Jump to content

Alpha-2A adrenergic receptor: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
ProteinBoxBot (talk | contribs)
Updating to new gene infobox populated via wikidata
Citation bot (talk | contribs)
Altered issue. Added bibcode. Formatted dashes. | Use this bot. Report bugs. | Suggested by Boghog | #UCB_webform
 
(36 intermediate revisions by 22 users not shown)
Line 1: Line 1:
{{Short description|Protein-coding gene in the species Homo sapiens}}
{{cs1 config|name-list-style=vanc|display-authors=6}}
{{Infobox_gene}}
{{Infobox_gene}}
The '''alpha-2A adrenergic receptor''' (α<sub>2A</sub> adrenoceptor), also known as '''ADRA2A''', is an [[alpha-2 adrenergic receptor|α<sub>2</sub> adrenergic receptor]], and also denotes the [[human genome]] encoding it.<ref name="entrez" />
The '''alpha-2A adrenergic receptor''' (α<sub>2A</sub> adrenoceptor), also known as '''ADRA2A''', is an [[alpha-2 adrenergic receptor|α<sub>2</sub> adrenergic receptor]], and also denotes the [[human gene]] encoding it.<ref name="entrez" />


== Receptor ==
== Receptor ==
α<sub>2</sub> adrenergic receptors include 3 highly homologous subtypes: α<sub>2A</sub>, α<sub>2B</sub>, and α<sub>2C</sub>. These receptors have a critical role in regulating [[neurotransmitter]] release from [[sympathetic nerves]] and from adrenergic neurons in the [[central nervous system]]. Studies in mice revealed that both the α<sub>2A</sub> and α<sub>2C</sub> subtypes were required for normal [[presynaptic]] control of transmitter release from sympathetic nerves in the [[heart]] and from central noradrenergic neurons; the α<sub>2A</sub> subtype inhibited transmitter release at high stimulation frequencies, whereas the α<sub>2C</sub> subtype modulated neurotransmission at lower levels of nerve activity.
α<sub>2</sub> adrenergic receptors include 3 highly homologous subtypes: α<sub>2A</sub>, α<sub>2B</sub>, and α<sub>2C</sub>. These receptors have a critical role in regulating [[neurotransmitter]] release from [[sympathetic nerves]] and from adrenergic neurons in the [[central nervous system]]. Studies in mice revealed that both the α<sub>2A</sub> and α<sub>2C</sub> subtypes were required for normal [[presynaptic]] control of transmitter release from sympathetic nerves in the [[heart]] and from central noradrenergic neurons; the α<sub>2A</sub> subtype inhibited transmitter release at high stimulation frequencies, whereas the α<sub>2C</sub> subtype modulated neurotransmission at lower levels of nerve activity.<ref>{{cite journal | vauthors = Hein L, Altman JD, Kobilka BK | title = Two functionally distinct alpha2-adrenergic receptors regulate sympathetic neurotransmission | journal = Nature | volume = 402 | issue = 6758 | pages = 181–184 | date = November 1999 | pmid = 10647009 | doi = 10.1038/46040 | s2cid = 205047992 | bibcode = 1999Natur.402..181H }}</ref>


== Gene ==
== Gene ==
This gene encodes α<sub>2A</sub> subtype and it contains no [[introns]] in either its [[coding sequence|coding]] or [[untranslated sequence]]s.<ref name="entrez">{{cite web | title = Entrez Gene: ADRA2A adrenergic, alpha-2A-, receptor| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=150| accessdate = }}</ref>
This gene encodes α<sub>2A</sub> subtype and it contains no [[introns]] in either its [[coding sequence|coding]] or [[untranslated sequence]]s.<ref name="entrez">{{cite web | title = Entrez Gene: ADRA2A adrenergic, alpha-2A-, receptor| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=150}}</ref>

== Role in central nervous system ==
Although the pre-synaptic functions of α<sub>2A</sub> receptors have been a major focus (see above), the majority of α<sub>2</sub> receptors in the brain are actually localized post-synaptically to noradrenergic terminals{{Citation needed|date=September 2011}}, and therefore aid in the function of [[norepinephrine]]. Many post-synaptic α<sub>2A</sub> receptors have important effects on brain function; for example, α<sub>2A</sub> receptors are localized on prefrontal cortical neurons where they regulate higher cognitive function.


