Bergueiro, Meijer, and Aida.[2]

In 1988, while working on the development of polymerization catalysts as a non-independent assistant professor, Aida published a prototype of supramolecular polymerization, based on his finding of a catalytic version of living polymerization, named "immortal polymerization". He utilized immortal polymerization to synthesize oligo(ethylene glycol)-appended amphiphilic porphyrin and confirmed its 1D assembly in aqueous media.[7] In addition to this pioneering contribution to supramolecular polymerization, he made an early seminal discovery of extrusion polymerization within catalyst-immobilized mesoporous silica, affording extended-chain crystalline polyethylene fibers.[18] He was also the first to discover morphology-dependent energy funneling in photoexcited dendrimers.[19][20]

After being promoted to full professor, Aida revisited his work on supramolecular polymerization and demonstrated the first homochiral (chiral self-sorting) supramolecular polymerization using a cyclic peptide motif as the chiral monomer.[21] He also synthesized an amphiphilic version of hexabenzocoronene, a "molecular graphene”, and succeeded in its supramolecular nanotubular polymerization, obtaining the first electroconductive supramolecular nanotube.[8] He then utilized this nanographene platform to obtain radial[10][11] and linear[12] supramolecular block copolymers. The resulting block copolymers were designed to include donor/acceptor heterojunctions and displayed photophysical properties. This series of pioneering works challenged the preconception that supramolecular polymers are only 1D dynamic aggregates with poor structural integrity. Aida also found that the supramolecular polymerization of chiral amphiphilic hexabenzocoronenes proceeds in a one-handed helical manner via the majority rule.[13] This work was further extended to the development of a redox-active oligo(o-phenylene) helix[22] and, together with Professor Minghua Liu of the Chinese Academy of Sciences, mirror-symmetry broken helical fibers consisting of an achiral component that serve as a chiral scaffold for transition metal-catalyzed asymmetric reactions.[14] In 2014, Aida obtained a metal-organic nanotube by the supramolecular polymerization of a redox-active ferrocene-cored double-decker tetrapyridyl monomer and demonstrated that this nanotube, upon oxidation, can be cut into gigantic nanorings, which can then be pasted on a negatively charged mica substrate or assembled coaxially to recover the original nanotube upon reduction.[23]

In 2015, Aida realized the first example of chain-growth supramolecular polymerization,[9] where a bowl-shaped, corannulene-based monomer, rendered non-polymerizable by an intramolecular hydrogen-bonding network, is forced to polymerize by the action of a corresponding initiator that can reorganize the intramolecular hydrogen-bonding network into an intermolecular one. The polymer molecular weight is uniform and tunable by changing the monomer-to-initiator mole ratio. Furthermore, sequential polymerization of two monomers with this system leads to well-defined block copolymers. The chain growth is also perfectly homochiral, even when a racemic chiral monomer is polymerized. When one enantiomer of a properly designed chiral initiator is used for the polymerization, only the monomer with the preferred enantiomeric form polymerizes, resulting in 100% enantiomeric separation of the racemic monomer. These achievements challenged the notion that supramolecular polymerization always follows a step-growth mechanism and revealed the potential of supramolecular polymerization as a tool for precision macromolecular synthesis.

In 2017, Aida reported a conceptually new, "thermally bisignate", supramolecular polymerization,[15] where supramolecular polymers are designed in such a way that they form upon heating as well as cooling but disappear at temperatures in between. This work challenged the preconception that supramolecular polymers are more stable at lower temperatures, while they readily dissociate upon heating, unveiling new insights into the dynamic nature of supramolecular polymers. One of the most energy-demanding and costly processes in macromolecular engineering is solution processing, as polymer solutions are viscous due to chain entanglement. Thermally bisignate supramolecular polymerization has the potential to solve this universal issue in macromolecular engineering.

In 2021, Aida reported the solvent-free autocatalytic supramolecular polymerization of phthalocyanines,[24] where the cross section of the end of the propagating chain serves as a template to catalyze the conversion of phthalonitriles into phthalocyanines in an exceptionally high yield of over 80%. Solvent-free chemical synthesis and autocatalysis are important green technology concepts for sustainable materials.

