Dityrosine: Difference between revisions
No edit summary |
typo fixing per Wikipedia:Typo Team/moss |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 2: | Line 2: | ||
{{Chembox |
{{Chembox |
||
| ImageFile = L,L-Dityrosine.png |
| ImageFile = L,L-Dityrosine.png |
||
| IUPACName = (2''S'' |
| IUPACName = (2''S'',2′''S'')-3,3'-(6,6′-dihydroxybiphenyl-3,3′-diyl)bis(2-aminopropanoic acid) |
||
|SystematicName=(2''S'')-2-amino-3-[3-[5-[(2''S'')-2-amino-2-carboxyethyl]-2-hydroxyphenyl]-4-hydroxyphenyl]propanoic acid |
|||
| OtherNames = {{ubl| |
| OtherNames = {{ubl| |
||
*<small>L</small>,<small>L</small>-Dityrosine |
*<small>L</small>,<small>L</small>-Dityrosine |
||
*3,3′-Di-<small>L</small>-tyrosine |
*3,3′-Di-<small>L</small>-tyrosine |
||
*3,3′-Bityrosine |
*3,3′-Bityrosine |
||
*(2''S'',2′''S'')-3,3'-(6,6′-dihydroxybiphenyl-3,3′-diyl)bis(2-aminopropanoic acid) |
|||
}} |
}} |
||
|Section1={{Chembox Identifiers |
|Section1={{Chembox Identifiers |
||
Line 38: | Line 38: | ||
The [[2,2'-biphenol|2,2′-biphenol]] structural motif allows dityrosine to form a [[complex (chemistry)|complex]] with [[borate]].<ref>{{cite journal |first1= D. A. |last1= Malencik |first2= S. R. |last2= Anderson |title= Fluorometric characterization of dityrosine: Complex formation with boric acid and borate ion |journal= Biochem. Biophys. Res. Commun. |year= 1991 |volume= 178 |issue= 1 |pages= 60–67 |doi= 10.1016/0006-291x(91)91779-c |pmid= 2069580 }}</ref> [[Affinity chromatography]] with a column containing immobilised [[phenylboronic acid]] has allowed development of several methods for purification of dityrosine.<ref name="prep-isolation-analysis">{{cite journal |journal= Anal Biochem |year= 1996 |volume= 242 |issue= 2 |pages= 202–213 |doi= 10.1006/abio.1996.0454 |title= Dityrosine: preparation, isolation, and analysis |first1= Dean A. |last1= Malencik |first2= James F. |last2= Sprouse |first3= Chris A. |last3= Swanson |first4= Sonia R. |last4= Anderson }}</ref> |
The [[2,2'-biphenol|2,2′-biphenol]] structural motif allows dityrosine to form a [[complex (chemistry)|complex]] with [[borate]].<ref>{{cite journal |first1= D. A. |last1= Malencik |first2= S. R. |last2= Anderson |title= Fluorometric characterization of dityrosine: Complex formation with boric acid and borate ion |journal= Biochem. Biophys. Res. Commun. |year= 1991 |volume= 178 |issue= 1 |pages= 60–67 |doi= 10.1016/0006-291x(91)91779-c |pmid= 2069580 }}</ref> [[Affinity chromatography]] with a column containing immobilised [[phenylboronic acid]] has allowed development of several methods for purification of dityrosine.<ref name="prep-isolation-analysis">{{cite journal |journal= Anal Biochem |year= 1996 |volume= 242 |issue= 2 |pages= 202–213 |doi= 10.1006/abio.1996.0454 |title= Dityrosine: preparation, isolation, and analysis |first1= Dean A. |last1= Malencik |first2= James F. |last2= Sprouse |first3= Chris A. |last3= Swanson |first4= Sonia R. |last4= Anderson }}</ref> |
||
The tyrosine–tyrosine crosslink can form by [[ultraviolet]] irradiation and other conditions that induce [[radical (chemistry)|radical]] formation.<ref name="prep-isolation-analysis"/> Proteins with [[calcium]] [[binding site]]s consisting of two tyrosine residues, such as [[calmodulin]] and [[troponin C]], are especially prone to this reaction as a result of |
The tyrosine–tyrosine crosslink can form by [[ultraviolet]] irradiation and other conditions that induce [[radical (chemistry)|radical]] formation.<ref name="prep-isolation-analysis"/> Proteins with [[calcium]] [[binding site]]s consisting of two tyrosine residues, such as [[calmodulin]] and [[troponin C]], are especially prone to this reaction as a result of coordination of their [[phenol]] groups to a [[calcium]] ion. The monomer and dimer have different [[Emission spectrum|emission wavelengths]], which can complicate [[fluorescence spectroscopy|fluorescence spectroscopic]] analysis of tyrosine-containing proteins.<ref>{{cite journal |title= Dityrosine formation in calmodulin |first1= Dean A. |last1= Malencik |first2= Sonia R. |last2= Anderson |journal= Biochemistry |year= 1987 |volume= 26 |issue= 3 |pages= 695–704 |doi= 10.1021/bi00377a006 }}</ref> Conversely, the specific fluorescence of dityrosine allows simple detection of it. In particular, [[resilin]] can easily be visualized in whole organisms.<ref>{{cite journal |last1= Elvin |first1= Christopher M. |last2= Carr |first2= Andrew G. |last3= Huson |first3= Mickey G. G |last4= Maxwell |first4= JM |last5= Pearson |first5= Roger D. |last6= Vuocolo |first6= Tony |last7= Liyou |first7= Nancy E. |last8= Wong |first8= Darren C. C. |last9= Merritt |first9= David J. |last10= Dixon |first10= Nicholas E. |title= Synthesis and properties of crosslinked recombinant pro-resilin |journal= Nature |volume= 437 |issue= 7061 |pages= 999–1002 |date= October 2005 |pmid= 16222249 |doi= 10.1038/nature04085 |bibcode= 2005Natur.437..999E |s2cid= 4411986 }}</ref> |
