Jump to content

Menger curvature: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Citation bot (talk | contribs)
Alter: journal. Add: s2cid. Removed parameters. | Use this bot. Report bugs. | Suggested by Whoop whoop pull up | #UCB_webform 788/3485
ce
 
(3 intermediate revisions by the same user not shown)
Line 11: Line 11:
Using the well-known formula relating the side lengths of a [[triangle]] to its area, it follows that
Using the well-known formula relating the side lengths of a [[triangle]] to its area, it follows that


:<math>c (x, y, z) = \frac1{R} = \frac{4 A}{| x - y | | y - z | | z - x |},</math>
:<math>c (x, y, z) = \frac1{R} = \frac{4 A}{|x - y ||y - z ||z - x |},</math>


where ''A'' denotes the area of the triangle spanned by ''x'', ''y'' and ''z''.
where ''A'' denotes the area of the triangle spanned by ''x'', ''y'' and ''z''.
Line 31: Line 31:
: <math> c^{p}(\mu)=\int\int\int c(x,y,z)^{p}d\mu(x)d\mu(y)d\mu(z).</math>
: <math> c^{p}(\mu)=\int\int\int c(x,y,z)^{p}d\mu(x)d\mu(y)d\mu(z).</math>


* A Borel set <math> E\subseteq \mathbb{R}^{n} </math> is rectifiable if <math> c^{2}(H^{1}|_{E})<\infty</math>, where <math> H^{1}|_{E} </math> denotes one-dimensional [[Hausdorff measure]] restricted to the set <math> E</math>.<ref>{{cite journal
* A Borel set <math> E\subseteq \mathbb{R}^{n} </math> is rectifiable if <math> c^{2}(H^{1}|_{E})<\infty</math>, where <math> H^{1}|_{E} </math> denotes one-dimensional [[Hausdorff measure]] restricted to the set <math> E</math>.<ref>
{{cite journal
| last = Leger | first = J. | title =Menger curvature and rectifiability
|last=Leger |first=J.
|year=1999
|title=Menger curvature and rectifiability
| journal = Annals of Mathematics | volume = 149 | pages = 831–869 | year = 1999
|journal=[[Annals of Mathematics]]
|volume=149 |issue=3 |pages=831–869
| url = http://www.emis.de/journals/Annals/149_3/leger.pdf
|url=http://www.emis.de/journals/Annals/149_3/leger.pdf
|arxiv=math/9905212
| issue = 3
| doi = 10.2307/121074
|doi=10.2307/121074
| jstor = 121074
|jstor=121074
| arxiv = math/9905212| s2cid = 216176 }}</ref>
|s2cid=216176
}}</ref>


The basic intuition behind the result is that Menger curvature measures how straight a given triple of points are (the smaller <math> c(x,y,z)\max\{|x-y|,|y-z|,|z-y|\}</math> is, the closer x,y, and z are to being collinear), and this integral quantity being finite is saying that the set E is flat on most small scales. In particular, if the power in the integral is larger, our set is smoother than just being rectifiable<ref>{{cite journal
The basic intuition behind the result is that Menger curvature measures how straight a given triple of points are (the smaller <math> c(x,y,z)\max\{|x-y|,|y-z|,|z-y|\}</math> is, the closer x,y, and z are to being collinear), and this integral quantity being finite is saying that the set E is flat on most small scales. In particular, if the power in the integral is larger, our set is smoother than just being rectifiable<ref>
{{cite journal
|last1=Strzelecki |first1=Paweł
|author1=Pawl Strzelecki |author2=Marta Szumanska |author3=Heiko von der Mosel | title =Regularizing and self-avoidance effects of integral Menger curvature
|last2=Szumańska |first2=Marta
| journal = Institut F¨ur Mathematik }}</ref>
|last3=von der Mosel |first3=Heiko
|date=2010
|title=Regularizing and self-avoidance effects of integral Menger curvature
|url=http://www.numdam.org/item/ASNSP_2010_5_9_1_145_0/
|journal=[[Annali della Scuola Normale Superiore di Pisa - Classe di Scienze]]
|volume=9 |issue=1 |pages=145–187
}}</ref>