Aida has made significant contributions to filling the gap between supramolecular and conventional (covalent) polymerizations and inspired the field through the development of a variety of innovative materials by expansion of the basic concept of supramolecular polymerization. Representative examples include

(1) "bucky gels", carbon nanotubes physically crosslinked by ionic liquids[25] and the use of this technology for graphite exfoliation to graphene,[26] and the fabrication of the first metal-free stretchable electronics[27][28] and battery-driven dry actuators[29] for manufacturing mobile Braille devices

(2) "aqua materials", highly water-rich (organic content of 0.1–0.2% for ultralow dependency on fossil resources) hydrogels anomalously having significant mechanical robustness[30] or geometrical anisotropy[31][32]

(3) ATP-responsive nanotubular carriers composed of chaperonin proteins, a biomolecular machine[33][34]

(4) non-crosslinked photoactuators[35]

(5) ferroelectric columnar liquid crystals[36]

(6) mechanically robust yet self-healable polymer glass[37]

(7) self-healable high-temperature porous organic materials[38]

(8) optoelectrically rewritable core-shell columnar liquid crystals with an AND logic gate operation[39]

(9) an elastic metal–organic crystal with a densely catenated backbone[40]

(10) densely fluorinated nanochannels with ultrafast water permeation and salt rejection, formed by the stacking of macrocycles[41]

His mechanically robust polymer glass which is self-healable at ambient temperatures, poly(ether thiourea),[37] is notable as it dispelled a long-term preconception that mechanical robustness and self-healing abilities of polymers are mutually exclusive. Poly(ether thiourea) shows excellent mechanical robustness (Young's modulus E = 1.4 GPa) due to the dense, non-linear hydrogen-bonding network formed among thiourea groups, even though the molecular weight is relatively small (Mn = ~10,000 (g/mol)). Aida presented this concept at the World Economic Forum (Davos, 2019)[3] as a promising example of sustainable materials.

In addition to his pioneering contribution to the field of supramolecular polymerization, he published seminal papers on photo-driven chiral molecular pincers that can deform guest molecules using light,[42][43] subnanoscale hydrophobic modulation of salt bridges in aqueous media,[44] and the first carbon nitride thin film.[45]

Aida currently oversees a group of students and researchers with a diversity of research projects in his labs at the University of Tokyo[46] and at the RIKEN Center for Emergent Matter Science (CEMS).[47] Current research in the Aida Lab focuses on the design and application of supramolecular materials, including supramolecular polymers and gels, liquid crystals, and biomolecular assemblies.

Achievements and awards

[edit]

Scientific output and professional service

Aida has published over 400 peer-reviewed research papers, review articles, and books, and more than 90 of his former group members now hold tenured academic positions worldwide.[48]

Aida has served on the Board of Reviewing Editors for Science Magazine (since 2009),[49] on the Advisory Board for the Journal of the American Chemical Society (2014–2021), and as Associate Editor for the Journal of Materials Chemistry (2004–2006). He has further served on the international advisory boards of over 15 journals, including executive advisory board for Giant.[50]

He has served as a technical advisor for KAO Co. Ltd. (since 2017) and for Mitsui Chemical (2010–2015). He serves as a Member of the Scientific Advisory Board of the Max Planck Institute for Polymer Research (since 2020) and as an International Academic Advancement Council Member for the South China Advanced Institute for Soft Matter Science and Technology (AISMST) (since 2017). Aida was a member of the International Advisory Committee of the Institute of Molecular Functional Materials of the University of Hong Kong (2010–2018). He also served on the International Advisory Board of the International Center for Materials Nanoarchitectonics at the National Institute for Materials Science, Japan (2007–2017).

Academic invitations and memberships

Aida has been invited to give lectures at many universities and conferences. He has been, amongst others, Rohm & Haas Lecturer (Berkeley, 2007), Annual Bayer Lecture series Lecturer (Pittsburgh, 2009; Texas A&M, 2012), Stephanie Kwolek Lecturer in Materials Chemistry (Carnegie Mellon University, 2009), Merck-Pfister Lecturer in Organic Chemistry (MIT, 2010), Novartis Seminar in Organic Chemistry lecturer, (University of Illinois, 2010), Toray Advanced Materials Symposium lecturer (Japan, 2011), Torkil Holm Symposium Lecturer (Denmark, 2012), Danish Chemical Society Opening Plenary Lecturer (Denmark, 2012), International Institute for Nanotechnology Symposium lecturer (Northwestern University, 2012), Van’t Hoff Award Lecturer (The Netherlands, 2013), Schmidt Lecturer (Weizmann Institute of Science, Israel, 2016), Melville Lecturer (Cambridge, UK, 2017), Xuetang Lecturer (Tsinghua University, China, 2017), Peter Timms Lecturer (Bristol, UK, 2018), Master Distinguished Lecturer (Shanghai Jiao Tong University, China, 2019), and Dodge Lecturer (Yale University, 2021). Aida has given a number of lectures at Gordon Research Conferences (Self-Assembly and Supramolecular Chemistry, 2013,[51] 2019;[52] Artificial Molecular Switches & Motors, 2015,[53] 2017;[54] Bioinspired Materials, 2018).[55] He served as Chair of the Gordon Research Conference on Self-Assembly and Supramolecular Chemistry in 2017.[56] He gave lectures at the Molecular Machines Nobel Prize Conference (Netherlands, 2017) and at the Wolf Prize Symposium (Israel, 2018), as well as the opening keynote lecture at the ACS Spring 2021 Meeting.[57]