==Ligands==
==Ligands==


===Agonists===
===Agonists===
{{div col|colwidth=15em}}
* [[4-NEMD]]
* [[Brimonidine]]
* [[Clonidine]]
* [[Clonidine]]
* [[Lofexidine]]
* [[Detomidine]]
* [[Dexmedetomidine]]
* [[Dexmedetomidine]]
* [[Guanfacine]]
* [[Guanfacine]]
* [[Lofexidine]]
* [[Myrcene]]
* [[Medetomidine]]
* [[PS75]]<ref name="pmid36173843">{{cite journal | vauthors = Fink EA, Xu J, Hübner H, Braz JM, Seemann P, Avet C, Craik V, Weikert D, Schmidt MF, Webb CM, Tolmachova NA, Moroz YS, Huang XP, Kalyanaraman C, Gahbauer S, Chen G, Liu Z, Jacobson MP, Irwin JJ, Bouvier M, Du Y, Shoichet BK, Basbaum AI, Gmeiner P | title = Structure-based discovery of nonopioid analgesics acting through the α<sub>2A</sub>-adrenergic receptor | journal = Science | volume = 377 | issue = 6614 | pages = eabn7065 | date = September 2022 | pmid = 36173843 | pmc = 10360211 | doi = 10.1126/science.abn7065 }}</ref>
* [[Tizanidine]]
* [[Xylazine]]
{{Div col end}}


===Antagonists===
===Antagonists===
{{div col|colwidth=15em}}
* [[Atipamezole]]
* [[Idazoxan]]
* [[1-PP]] (active metabolite of [[buspirone]] and [[gepirone]])
* [[Asenapine]]
* [[Asenapine]]
* [[BRL-44408]]
* [[BRL-44408]]
Line 29: Line 42:
* [[Risperidone]]
* [[Risperidone]]
* [[Yohimbine]]
* [[Yohimbine]]
{{Div col end}}


== See also ==
== See also ==
Line 35: Line 49:
== References ==
== References ==
{{reflist}}
{{reflist}}

== External links ==
* {{cite web | url = http://www.iuphar-db.org/GPCR/ReceptorDisplayForward?receptorID=2181 | title = &alpha;<sub>2A</sub>-adrenoceptor | accessdate = | author = | authorlink = | date = | format = | work = IUPHAR Database of Receptors and Ion Channels | publisher = International Union of Basic and Clinical Pharmacology | pages = | archiveurl = | archivedate = | quote = }}