* Let <math> p>3</math>, <math> f:S^{1}\rightarrow \mathbb{R}^{n}</math> be a homeomorphism and <math>\Gamma=f(S^{1})</math>. Then <math> f\in C^{1,1-\frac{3}{p}}(S^{1})</math> if <math> c^{p}(H^{1}|_{\Gamma})<\infty</math>.
* Let <math> p>3</math>, <math> f:S^{1}\rightarrow \mathbb{R}^{n}</math> be a homeomorphism and <math>\Gamma=f(S^{1})</math>. Then <math> f\in C^{1,1-\frac{3}{p}}(S^{1})</math> if <math> c^{p}(H^{1}|_{\Gamma})<\infty</math>.
* If <math> 0<H^{s}(E)<\infty</math> where <math> 0<s\leq\frac{1}{2}</math>, and <math> c^{2s}(H^{s}|_{E})<\infty</math>, then <math> E</math> is rectifiable in the sense that there are countably many <math>C^{1}</math> curves <math>\Gamma_{i}</math> such that <math> H^{s}(E\backslash \bigcup\Gamma_{i})=0</math>. The result is not true for <math> \frac{1}{2}<s<1</math>, and <math> c^{2s}(H^{s}|_{E})=\infty</math> for <math> 1<s\leq n</math>.:<ref>{{cite journal
* If <math> 0<H^{s}(E)<\infty</math> where <math> 0<s\leq\frac{1}{2}</math>, and <math> c^{2s}(H^{s}|_{E})<\infty</math>, then <math> E</math> is rectifiable in the sense that there are countably many <math>C^{1}</math> curves <math>\Gamma_{i}</math> such that <math> H^{s}(E\backslash \bigcup\Gamma_{i})=0</math>. The result is not true for <math> \frac{1}{2}<s<1</math>, and <math> c^{2s}(H^{s}|_{E})=\infty</math> for <math> 1<s\leq n</math>.:<ref>
{{cite journal
|last1=Lin |first1=Yong
| last = Yong Lin and [[Pertti Mattila]] | title =Menger curvature and <math> C^{1}</math> regularity of fractals
|last2=Mattila |first2=Pertti
| journal = Proceedings of the American Mathematical Society | volume = 129 | pages = 1755–1762 | year = 2000
|year=2000
| url = https://www.ams.org/proc/2001-129-06/S0002-9939-00-05814-7/S0002-9939-00-05814-7.pdf
|title=Menger curvature and ''C''<sup>1</sup> regularity of fractals
| issue = 6 | doi=10.1090/s0002-9939-00-05814-7
|url=https://www.ams.org/proc/2001-129-06/S0002-9939-00-05814-7/S0002-9939-00-05814-7.pdf
| doi-access = free }}</ref>
|journal=[[Proceedings of the American Mathematical Society]]
|volume=129 |issue=6 |pages=1755–1762
|doi=10.1090/s0002-9939-00-05814-7 |doi-access=free
}}</ref>


In the opposite direction, there is a result of Peter Jones:<ref>{{cite book
In the opposite direction, there is a result of Peter Jones:<ref>
{{cite book
| last = Pajot | first = H. | title =Analytic Capacity, Rectifiability, Menger Curvature and the Cauchy Integral
|last=Pajot |first=H.
|year=2000
|title=Analytic Capacity, Rectifiability, Menger Curvature and the Cauchy Integral
| publisher = Springer| year = 2000
|publisher=Springer
| isbn = 3-540-00001-1
|isbn=3-540-00001-1
}}</ref>
}}</ref>