Aida has been an Honorary Fellow of the Indian Chemical Society (since 2013). He received a Senior Visiting Scholarship from State Key Laboratory, Fudan University (since 2018). He was elected a foreign member of the Royal Netherlands Academy of Arts and Sciences in 2020.[58]

Aida was elected into the National Academy of Engineering in 2021 for contributions to the engineering of smart and adaptive molecular materials using physical perturbation of multivalent interactions.[59] He was elected as an International Honorary Member of the American Academy of Arts and Sciences in 2023 for pioneering contributions to the initiation, fundamental progress, and conceptual expansion of supramolecular polymerization and for his leadership and advocacy in addressing critical environmental issues caused by plastic waste and microplastics in the oceans, soil, and food supply, through the development of dynamic, responsive, healable, reorganizable, and adaptive supramolecular polymers and related soft materials.[60]

Awards

Aida has received numerous prominent awards, including the Chemical Society of Japan Award for Young Chemists (1988),[61] the Society of Polymer Science Japan Award (1992),[62] SPACC Award (1998), Wiley Polymer Chemistry Award (1999), IBM Science Award (1999),[63] The Nagoya Medal of Organic Chemistry: Silver Medal (2000),[64] Tokyo Techno Forum Award: Gold Medal (2001),[65] Inoue Prize for Science (2005), Molecular Chirality Award (2008),[66] Coordination Chemistry Award (2008),[67] The Chemical Society of Japan Award (2008),[68] The American Chemical Society Award in Polymer Chemistry (2009),[69] Medal with Purple Ribbon (2010), Alexander von Humboldt Research Award (2011), Fujihara Award (2011),[70] American Chemical Society Arthur K. Doolittle Award (PMSE, 2012),[71] van't Hoff Award Lecture (2013),[72] Leo Esaki Prize (2015),[73] the Chirality Medal (2017),[74] Japan Academy Prize (2018),[75] Global Outstanding Student and Mentor Award in Polymer Science and Engineering (2018),[76] Ichimura Prize in Science for Excellent Achievement (2020),[77] Ryoji Noyori ACES Award (2021),[78] and the Netherlands Award for Supramolecular Chemistry (2021).[79]

Personal life

[edit]

In his student days, Aida enjoyed mountain climbing, and playing basketball and tennis. He now enjoys Japanese hot springs, travelling, animals, especially cats, and playing electric saxophone (Roland Aerophone AE-10).