== Further reading ==
== Further reading ==
{{refbegin | 2}}
{{refbegin | 2}}
* {{cite journal | vauthors = Perälä M, Hirvonen H, Kalimo H, Ala-Uotila S, Regan JW, Akerman KE, Scheinin M | title = Differential expression of two alpha 2-adrenergic receptor subtype mRNAs in human tissues | journal = Brain Research. Molecular Brain Research | volume = 16 | issue = 1-2 | pages = 57–63 | date = Nov 1992 | pmid = 1334200 | doi = 10.1016/0169-328X(92)90193-F }}
* {{cite journal | vauthors = Perälä M, Hirvonen H, Kalimo H, Ala-Uotila S, Regan JW, Akerman KE, Scheinin M | title = Differential expression of two alpha 2-adrenergic receptor subtype mRNAs in human tissues | journal = Brain Research. Molecular Brain Research | volume = 16 | issue = 1–2 | pages = 57–63 | date = November 1992 | pmid = 1334200 | doi = 10.1016/0169-328X(92)90193-F }}
* {{cite journal | vauthors = Surprenant A, Horstman DA, Akbarali H, Limbird LE | title = A point mutation of the alpha 2-adrenoceptor that blocks coupling to potassium but not calcium currents | journal = Science | volume = 257 | issue = 5072 | pages = 977–80 | date = Aug 1992 | pmid = 1354394 | doi = 10.1126/science.1354394 }}
* {{cite journal | vauthors = Surprenant A, Horstman DA, Akbarali H, Limbird LE | title = A point mutation of the alpha 2-adrenoceptor that blocks coupling to potassium but not calcium currents | journal = Science | volume = 257 | issue = 5072 | pages = 977–980 | date = August 1992 | pmid = 1354394 | doi = 10.1126/science.1354394 | bibcode = 1992Sci...257..977S }}
* {{cite journal | vauthors = Handy DE, Gavras H | title = Promoter region of the human alpha 2A adrenergic receptor gene | journal = The Journal of Biological Chemistry | volume = 267 | issue = 33 | pages = 24017–22 | date = Nov 1992 | pmid = 1385431 | doi = }}
* {{cite journal | vauthors = Handy DE, Gavras H | title = Promoter region of the human alpha 2A adrenergic receptor gene | journal = The Journal of Biological Chemistry | volume = 267 | issue = 33 | pages = 24017–24022 | date = November 1992 | pmid = 1385431 | doi = 10.1016/S0021-9258(18)35938-6 | doi-access = free }}
* {{cite journal | vauthors = Suryanarayana S, Daunt DA, Von Zastrow M, Kobilka BK | title = A point mutation in the seventh hydrophobic domain of the alpha 2 adrenergic receptor increases its affinity for a family of beta receptor antagonists | journal = The Journal of Biological Chemistry | volume = 266 | issue = 23 | pages = 15488–92 | date = Aug 1991 | pmid = 1678390 | doi = }}
* {{cite journal | vauthors = Suryanarayana S, Daunt DA, Von Zastrow M, Kobilka BK | title = A point mutation in the seventh hydrophobic domain of the alpha 2 adrenergic receptor increases its affinity for a family of beta receptor antagonists | journal = The Journal of Biological Chemistry | volume = 266 | issue = 23 | pages = 15488–15492 | date = August 1991 | pmid = 1678390 | doi = 10.1016/S0021-9258(18)98642-4 | doi-access = free }}
* {{cite journal | vauthors = Wang CD, Buck MA, Fraser CM | title = Site-directed mutagenesis of alpha 2A-adrenergic receptors: identification of amino acids involved in ligand binding and receptor activation by agonists | journal = Molecular Pharmacology | volume = 40 | issue = 2 | pages = 168–79 | date = Aug 1991 | pmid = 1678850 | doi = }}
* {{cite journal | vauthors = Wang CD, Buck MA, Fraser CM | title = Site-directed mutagenesis of alpha 2A-adrenergic receptors: identification of amino acids involved in ligand binding and receptor activation by agonists | journal = Molecular Pharmacology | volume = 40 | issue = 2 | pages = 168–179 | date = August 1991 | pmid = 1678850 }}
* {{cite journal | vauthors = Chhajlani V, Rangel N, Uhlén S, Wikberg JE | title = Identification of an additional gene belonging to the alpha 2 adrenergic receptor family in the human genome by PCR | journal = FEBS Letters | volume = 280 | issue = 2 | pages = 241–4 | date = Mar 1991 | pmid = 1849485 | doi = 10.1016/0014-5793(91)80301-I }}