* If <math>E\subseteq\Gamma\subseteq\mathbb{R}^{2}</math>, <math> H^{1}(E)>0</math>, and <math>\Gamma</math> is rectifiable. Then there is a positive Radon measure <math>\mu</math> supported on <math>E</math> satisfying <math> \mu B(x,r)\leq r</math> for all <math>x\in E</math> and <math>r>0</math> such that <math>c^{2}(\mu)<\infty</math> (in particular, this measure is the [[Frostman's lemma|Frostman measure]] associated to E). Moreover, if <math>H^{1}(B(x,r)\cap\Gamma)\leq Cr</math> for some constant ''C'' and all <math> x\in \Gamma</math> and ''r>0'', then <math> c^{2}(H^{1}|_{E})<\infty</math>. This last result follows from the [[Analyst's Traveling Salesman Theorem]].
* If <math>E\subseteq\Gamma\subseteq\mathbb{R}^{2}</math>, <math> H^{1}(E)>0</math>, and <math>\Gamma</math> is rectifiable. Then there is a positive Radon measure <math>\mu</math> supported on <math>E</math> satisfying <math> \mu B(x,r)\leq r</math> for all <math>x\in E</math> and <math>r>0</math> such that <math>c^{2}(\mu)<\infty</math> (in particular, this measure is the [[Frostman's lemma|Frostman measure]] associated to E). Moreover, if <math>H^{1}(B(x,r)\cap\Gamma)\leq Cr</math> for some constant ''C'' and all <math> x\in \Gamma</math> and ''r>0'', then <math> c^{2}(H^{1}|_{E})<\infty</math>. This last result follows from the [[Analyst's Traveling Salesman Theorem]].


Analogous results hold in general metric spaces:<ref>{{cite journal
Analogous results hold in general metric spaces:<ref>
{{cite journal
| last = Schul | first = Raanan | title =Ahlfors-regular curves in metric spaces
|last=Schul |first=Raanan
|year=2007
|title=Ahlfors-regular curves in metric spaces
|url=http://www.acadsci.fi/mathematica/Vol32/vol32pp437-460.pdf
| journal = Annales Academiæ Scientiarum Fennicæ | volume = 32 | pages = 437–460 | year = 2007
|journal=[[Annales Academiae Scientiarum Fennicae]]
| url =http://www.acadsci.fi/mathematica/Vol32/vol32pp437-460.pdf
|volume=32 |pages=437–460
}}</ref>
}}</ref>


Line 72: Line 97:
==External links==
==External links==
* {{cite web
* {{cite web
|last=Leymarie |first=F.
|date=September 2003
|title=Notes on Menger Curvature
|url=http://www.lems.brown.edu/vision/people/leymarie/Notes/CurvSurf/MengerCurv/index.html
|url=http://www.lems.brown.edu/vision/people/leymarie/Notes/CurvSurf/MengerCurv/index.html
|accessdate=2007-11-19
|title=Notes on Menger Curvature
|archiveurl=https://web.archive.org/web/20070821103738/http://www.lems.brown.edu/vision/people/leymarie/Notes/CurvSurf/MengerCurv/index.html
|last=Leymarie
|archivedate=2007-08-21
|first=F.
|url-status=dead
|accessdate=2007-11-19
|date=September 2003
|archiveurl=https://web.archive.org/web/20070821103738/http://www.lems.brown.edu/vision/people/leymarie/Notes/CurvSurf/MengerCurv/index.html
|archivedate=2007-08-21
|url-status=dead
}}
}}


Line 86: Line 110:
<references/>
<references/>


* {{cite journal
*{{cite journal
| last = Tolsa
|last=Tolsa|first=Xavier
|year=2000
| first = Xavier
| title = Principal values for the Cauchy integral and rectifiability
|title=Principal values for the Cauchy integral and rectifiability
| journal = [[Proceedings of the American Mathematical Society|Proc. Amer. Math. Soc.]]
|journal=[[Proceedings of the American Mathematical Society]]
| volume = 128
|volume=128 |issue=7 |pages=2111–2119
|doi=10.1090/S0002-9939-00-05264-3
| year = 2000
|doi-access=free
| pages = 2111&ndash;2119
| doi = 10.1090/S0002-9939-00-05264-3
| issue = 7
| doi-access = free
}}
}}



Latest revision as of 14:24, 9 August 2024

In mathematics, the Menger curvature of a triple of points in n-dimensional Euclidean space Rn is the reciprocal of the radius of the circle that passes through the three points. It is named after the Austrian-American mathematician Karl Menger.