References

[edit]
  1. ^ a b Aida, Takuzo; Meijer, E. W. (2020). "Supramolecular Polymers – we've Come Full Circle". Israel Journal of Chemistry. 60 (1–2): 33–47. doi:10.1002/ijch.201900165. ISSN 1869-5868.
  2. ^ a b Hashim, P. K.; Bergueiro, Julian; Meijer, E. W.; Aida, Takuzo (2020-04-25). "Supramolecular Polymerization: A Conceptual Expansion for Innovative Materials". Progress in Polymer Science. 105: 101250. doi:10.1016/j.progpolymsci.2020.101250. ISSN 0079-6700.
  3. ^ a b Hard, durable and self-healing materials | Takuzo Aida, 26 February 2019, retrieved 2020-05-07
  4. ^ Aida, Takuzo; Inoue, Shohei (1996-01-10). "Metalloporphyrins as Initiators for Living and Immortal Polymerizations". Accounts of Chemical Research. 29 (1): 39–48. doi:10.1021/ar950029l. ISSN 0001-4842.
  5. ^ "AIDA Nanospace". Japan Science and Technology Agency. Retrieved 2020-05-08.
  6. ^ "Organization | About CEMS | Center for Emergent Matter Science (CEMS) | RIKEN" (in Japanese). Retrieved 2020-05-07.
  7. ^ a b Aida, Takuzo; Takemura, Akihiko; Fuse, Masahiro; Inoue, Shohei (1988-01-01). "Synthesis of a novel amphiphilic porphyrin carrying water-soluble polyether side chains of controlled chain length. Formation of a cofacial molecular assembly in aqueous media". Journal of the Chemical Society, Chemical Communications (5): 391–393. doi:10.1039/C39880000391. ISSN 0022-4936.
  8. ^ a b Hill, Jonathan P.; Jin, Wusong; Kosaka, Atsuko; Fukushima, Takanori; Ichihara, Hideki; Shimomura, Takeshi; Ito, Kohzo; Hashizume, Tomihiro; Ishii, Noriyuki; Aida, Takuzo (2004-06-04). "Self-Assembled Hexa-peri-hexabenzocoronene Graphitic Nanotube". Science. 304 (5676): 1481–1483. Bibcode:2004Sci...304.1481H. doi:10.1126/science.1097789. ISSN 0036-8075. PMID 15178796. S2CID 39674411.
  9. ^ a b Kang, Jiheong; Miyajima, Daigo; Mori, Tadashi; Inoue, Yoshihisa; Itoh, Yoshimitsu; Aida, Takuzo (2015-02-06). "A rational strategy for the realization of chain-growth supramolecular polymerization". Science. 347 (6222): 646–651. Bibcode:2015Sci...347..646K. doi:10.1126/science.aaa4249. ISSN 0036-8075. PMID 25657246. S2CID 8487579.
  10. ^ a b Yamamoto, Yohei; Fukushima, Takanori; Suna, Yuki; Ishii, Noriyuki; Saeki, Akinori; Seki, Shu; Tagawa, Seiichi; Taniguchi, Masateru; Kawai, Tomoji; Aida, Takuzo (2006-12-15). "Photoconductive Coaxial Nanotubes of Molecularly Connected Electron Donor and Acceptor Layers". Science. 314 (5806): 1761–1764. Bibcode:2006Sci...314.1761Y. doi:10.1126/science.1134441. ISSN 0036-8075. PMID 17170300. S2CID 10615728.
  11. ^ a b Yamamoto, Yohei; Zhang, Guanxin; Jin, Wusong; Fukushima, Takanori; Ishii, Noriyuki; Saeki, Akinori; Seki, Shu; Tagawa, Seiichi; Minari, Takeo; Tsukagoshi, Kazuhito; Aida, Takuzo (2009-12-15). "Ambipolar-transporting coaxial nanotubes with a tailored molecular graphene–fullerene heterojunction". Proceedings of the National Academy of Sciences. 106 (50): 21051–21056. Bibcode:2009PNAS..10621051Y. doi:10.1073/pnas.0905655106. ISSN 0027-8424. PMC 2795534. PMID 19940243.
  12. ^ a b Zhang, Wei; Jin, Wusong; Fukushima, Takanori; Saeki, Akinori; Seki, Shu; Aida, Takuzo (2011-10-21). "Supramolecular Linear Heterojunction Composed of Graphite-Like Semiconducting Nanotubular Segments". Science. 334 (6054): 340–343. Bibcode:2011Sci...334..340Z. doi:10.1126/science.1210369. ISSN 0036-8075. PMID 22021852. S2CID 5458366.