* {{cite journal | vauthors = Chhajlani V, Rangel N, Uhlén S, Wikberg JE | title = Identification of an additional gene belonging to the alpha 2 adrenergic receptor family in the human genome by PCR | journal = FEBS Letters | volume = 280 | issue = 2 | pages = 241–244 | date = March 1991 | pmid = 1849485 | doi = 10.1016/0014-5793(91)80301-I | s2cid = 26642747 | doi-access = free | bibcode = 1991FEBSL.280..241C }}
* {{cite journal | vauthors = Guyer CA, Horstman DA, Wilson AL, Clark JD, Cragoe EJ, Limbird LE | title = Cloning, sequencing, and expression of the gene encoding the porcine alpha 2-adrenergic receptor. Allosteric modulation by Na+, H+, and amiloride analogs | journal = The Journal of Biological Chemistry | volume = 265 | issue = 28 | pages = 17307–17 | date = Oct 1990 | pmid = 2170371 | doi = }}
* {{cite journal | vauthors = Guyer CA, Horstman DA, Wilson AL, Clark JD, Cragoe EJ, Limbird LE | title = Cloning, sequencing, and expression of the gene encoding the porcine alpha 2-adrenergic receptor. Allosteric modulation by Na+, H+, and amiloride analogs | journal = The Journal of Biological Chemistry | volume = 265 | issue = 28 | pages = 17307–17317 | date = October 1990 | pmid = 2170371 | doi = 10.1016/S0021-9258(17)44904-0 | doi-access = free }}
* {{cite journal | vauthors = Fraser CM, Arakawa S, McCombie WR, Venter JC | title = Cloning, sequence analysis, and permanent expression of a human alpha 2-adrenergic receptor in Chinese hamster ovary cells. Evidence for independent pathways of receptor coupling to adenylate cyclase attenuation and activation | journal = The Journal of Biological Chemistry | volume = 264 | issue = 20 | pages = 11754–61 | date = Jul 1989 | pmid = 2568356 | doi = }}
* {{cite journal | vauthors = Fraser CM, Arakawa S, McCombie WR, Venter JC | title = Cloning, sequence analysis, and permanent expression of a human alpha 2-adrenergic receptor in Chinese hamster ovary cells. Evidence for independent pathways of receptor coupling to adenylate cyclase attenuation and activation | journal = The Journal of Biological Chemistry | volume = 264 | issue = 20 | pages = 11754–11761 | date = July 1989 | pmid = 2568356 | doi = 10.1016/S0021-9258(18)80130-2 | doi-access = free }}
* {{cite journal | vauthors = Kobilka BK, Matsui H, Kobilka TS, Yang-Feng TL, Francke U, Caron MG, Lefkowitz RJ, Regan JW | title = Cloning, sequencing, and expression of the gene coding for the human platelet alpha 2-adrenergic receptor | journal = Science | volume = 238 | issue = 4827 | pages = 650–6 | date = Oct 1987 | pmid = 2823383 | doi = 10.1126/science.2823383 }}
* {{cite journal | vauthors = Kobilka BK, Matsui H, Kobilka TS, Yang-Feng TL, Francke U, Caron MG, Lefkowitz RJ, Regan JW | title = Cloning, sequencing, and expression of the gene coding for the human platelet alpha 2-adrenergic receptor | journal = Science | volume = 238 | issue = 4827 | pages = 650–656 | date = October 1987 | pmid = 2823383 | doi = 10.1126/science.2823383 | bibcode = 1987Sci...238..650K }}
* {{cite journal | vauthors = Lynch CJ, Steer ML | title = Evidence for high and low affinity alpha 2-receptors. Comparison of [3H]norepinephrine and [3H]phentolamine binding to human platelet membranes | journal = The Journal of Biological Chemistry | volume = 256 | issue = 7 | pages = 3298–303 | date = Apr 1981 | pmid = 6259160 | doi = }}
* {{cite journal | vauthors = Lynch CJ, Steer ML | title = Evidence for high and low affinity alpha 2-receptors. Comparison of [3H]norepinephrine and [3H]phentolamine binding to human platelet membranes | journal = The Journal of Biological Chemistry | volume = 256 | issue = 7 | pages = 3298–3303 | date = April 1981 | pmid = 6259160 | doi = 10.1016/S0021-9258(19)69606-7 | doi-access = free }}