Definition

[edit]

Let x, y and z be three points in Rn; for simplicity, assume for the moment that all three points are distinct and do not lie on a single straight line. Let Π ⊆ Rn be the Euclidean plane spanned by x, y and z and let C ⊆ Π be the unique Euclidean circle in Π that passes through x, y and z (the circumcircle of x, y and z). Let R be the radius of C. Then the Menger curvature c(xyz) of x, y and z is defined by

If the three points are collinear, R can be informally considered to be +∞, and it makes rigorous sense to define c(xyz) = 0. If any of the points x, y and z are coincident, again define c(xyz) = 0.

Using the well-known formula relating the side lengths of a triangle to its area, it follows that

where A denotes the area of the triangle spanned by x, y and z.

Another way of computing Menger curvature is the identity

where is the angle made at the y-corner of the triangle spanned by x,y,z.

Menger curvature may also be defined on a general metric space. If X is a metric space and x,y, and z are distinct points, let f be an isometry from into . Define the Menger curvature of these points to be

Note that f need not be defined on all of X, just on {x,y,z}, and the value cX (x,y,z) is independent of the choice of f.

Integral Curvature Rectifiability

[edit]

Menger curvature can be used to give quantitative conditions for when sets in may be rectifiable. For a Borel measure on a Euclidean space define

  • A Borel set is rectifiable if , where denotes one-dimensional Hausdorff measure restricted to the set .[1]

The basic intuition behind the result is that Menger curvature measures how straight a given triple of points are (the smaller is, the closer x,y, and z are to being collinear), and this integral quantity being finite is saying that the set E is flat on most small scales. In particular, if the power in the integral is larger, our set is smoother than just being rectifiable[2]

  • Let , be a homeomorphism and . Then if .
  • If where , and , then is rectifiable in the sense that there are countably many curves such that . The result is not true for , and for .:[3]

In the opposite direction, there is a result of Peter Jones:[4]

  • If , , and is rectifiable. Then there is a positive Radon measure supported on satisfying for all and such that (in particular, this measure is the Frostman measure associated to E). Moreover, if for some constant C and all and r>0, then . This last result follows from the Analyst's Traveling Salesman Theorem.

Analogous results hold in general metric spaces:[5]

See also

[edit]
[edit]
  • Leymarie, F. (September 2003). "Notes on Menger Curvature". Archived from the original on 2007-08-21. Retrieved 2007-11-19.

References

[edit]
  1. ^ Leger, J. (1999). "Menger curvature and rectifiability" (PDF). Annals of Mathematics. 149 (3): 831–869. arXiv:math/9905212. doi:10.2307/121074. JSTOR 121074. S2CID 216176.
  2. ^ Strzelecki, Paweł; Szumańska, Marta; von der Mosel, Heiko (2010). "Regularizing and self-avoidance effects of integral Menger curvature". Annali della Scuola Normale Superiore di Pisa - Classe di Scienze. 9 (1): 145–187.
  3. ^ Lin, Yong; Mattila, Pertti (2000). "Menger curvature and C1 regularity of fractals" (PDF). Proceedings of the American Mathematical Society. 129 (6): 1755–1762. doi:10.1090/s0002-9939-00-05814-7.
  4. ^ Pajot, H. (2000). Analytic Capacity, Rectifiability, Menger Curvature and the Cauchy Integral. Springer. ISBN 3-540-00001-1.
  5. ^ Schul, Raanan (2007). "Ahlfors-regular curves in metric spaces" (PDF). Annales Academiae Scientiarum Fennicae. 32: 437–460.