  13. ^ a b Jin, Wusong; Fukushima, Takanori; Niki, Makiko; Kosaka, Atsuko; Ishii, Noriyuki; Aida, Takuzo (2005-08-02). "Self-assembled graphitic nanotubes with one-handed helical arrays of a chiral amphiphilic molecular graphene". Proceedings of the National Academy of Sciences. 102 (31): 10801–10806. Bibcode:2005PNAS..10210801J. doi:10.1073/pnas.0500852102. ISSN 0027-8424. PMC 1182409. PMID 16043721.
  14. ^ a b Shen, Zhaocun; Sang, Yutao; Wang, Tianyu; Jiang, Jian; Meng, Yan; Jiang, Yuqian; Okuro, Kou; Aida, Takuzo; Liu, Minghua (2019-09-04). "Asymmetric catalysis mediated by a mirror symmetry-broken helical nanoribbon". Nature Communications. 10 (1): 3976. Bibcode:2019NatCo..10.3976S. doi:10.1038/s41467-019-11840-3. ISSN 2041-1723. PMC 6726595. PMID 31484928.
  15. ^ a b Venkata Rao, Kotagiri; Miyajima, Daigo; Nihonyanagi, Atsuko; Aida, Takuzo (November 2017). "Thermally bisignate supramolecular polymerization". Nature Chemistry. 9 (11): 1133–1139. Bibcode:2017NatCh...9.1133V. doi:10.1038/nchem.2812. ISSN 1755-4349. PMID 29064499.
  16. ^ Aida, Takuzo (2020). "On Supramolecular Polymerization: Interview with Takuzo Aida". Advanced Materials. 32 (20): 1905445. Bibcode:2020AdM....3205445A. doi:10.1002/adma.201905445. ISSN 1521-4095. PMID 31867791.
  17. ^ Aida, T.; Meijer, E. W.; Stupp, S. I. (2012-02-17). "Functional Supramolecular Polymers". Science. 335 (6070): 813–817. Bibcode:2012Sci...335..813A. doi:10.1126/science.1205962. ISSN 0036-8075. PMC 3291483. PMID 22344437.
  18. ^ Kageyama, Keisuke; Tamazawa, Jun-ichi; Aida, Takuzo (1999-09-24). "Extrusion Polymerization: Catalyzed Synthesis of Crystalline Linear Polyethylene Nanofibers Within a Mesoporous Silica". Science. 285 (5436): 2113–2115. doi:10.1126/science.285.5436.2113. ISSN 0036-8075. PMID 10497126.
  19. ^ Jiang, Dong-Lin; Aida, Takuzo (July 1997). "Photoisomerization in dendrimers by harvesting of low-energy photons". Nature. 388 (6641): 454–456. Bibcode:1997Natur.388..454J. doi:10.1038/41290. ISSN 1476-4687. S2CID 205028355.
  20. ^ Jiang, Dong-Lin; Aida, Takuzo (1998-10-01). "Morphology-Dependent Photochemical Events in Aryl Ether Dendrimer Porphyrins: Cooperation of Dendron Subunits for Singlet Energy Transduction". Journal of the American Chemical Society. 120 (42): 10895–10901. doi:10.1021/ja9823520. ISSN 0002-7863.
  21. ^ Ishida, Yasuhiro; Aida, Takuzo (2002-11-01). "Homochiral Supramolecular Polymerization of an "S"-Shaped Chiral Monomer: Translation of Optical Purity into Molecular Weight Distribution". Journal of the American Chemical Society. 124 (47): 14017–14019. doi:10.1021/ja028403h. ISSN 0002-7863. PMID 12440899.
  22. ^ Ohta, Eisuke; Sato, Hiroyasu; Ando, Shinji; Kosaka, Atsuko; Fukushima, Takanori; Hashizume, Daisuke; Yamasaki, Mikio; Hasegawa, Kimiko; Muraoka, Azusa; Ushiyama, Hiroshi; Yamashita, Koichi (January 2011). "Redox-responsive molecular helices with highly condensed π -clouds". Nature Chemistry. 3 (1): 68–73. Bibcode:2011NatCh...3...68O. doi:10.1038/nchem.900. ISSN 1755-4349. PMID 21160520.
  23. ^ Fukino, Takahiro; Joo, Hyunho; Hisada, Yuki; Obana, Maiko; Yamagishi, Hiroshi; Hikima, Takaaki; Takata, Masaki; Fujita, Norifumi; Aida, Takuzo (2014-05-02). "Manipulation of Discrete Nanostructures by Selective Modulation of Noncovalent Forces". Science. 344 (6183): 499–504. Bibcode:2014Sci...344..499F. doi:10.1126/science.1252120. ISSN 0036-8075. PMID 24786075. S2CID 6360178.
  24. ^ Chen, Zhen; Suzuki, Yukinaga; Imayoshi, Ayumi; Ji, Xiaofan; Rao, Kotagiri Venkata; Omata, Yuki; Miyajima, Daigo; Sato, Emiko; Nihonyanagi, Atsuko; Aida, Takuzo (14 October 2021). "Solvent-free autocatalytic supramolecular polymerization". Nature Materials. 21 (2): 253–261. doi:10.1038/s41563-021-01122-z. ISSN 1476-4660. PMID 34650229. S2CID 234062383.