* {{cite journal | vauthors = Eason MG, Moreira SP, Liggett SB | title = Four consecutive serines in the third intracellular loop are the sites for beta-adrenergic receptor kinase-mediated phosphorylation and desensitization of the alpha 2A-adrenergic receptor | journal = The Journal of Biological Chemistry | volume = 270 | issue = 9 | pages = 4681–8 | date = Mar 1995 | pmid = 7876239 | doi = 10.1074/jbc.270.9.4681 }}
* {{cite journal | vauthors = Eason MG, Moreira SP, Liggett SB | title = Four consecutive serines in the third intracellular loop are the sites for beta-adrenergic receptor kinase-mediated phosphorylation and desensitization of the alpha 2A-adrenergic receptor | journal = The Journal of Biological Chemistry | volume = 270 | issue = 9 | pages = 4681–4688 | date = March 1995 | pmid = 7876239 | doi = 10.1074/jbc.270.9.4681 | doi-access = free }}
* {{cite journal | vauthors = Grassie MA, Milligan G | title = Analysis of the relative interactions between the alpha 2C10 adrenoceptor and the guanine-nucleotide-binding proteins G(o)1 alpha and Gi 2 alpha following co-expression of these polypeptides in rat 1 fibroblasts | journal = The Biochemical Journal | volume = 306 | issue = Pt 2 | pages = 525–30 | date = Mar 1995 | pmid = 7887906 | pmc = 1136549 | doi = 10.1042/bj3060525}}
* {{cite journal | vauthors = Grassie MA, Milligan G | title = Analysis of the relative interactions between the alpha 2C10 adrenoceptor and the guanine-nucleotide-binding proteins G(o)1 alpha and Gi 2 alpha following co-expression of these polypeptides in rat 1 fibroblasts | journal = The Biochemical Journal | volume = 306 ( Pt 2) | issue = Pt 2 | pages = 525–530 | date = March 1995 | pmid = 7887906 | pmc = 1136549 | doi = 10.1042/bj3060525 }}
* {{cite journal | vauthors = Shilo L, Sakaue M, Thomas JM, Philip M, Hoffman BB | title = Enhanced transcription of the human alpha 2A-adrenergic receptor gene by cAMP: evidence for multiple cAMP responsive sequences in the promoter region of this gene | journal = Cellular Signalling | volume = 6 | issue = 1 | pages = 73–82 | date = Jan 1994 | pmid = 8011430 | doi = 10.1016/0898-6568(94)90062-0 }}
* {{cite journal | vauthors = Shilo L, Sakaue M, Thomas JM, Philip M, Hoffman BB | title = Enhanced transcription of the human alpha 2A-adrenergic receptor gene by cAMP: evidence for multiple cAMP responsive sequences in the promoter region of this gene | journal = Cellular Signalling | volume = 6 | issue = 1 | pages = 73–82 | date = January 1994 | pmid = 8011430 | doi = 10.1016/0898-6568(94)90062-0 }}
* {{cite journal | vauthors = Valet P, Senard JM, Devedjian JC, Planat V, Salomon R, Voisin T, Drean G, Couvineau A, Daviaud D, Denis C | title = Characterization and distribution of alpha 2-adrenergic receptors in the human intestinal mucosa | journal = The Journal of Clinical Investigation | volume = 91 | issue = 5 | pages = 2049–57 | date = May 1993 | pmid = 8098045 | pmc = 288203 | doi = 10.1172/JCI116427 }}
* {{cite journal | vauthors = Valet P, Senard JM, Devedjian JC, Planat V, Salomon R, Voisin T, Drean G, Couvineau A, Daviaud D, Denis C | title = Characterization and distribution of alpha 2-adrenergic receptors in the human intestinal mucosa | journal = The Journal of Clinical Investigation | volume = 91 | issue = 5 | pages = 2049–2057 | date = May 1993 | pmid = 8098045 | pmc = 288203 | doi = 10.1172/JCI116427 }}
* {{cite journal | vauthors = Alblas J, van Corven EJ, Hordijk PL, Milligan G, Moolenaar WH | title = Gi-mediated activation of the p21ras-mitogen-activated protein kinase pathway by alpha 2-adrenergic receptors expressed in fibroblasts | journal = The Journal of Biological Chemistry | volume = 268 | issue = 30 | pages = 22235–8 | date = Oct 1993 | pmid = 8226727 | doi = }}