||
The presence of dityrosine is a general [[biomarker]] for [[oxidative stress]].<ref>{{cite journal |title= Current analytical methods for the detection of dityrosine, a biomarker of oxidative stress, in biological samples |journal= Mass Spectrometry Reviews |first1= Theresa |last1= DiMarco |first2= Cecilia |last2= Giulivi |doi= 10.1002/mas.20109 |volume= 26 |issue= 1 |year= 2007 |pages= 108–120 }}</ref> |
The presence of dityrosine is a general [[biomarker]] for [[oxidative stress]].<ref>{{cite journal |title= Current analytical methods for the detection of dityrosine, a biomarker of oxidative stress, in biological samples |journal= Mass Spectrometry Reviews |first1= Theresa |last1= DiMarco |first2= Cecilia |last2= Giulivi |doi= 10.1002/mas.20109 |volume= 26 |issue= 1 |year= 2007 |pages= 108–120 }}</ref> |
||
Line 45: | Line 45: | ||
{{reflist}} |
{{reflist}} |
||
[[Category:Alpha-Amino acids]] |
|||
[[Category:Non-proteinogenic amino acids]] |
[[Category:Non-proteinogenic amino acids]] |
Latest revision as of 04:20, 13 August 2024
Names | |
---|---|
IUPAC name
(2S,2′S)-3,3'-(6,6′-dihydroxybiphenyl-3,3′-diyl)bis(2-aminopropanoic acid)
| |
Systematic IUPAC name
(2S)-2-amino-3-[3-[5-[(2S)-2-amino-2-carboxyethyl]-2-hydroxyphenyl]-4-hydroxyphenyl]propanoic acid | |
Other names
| |
Identifiers | |
3D model (JSmol)
|
|
2228674[1] | |
ChEBI | |
ChemSpider | |
PubChem CID
|
|
UNII | |
CompTox Dashboard (EPA)
|
|
| |
| |
Properties | |
C18H20N2O6 | |
Molar mass | 360.366 g·mol−1 |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
Dityrosine is a dimeric form of tyrosine. Whereas tyrosine itself is a proteinogenic amino acid, dityrosine is non-proteinogenic. Various enzymes, such as CYP56A1 and myeloperoxidase, catalyze the oxidation of tyrosine residues in protein chains to form dityrosine crosslinks in various organisms. It was first isolated from rubber protein of locust wing ligament.[citation needed] Its formation can also be induced by various radical-forming agents.
The 2,2′-biphenol structural motif allows dityrosine to form a complex with borate.[3] Affinity chromatography with a column containing immobilised phenylboronic acid has allowed development of several methods for purification of dityrosine.[4]
The tyrosine–tyrosine crosslink can form by ultraviolet irradiation and other conditions that induce radical formation.[4] Proteins with calcium binding sites consisting of two tyrosine residues, such as calmodulin and troponin C, are especially prone to this reaction as a result of coordination of their phenol groups to a calcium ion. The monomer and dimer have different emission wavelengths, which can complicate fluorescence spectroscopic analysis of tyrosine-containing proteins.[5] Conversely, the specific fluorescence of dityrosine allows simple detection of it. In particular, resilin can easily be visualized in whole organisms.[6]
The presence of dityrosine is a general biomarker for oxidative stress.[7]
References
[edit]- ^ Chirality unspecified
- ^ Chirality unspecified
- ^ Malencik, D. A.; Anderson, S. R. (1991). "Fluorometric characterization of dityrosine: Complex formation with boric acid and borate ion". Biochem. Biophys. Res. Commun. 178 (1): 60–67. doi:10.1016/0006-291x(91)91779-c. PMID 2069580.
- ^ a b Malencik, Dean A.; Sprouse, James F.; Swanson, Chris A.; Anderson, Sonia R. (1996). "Dityrosine: preparation, isolation, and analysis". Anal Biochem. 242 (2): 202–213. doi:10.1006/abio.1996.0454.
- ^ Malencik, Dean A.; Anderson, Sonia R. (1987). "Dityrosine formation in calmodulin". Biochemistry. 26 (3): 695–704. doi:10.1021/bi00377a006.
- ^ Elvin, Christopher M.; Carr, Andrew G.; Huson, Mickey G. G; Maxwell, JM; Pearson, Roger D.; Vuocolo, Tony; Liyou, Nancy E.; Wong, Darren C. C.; Merritt, David J.; Dixon, Nicholas E. (October 2005). "Synthesis and properties of crosslinked recombinant pro-resilin". Nature. 437 (7061): 999–1002. Bibcode:2005Natur.437..999E. doi:10.1038/nature04085. PMID 16222249. S2CID 4411986.
- ^ DiMarco, Theresa; Giulivi, Cecilia (2007). "Current analytical methods for the detection of dityrosine, a biomarker of oxidative stress, in biological samples". Mass Spectrometry Reviews. 26 (1): 108–120. doi:10.1002/mas.20109.