  25. ^ Fukushima, Takanori; Kosaka, Atsuko; Ishimura, Yoji; Yamamoto, Takashi; Takigawa, Toshikazu; Ishii, Noriyuki; Aida, Takuzo (2003-06-27). "Molecular Ordering of Organic Molten Salts Triggered by Single-Walled Carbon Nanotubes". Science. 300 (5628): 2072–2074. Bibcode:2003Sci...300.2072F. doi:10.1126/science.1082289. ISSN 0036-8075. PMID 12829776. S2CID 14898755.
  26. ^ Matsumoto, Michio; Saito, Yusuke; Park, Chiyoung; Fukushima, Takanori; Aida, Takuzo (September 2015). "Ultrahigh-throughput exfoliation of graphite into pristine 'single-layer' graphene using microwaves and molecularly engineered ionic liquids". Nature Chemistry. 7 (9): 730–736. Bibcode:2015NatCh...7..730M. doi:10.1038/nchem.2315. ISSN 1755-4349. PMID 26291945.
  27. ^ Sekitani, Tsuyoshi; Noguchi, Yoshiaki; Hata, Kenji; Fukushima, Takanori; Aida, Takuzo; Someya, Takao (2008-09-12). "A Rubberlike Stretchable Active Matrix Using Elastic Conductors". Science. 321 (5895): 1468–1472. Bibcode:2008Sci...321.1468S. doi:10.1126/science.1160309. ISSN 0036-8075. PMID 18687922. S2CID 15663382.
  28. ^ Sekitani, Tsuyoshi; Nakajima, Hiroyoshi; Maeda, Hiroki; Fukushima, Takanori; Aida, Takuzo; Hata, Kenji; Someya, Takao (June 2009). "Stretchable active-matrix organic light-emitting diode display using printable elastic conductors". Nature Materials. 8 (6): 494–499. Bibcode:2009NatMa...8..494S. doi:10.1038/nmat2459. ISSN 1476-4660. PMID 19430465.
  29. ^ Fukushima, Takanori; Asaka, Kinji; Kosaka, Atsuko; Aida, Takuzo (2005). "Fully Plastic Actuator through Layer-by-Layer Casting with Ionic-Liquid-Based Bucky Gel". Angewandte Chemie International Edition. 44 (16): 2410–2413. doi:10.1002/anie.200462318. ISSN 1521-3773. PMID 15761901.
  30. ^ Wang, Qigang; Mynar, Justin L.; Yoshida, Masaru; Lee, Eunji; Lee, Myongsoo; Okuro, Kou; Kinbara, Kazushi; Aida, Takuzo (January 2010). "High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder". Nature. 463 (7279): 339–343. Bibcode:2010Natur.463..339W. doi:10.1038/nature08693. ISSN 1476-4687. PMID 20090750. S2CID 4422721.
  31. ^ Liu, Mingjie; Ishida, Yasuhiro; Ebina, Yasuo; Sasaki, Takayoshi; Hikima, Takaaki; Takata, Masaki; Aida, Takuzo (January 2015). "An anisotropic hydrogel with electrostatic repulsion between cofacially aligned nanosheets". Nature. 517 (7532): 68–72. Bibcode:2015Natur.517...68L. doi:10.1038/nature14060. ISSN 1476-4687. PMID 25557713. S2CID 4470394.
  32. ^ Kim, Youn Soo; Liu, Mingjie; Ishida, Yasuhiro; Ebina, Yasuo; Osada, Minoru; Sasaki, Takayoshi; Hikima, Takaaki; Takata, Masaki; Aida, Takuzo (October 2015). "Thermoresponsive actuation enabled by permittivity switching in an electrostatically anisotropic hydrogel". Nature Materials. 14 (10): 1002–1007. Bibcode:2015NatMa..14.1002K. doi:10.1038/nmat4363. ISSN 1476-4660. PMID 26259107.
  33. ^ Ishii, Daisuke; Kinbara, Kazushi; Ishida, Yasuhiro; Ishii, Noriyuki; Okochi, Mina; Yohda, Masafumi; Aida, Takuzo (June 2003). "Chaperonin-mediated stabilization and ATP-triggered release of semiconductor nanoparticles". Nature. 423 (6940): 628–632. Bibcode:2003Natur.423..628I. doi:10.1038/nature01663. ISSN 1476-4687. PMID 12789335. S2CID 52862173.
  34. ^ Biswas, Shuvendu; Kinbara, Kazushi; Niwa, Tatsuya; Taguchi, Hideki; Ishii, Noriyuki; Watanabe, Sumiyo; Miyata, Kanjiro; Kataoka, Kazunori; Aida, Takuzo (July 2013). "Biomolecular robotics for chemomechanically driven guest delivery fuelled by intracellular ATP". Nature Chemistry. 5 (7): 613–620. Bibcode:2013NatCh...5..613B. doi:10.1038/nchem.1681. ISSN 1755-4349. PMID 23787753.