* {{cite journal | vauthors = Alblas J, van Corven EJ, Hordijk PL, Milligan G, Moolenaar WH | title = Gi-mediated activation of the p21ras-mitogen-activated protein kinase pathway by alpha 2-adrenergic receptors expressed in fibroblasts | journal = The Journal of Biological Chemistry | volume = 268 | issue = 30 | pages = 22235–22238 | date = October 1993 | pmid = 8226727 | doi = 10.1016/S0021-9258(18)41514-1 | doi-access = free }}
* {{cite journal | vauthors = Klein U, Ramirez MT, Kobilka BK, von Zastrow M | title = A novel interaction between adrenergic receptors and the alpha-subunit of eukaryotic initiation factor 2B | journal = The Journal of Biological Chemistry | volume = 272 | issue = 31 | pages = 19099–102 | date = Aug 1997 | pmid = 9235896 | doi = 10.1074/jbc.272.31.19099 }}
* {{cite journal | vauthors = Klein U, Ramirez MT, Kobilka BK, von Zastrow M | title = A novel interaction between adrenergic receptors and the alpha-subunit of eukaryotic initiation factor 2B | journal = The Journal of Biological Chemistry | volume = 272 | issue = 31 | pages = 19099–19102 | date = August 1997 | pmid = 9235896 | doi = 10.1074/jbc.272.31.19099 | doi-access = free }}
* {{cite journal | vauthors = Bétuing S, Daviaud D, Pagès C, Bonnard E, Valet P, Lafontan M, Saulnier-Blache JS | title = Gbeta gamma-independent coupling of alpha2-adrenergic receptor to p21(rhoA) in preadipocytes | journal = The Journal of Biological Chemistry | volume = 273 | issue = 25 | pages = 15804–10 | date = Jun 1998 | pmid = 9624180 | doi = 10.1074/jbc.273.25.15804 }}
* {{cite journal | vauthors = Bétuing S, Daviaud D, Pagès C, Bonnard E, Valet P, Lafontan M, Saulnier-Blache JS | title = Gbeta gamma-independent coupling of alpha2-adrenergic receptor to p21(rhoA) in preadipocytes | journal = The Journal of Biological Chemistry | volume = 273 | issue = 25 | pages = 15804–15810 | date = June 1998 | pmid = 9624180 | doi = 10.1074/jbc.273.25.15804 | doi-access = free }}
* {{cite journal | vauthors = Prezeau L, Richman JG, Edwards SW, Limbird LE | title = The zeta isoform of 14-3-3 proteins interacts with the third intracellular loop of different alpha2-adrenergic receptor subtypes | journal = The Journal of Biological Chemistry | volume = 274 | issue = 19 | pages = 13462–9 | date = May 1999 | pmid = 10224112 | doi = 10.1074/jbc.274.19.13462 }}
* {{cite journal | vauthors = Prezeau L, Richman JG, Edwards SW, Limbird LE | title = The zeta isoform of 14-3-3 proteins interacts with the third intracellular loop of different alpha2-adrenergic receptor subtypes | journal = The Journal of Biological Chemistry | volume = 274 | issue = 19 | pages = 13462–13469 | date = May 1999 | pmid = 10224112 | doi = 10.1074/jbc.274.19.13462 | doi-access = free }}
* {{cite journal | vauthors = Hein L, Altman JD, Kobilka BK | title = Two functionally distinct alpha2-adrenergic receptors regulate sympathetic neurotransmission | journal = Nature | volume = 402 | issue = 6758 | pages = 181–4 | date = Nov 1999 | pmid = 10647009 | doi = 10.1038/46040 }}
* {{cite journal | vauthors = Hein L, Altman JD, Kobilka BK | title = Two functionally distinct alpha2-adrenergic receptors regulate sympathetic neurotransmission | journal = Nature | volume = 402 | issue = 6758 | pages = 181–184 | date = November 1999 | pmid = 10647009 | doi = 10.1038/46040 | s2cid = 205047992 | bibcode = 1999Natur.402..181H }}
* {{cite journal | vauthors = Schaak S, Cussac D, Cayla C, Devedjian JC, Guyot R, Paris H, Denis C | title = Alpha(2) adrenoceptors regulate proliferation of human intestinal epithelial cells | journal = Gut | volume = 47 | issue = 2 | pages = 242–50 | date = Aug 2000 | pmid = 10896916 | pmc = 1728001 | doi = 10.1136/gut.47.2.242 }}
* {{cite journal | vauthors = Schaak S, Cussac D, Cayla C, Devedjian JC, Guyot R, Paris H, Denis C | title = Alpha(2) adrenoceptors regulate proliferation of human intestinal epithelial cells | journal = Gut | volume = 47 | issue = 2 | pages = 242–250 | date = August 2000 | pmid = 10896916 | pmc = 1728001 | doi = 10.1136/gut.47.2.242 }}
{{refend}}
{{refend}}

== External links ==
* {{cite web | url = http://www.iuphar-db.org/GPCR/ReceptorDisplayForward?receptorID=2181 | title = α<sub>2A</sub>-adrenoceptor | work = IUPHAR Database of Receptors and Ion Channels | publisher = International Union of Basic and Clinical Pharmacology | access-date = 2008-11-25 | archive-date = 2015-04-02 | archive-url = https://web.archive.org/web/20150402142451/http://www.iuphar-db.org/GPCR/ReceptorDisplayForward?receptorID=2181 | url-status = dead }}
* {{UCSC gene info|ADRA2A}}
* {{UCSC gene info|ZNF32}}


{{PDB Gallery|geneid=150}}
{{PDB Gallery|geneid=150}}
Line 69: Line 85:
[[Category:Adrenergic receptors]]
[[Category:Adrenergic receptors]]
[[Category:Biology of attention deficit hyperactivity disorder]]
[[Category:Biology of attention deficit hyperactivity disorder]]



{{transmembranereceptor-stub}}
{{transmembranereceptor-stub}}

Latest revision as of 04:16, 13 August 2024

ADRA2A
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesADRA2A, ADRA2, ADRA2R, ADRAR, ALPHA2AAR, ZNF32, adrenoceptor alpha 2A
External IDsOMIM: 104210; MGI: 87934; HomoloGene: 47944; GeneCards: ADRA2A; OMA:ADRA2A - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_000681

NM_007417

RefSeq (protein)

NP_000672

NP_031443

Location (UCSC)Chr 10: 111.08 – 111.08 MbChr 19: 54.03 – 54.04 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

The alpha-2A adrenergic receptor2A adrenoceptor), also known as ADRA2A, is an α2 adrenergic receptor, and also denotes the human gene encoding it.[5]

Receptor

[edit]

α2 adrenergic receptors include 3 highly homologous subtypes: α2A, α2B, and α2C. These receptors have a critical role in regulating neurotransmitter release from sympathetic nerves and from adrenergic neurons in the central nervous system. Studies in mice revealed that both the α2A and α2C subtypes were required for normal presynaptic control of transmitter release from sympathetic nerves in the heart and from central noradrenergic neurons; the α2A subtype inhibited transmitter release at high stimulation frequencies, whereas the α2C subtype modulated neurotransmission at lower levels of nerve activity.[6]

Gene

[edit]

This gene encodes α2A subtype and it contains no introns in either its coding or untranslated sequences.[5]

Ligands

[edit]

Agonists

[edit]

Antagonists

[edit]

See also

[edit]

References

[edit]
  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000150594Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000033717Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ a b "Entrez Gene: ADRA2A adrenergic, alpha-2A-, receptor".
  6. ^ Hein L, Altman JD, Kobilka BK (November 1999). "Two functionally distinct alpha2-adrenergic receptors regulate sympathetic neurotransmission". Nature. 402 (6758): 181–184. Bibcode:1999Natur.402..181H. doi:10.1038/46040. PMID 10647009. S2CID 205047992.
  7. ^ Fink EA, Xu J, Hübner H, Braz JM, Seemann P, Avet C, et al. (September 2022). "Structure-based discovery of nonopioid analgesics acting through the α2A-adrenergic receptor". Science. 377 (6614): eabn7065. doi:10.1126/science.abn7065. PMC 10360211. PMID 36173843.

Further reading

[edit]
[edit]