  35. ^ Hosono, Nobuhiko; Kajitani, Takashi; Fukushima, Takanori; Ito, Kazuki; Sasaki, Sono; Takata, Masaki; Aida, Takuzo (2010-11-05). "Large-Area Three-Dimensional Molecular Ordering of a Polymer Brush by One-Step Processing". Science. 330 (6005): 808–811. Bibcode:2010Sci...330..808H. doi:10.1126/science.1195302. ISSN 0036-8075. PMID 21051635. S2CID 2649063.
  36. ^ Miyajima, Daigo; Araoka, Fumito; Takezoe, Hideo; Kim, Jungeun; Kato, Kenichi; Takata, Masaki; Aida, Takuzo (2012-04-13). "Ferroelectric Columnar Liquid Crystal Featuring Confined Polar Groups Within Core–Shell Architecture". Science. 336 (6078): 209–213. Bibcode:2012Sci...336..209M. doi:10.1126/science.1217954. ISSN 0036-8075. PMID 22499944. S2CID 11434473.
  37. ^ a b Yanagisawa, Yu; Nan, Yiling; Okuro, Kou; Aida, Takuzo (2018-01-05). "Mechanically robust, readily repairable polymers via tailored noncovalent cross-linking". Science. 359 (6371): 72–76. Bibcode:2018Sci...359...72Y. doi:10.1126/science.aam7588. ISSN 0036-8075. PMID 29242235.
  38. ^ Yamagishi, Hiroshi; Sato, Hiroshi; Hori, Akihiro; Sato, Yohei; Matsuda, Ryotaro; Kato, Kenichi; Aida, Takuzo (2018-09-21). "Self-assembly of lattices with high structural complexity from a geometrically simple molecule". Science. 361 (6408): 1242–1246. Bibcode:2018Sci...361.1242Y. doi:10.1126/science.aat6394. ISSN 0036-8075. PMID 30237354.
  39. ^ Yano, Keiichi; Itoh, Yoshimitsu; Araoka, Fumito; Watanabe, Go; Hikima, Takaaki; Aida, Takuzo (2019-01-11). "Nematic-to-columnar mesophase transition by in situ supramolecular polymerization". Science. 363 (6423): 161–165. Bibcode:2019Sci...363..161Y. doi:10.1126/science.aan1019. ISSN 0036-8075. PMID 30630928.
  40. ^ Meng, Wenjing; Kondo, Shun; Ito, Takuji; Komatsu, Kazuki; Pirillo, Jenny; Hijikata, Yuh; Ikuhara, Yuichi; Aida, Takuzo; Sato, Hiroshi (13 October 2021). "An elastic metal–organic crystal with a densely catenated backbone". Nature. 598 (7880): 298–303. Bibcode:2021Natur.598..298M. doi:10.1038/s41586-021-03880-x. ISSN 1476-4687. PMID 34646002. S2CID 238859665.
  41. ^ Itoh, Yoshimitsu; Chen, Shuo; Hirahara, Ryota; Konda, Takeshi; Aoki, Tsubasa; Ueda, Takumi; Shimada, Ichio; Cannon, James J.; Shao, Cheng; Shiomi, Junichiro; Tabata, Kazuhito V.; Noji, Hiroyuki; Sato, Kohei; Aida, Takuzo (2022-05-13). "Ultrafast water permeation through nanochannels with a densely fluorous interior surface". Science. 376 (6594): 738–743. Bibcode:2022Sci...376..738I. doi:10.1126/science.abd0966. ISSN 0036-8075. PMID 35549437. S2CID 248750030.
  42. ^ Muraoka, Takahiro; Kinbara, Kazushi; Aida, Takuzo (March 2006). "Mechanical twisting of a guest by a photoresponsive host". Nature. 440 (7083): 512–515. Bibcode:2006Natur.440..512M. doi:10.1038/nature04635. ISSN 1476-4687. PMID 16554815. S2CID 4424929.
  43. ^ Kinbara, Kazushi; Aida, Takuzo (2005-04-01). "Toward Intelligent Molecular Machines: Directed Motions of Biological and Artificial Molecules and Assemblies". Chemical Reviews. 105 (4): 1377–1400. doi:10.1021/cr030071r. ISSN 0009-2665. PMID 15826015.
  44. ^ Chen, Shuo; Itoh, Yoshimitsu; Masuda, Takuya; Shimizu, Seishi; Zhao, Jun; Ma, Jing; Nakamura, Shugo; Okuro, Kou; Noguchi, Hidenori; Uosaki, Kohei; Aida, Takuzo (2015-05-01). "Subnanoscale hydrophobic modulation of salt bridges in aqueous media". Science. 348 (6234): 555–559. Bibcode:2015Sci...348..555C. doi:10.1126/science.aaa7532. ISSN 0036-8075. PMID 25931555. S2CID 10098226.
  45. ^ Arazoe, Hiroki; Miyajima, Daigo; Akaike, Kouki; Araoka, Fumito; Sato, Emiko; Hikima, Takaaki; Kawamoto, Masuki; Aida, Takuzo (October 2016). "An autonomous actuator driven by fluctuations in ambient humidity". Nature Materials. 15 (10): 1084–1089. Bibcode:2016NatMa..15.1084A. doi:10.1038/nmat4693. ISSN 1476-4660. PMID 27429210.
  46. ^ "Aida Laboratory". Retrieved 2020-05-07.
  47. ^ "Emergent Soft Matter Function Research Group | Takuzo Aida | Center for Emergent Matter Science (CEMS) | RIKEN". Retrieved 2020-05-07.
  48. ^ "PhD Alumni". park.itc.u-tokyo.ac.jp. Retrieved 2020-05-07.
  49. ^ "Editors and Advisory Boards". Science | AAAS. 2018-01-31. Retrieved 2020-05-07.
  50. ^ "Giant - Editorial Board". Elsevier. Retrieved 2020-05-08.
  51. ^ "2013 Self-Assembly and Supramolecular Chemistry Conference GRC". www.grc.org. Retrieved 2020-05-07.
  52. ^ "2019 Self-Assembly and Supramolecular Chemistry Conference GRC". www.grc.org. Retrieved 2020-05-07.
  53. ^ "2015 Artificial Molecular Switches and Motors Conference GRC". www.grc.org. Retrieved 2020-05-07.
  54. ^ "2017 Artificial Molecular Switches and Motors Conference GRC". www.grc.org. Retrieved 2020-05-07.
  55. ^ "2018 Bioinspired Materials Conference GRC". www.grc.org. Retrieved 2020-05-07.
  56. ^ "2017 Self-Assembly and Supramolecular Chemistry Conference GRC". www.grc.org. Retrieved 2020-05-07.
  57. ^ "Macromolecular Chemistry: The Second Century". American Chemical Society. Retrieved 2022-10-04.
  58. ^ "Takuzo Aida". Royal Netherlands Academy of Arts and Sciences. Archived from the original on 2 May 2020.
  59. ^ "Dr. Takuzo Aida". NAE Website. Retrieved 2023-10-04.
  60. ^ "Takuzo Aida". American Academy of Arts & Sciences. 2023-10-03. Retrieved 2023-10-04.
  61. ^ "日本化学会 各賞受賞者一覧(第3階層資料)". www.chemistry.or.jp. Retrieved 2020-05-07.
  62. ^ "学会賞|高分子学会". main.spsj.or.jp. Retrieved 2020-05-07.
  63. ^ "日本IBM科学賞第13回(1999年)受賞者". IBM (in Japanese). Archived from the original on 2001-04-22. Retrieved 2020-05-07.
  64. ^ "The Nagoya Medal of Organic Chemistry" (PDF). Nagoya University. 2014. Retrieved 2020-05-08.
  65. ^ "ゴールド・メダル賞受賞者一覧". Yomiuri (in Japanese). Retrieved 2020-05-07.
  66. ^ "Molecular Chirality". www.camelianet.com. Retrieved 2020-05-07.
  67. ^ "「貢献賞」受賞者一覧 | 錯体化学会 Japan Society of Coordination Chemistry". www.sakutai.jp (in Japanese). Retrieved 2020-05-07.
  68. ^ "CSJ Awards". The Chemical Society of Japan. Retrieved 2020-05-07.
  69. ^ "ACS Award in Polymer Chemistry". American Chemical Society. Retrieved 2020-05-07.
  70. ^ "無題ドキュメント". www.fujizai.or.jp. Retrieved 2020-05-07.
  71. ^ "Dolittle Award". Polymeric Materials: Science and Engineering Division: Archival Website (through 2017). Retrieved 2020-05-07.
  72. ^ "Van 't Hoff Award Lectures — KNAW". www.knaw.nl. Retrieved 2020-05-07.
  73. ^ "Past Leo Esaki Prize winners". 一般財団法人 茨城県科学技術振興財団|筑波研究学園都市:茨城県つくば市 (in Japanese). Retrieved 2020-05-07.
  74. ^ "Chirality 2019 - Sciencesconf.org". chirality2019.sciencesconf.org. Retrieved 2020-05-07.
  75. ^ "The Imperial Prize,Japan Academy Prize,Duke of Edinburgh Prize Recipients | The Japan Academy". www.japan-acad.go.jp. Retrieved 2020-05-07.
  76. ^ "Global Outstanding Student and Mentor Award in Polymer Science and Engineering – PMSE". Retrieved 2020-05-07.
  77. ^ "過去の受賞一覧 / 市村賞贈呈 | 公益財団法人 市村清新技術財団". www.sgkz.or.jp. Retrieved 2020-05-07.
  78. ^ "相田卓三副センター長がRyoji Noyori ACES Awardを受賞". www.riken.jp (in Japanese). Retrieved 2022-10-04.
  79. ^ "The Netherlands Award for Supramolecular Chemistry – FMS Research Center". fmsresearch.nl. Retrieved 2022-10-04.
[edit]